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ABSTRACT The world has embarked on a road to sustainable energy production. As a result, countries have
turned tomicrogrid developments. This article aims to study the feasibility of renewable sources such as solar
PV and wind power for integrating a microgrid campus, taking the example of a case in East Africa, precisely
the case of the University of Djibouti. We applied the weather parameters to evaluate the solar and wind
potential with the Decision Tree method for analyzing and classifying the degrees of solar radiation and the
consistency of wind speed. These data are spread over eight years to establish and capture seasonal changes
and prove the accessibility of renewable sources in a specific site. The results were compared to Random
Forest, Logistic Regression, K-Nearest Neighbors, Support Vector Machine, and Naïve Bayes classifiers,
which showed that the performance of classifying the Decision tree outperformed all other methods with
an accuracy of 0.99321. The second work of this article explored the forecasting of the possible powers
predicted with the LSTM deep learning method by the generation of the Solar PV array and wind turbines
which were simulated on PVLib and Windpowerlib. The results are favorable, and the LSTM has performed
well on the different hyperparameters. With the combination of machine learning and deep learning, it was
possible to theoretically conclude the integration of renewable energies since we investigated all the potential
possibilities in evaluating meteorological parameters and power predictions. Finally, decision scores from
the Decision Tree architecture and the LSTM features were integrated to form a hybrid Tree-LSTM fusion
method. It introduces a novel architectural concept that can effectively address sequential data and harness the
non-linear capabilities of decision trees. The proposed model was validated by tuning the hyperparameters.
Enhancing the maximum depth of the model increases the performance at a certain point, and conversely,
reducing the minimum sample split improves the model performance. These contributions will help to create
sustainable energy systems and increase the transition to a clean CO2 environment.
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NOMENCLATURE
AUC Area Under the Curve.
BESS Battery Energy Storage System.
Bi-LSTM Hybrid Bidirectional LSTM.
CNN Convolutional Neural Networks.

124690

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0006-7527-8025
https://orcid.org/0000-0002-3767-1997
https://orcid.org/0000-0002-8982-2179


F. F. Fadoul et al.: Assessing the Feasibility of Integrating Renewable Energy

DER Distributed energy resources.
G(h) Global Horizontal Radiation.
Gb(n) Global Normal Direct Radiation.
Gd(h) Diffuse Horizontal Radiation.
GRU Gated Recurrent Unit.
IEA International Energy Agency.
IR(h) Infrared Radiation.
JRC European Commission’s Joint Research

Centre.
KNN K-Nearest Neighbors.
LSTM Long Short-Term Memory.
MCDA Multi-Criteria Decision Analysis.
MPC Model Predictive Control.
PVGIS Photovoltaic Geographical Information Sys-

tem.
RES Renewable Energy Sources.
RH Relative humidity.
ROC Receiver Operating Characteristics.
SP Specific Pressure.
SVM Support Vector Machine.
T2m Temperature at 2m height.
WD10m Wind direction at 10m.
WS10m Wind speed at 10m

I. INTRODUCTION
Djibouti is a country abundant in RESs. It boasts a remarkable
potential of 1000 MW for geothermal energy [1], with exten-
sive windy regions [2] and a predominantly sunny climate
that persists throughout the year [3]. Looking ahead to 2035,
Djibouti has ambitious plans to harness RES primarily [4].
In line with this vision, the University of Djibouti has recently
installed a mini-power plant that combines solar PVmodules,
wind turbines, and battery energy storage. This microgrid
has a capacity of 19 kW for the solar panels and 6.5 kW
for the wind turbine. The university aims to reduce its
attachment to fossil fuels and participate in reducing Co2
emissions. In this case, it is imperative to properly integrate
these technologies with the exciting electrical network [5].
Nevertheless, with the intermittent use of renewable energies,
it is advisable to calculate and model the feasibility of
renewable energy integration [6]. This model must serve as
an example of renewable energy integration into educational
institutions in the East African region that generally have the
same climate and potential for renewable energy. In recent
years, the integration of RESs in microgrids has increased
considerably due to their capacity to provide a sustainable
energy landscape [7], [8], [9].Microgrids are localized energy
systems that offer increased energy efficiency, reduced
transmission losses, and improved reliability [10]. Djibouti,
a country characterized by its warm climate, has long
grappled with significant electricity challenges throughout
its history [11]. However, there is an opportunity to profit
from the application of this technology. With its favorable
geographical location, the government of Djibouti is actively
investing in harnessing solar and wind-basedmicrogrids [12].

Several sources affirmed that Djibouti is a prime candidate
for implementing renewable energy projects [3], [5], [11].
These studies [3], [13], [14], [15], [16], [17], [18], and [19]
have demonstrated the energy potential of Djibouti through
different marches and methods based on critical climatic data
such as solar radiation andwind speed. Conducting feasibility
studies is essential when transitioning from intermittent
RES. Reference [20] proposed an energy forecasting model
using a GRU to predict solar and wind energy fluctuations
and decide on renewable integration in tested scenarios.
Conversely, solar and wind penetration levels could be
studied so far in the literature. Reference [21] tried an
MPC with the help of the LSTM. LSTM models are used
analogously to detect the high penetration levels of RES [22].
The correlation and dependencies between RES are studied
in [23] by forecasting the power generation of different
sources with CNN, Attention-based Long Short-Term Mem-
ory (A-LSTM), and Auto-Regression model. Reference [24]
added an analysis based on the PV power network by inves-
tigating the high impedance caused by the RES volatility.
In almost every energy assessment, climate meteorological
data are the key to determining potential risks in solar or
wind sources. Reference [25] suggested applying different
machine learning methods to the long-term mean monthly
wind speed prediction by finding geographical information
such as longitude and latitude. Reference [26] suggested a
BiLSTM, which proved high accuracy compared to the other
machine learning methods. Furthermore, the forecasting
of PV output power is pivotal as a parameter, given the
significant penetration of PV systems [27] The University
of Djibouti’s Balbala campus is located to the southeast
of Djibouti City in an arid place with a particular climate
from the other regions. Starting with the general approximate
models, it would be difficult to quickly judge the feasibility of
integrating the RESs into the grid. Reference [28] contested
the wind speed evaluation on the wind energy produced
in a site near the border with Ethiopia with a different
climate from theUniversity ofDjibouti Balbala. This research
presents plausible climate parameters for possible energy
generation, such as solar radiation, temperature, humidity,
and wind speed, as presented in this research [29]. Thus,
the meteorological data of this site will be analyzed by
a decision tree machine learning algorithm to assess the
feasibility of renewable energy integration. By studying with
decision trees the solar radiation, temperature, humidity,
and wind speed, we will be able to see and identify the
correlations that confirm the reliability of the project. Then,
in a second work, we will make predictions of the power
produced by the solar PV array and the wind turbine of the
microgrid with the LSTM deep learning algorithm method.
Although the concept of RES integration in microgrids has
often been reached in the literature, the specific context of
Djibouti’s Balbala site and its unique geography and climatic
conditions, as well as the feasibility of integrating renewable
energy sources into the university microgrid, remains a
research gap. The site presents a unique geography and
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climatic conditions with distinctive energy consumption of
the university campus. Prior research in this area needs to be
improved in Djibouti.

The significant contribution of this research paper is
to investigate the feasibility and potential of integrating
renewable energy sources into the university microgrid at
the Djibouti Balbala Site. The possible contributions of the
research paper proposed in this paper are: (i) Study of RES
integration into campusmicrogrid with the unique geography,
climatic conditions, and energy consumption of Djibouti’s
Balbala site. (ii) Classifying meteorological parameters using
Decision Tree machine learning. (iii) Predicting solar and
wind power generation from the microgrid by applying
LSTM deep learning. (iv) Addressing the Djibouti microgrid
context by contributing to the research of RES integration.
(v) Proposing a new hybrid Tree-LSTM Fusion Model
for learning climatic parameters. (vi) Building an example
study for the East African region microgrid solar PV and
wind-based with similar climate and energy potential. The
introduction will present the general concept of the paper
and previous research and give the upcoming works. The
proposed model’s methods and outliers are described in
the proposed model. The research method presents the
mathematical modeling of the Decision tree and LSTM
components. In the results and discussion, the findings and
results analysis are depicted. Finally, the study is concluded
with a conclusion that resumes the paper.

II. RELATED WORK
Integrating renewable energy sources has shown a fruitful
area for exploring sustainable energy solutions. This section
will compare the key and relevant studies to our research.
In recent years, methods have been proposed to study
the integration of renewable energies in the microgrid.
The assessment of microgrid integration in rural areas of
Sub-Saharan Africa is studied in this review [30]. Their
study showed that sustainable energy solutions are not
limited to urban centers but can be extended to resource-
constrained regions, aligning closely with our focus on
the University of Djibouti campus in East Africa. The
application of machine learning techniques is explored in this
paper [31] for long-term wind power forecasting. The study
used five traditional machine learning algorithms based on
daily wind speed data across diverse geographical locations.
The authors employed algorithms such as Random Forest
and Support Vector Machine to predict energy generation
from renewable sources. This work relates to our study
as we compared various classification methods, but they
differ as they produce regression predictions. Furthermore,
the authors of this reference [32] proposed LSTM neural
networks for short-term power forecasting in wind farms.
Their research performed accurately the prediction of wind
power generation. Therefore, we extended this approach
to predict power generation from solar PV arrays and
wind turbines. Reference [33] proposed a review that
assembles the MCDA concept for inquiring about energy

systems’ sustainability. Their approach is based on the
technical aspects and environmental factors for evaluating
energy solutions. The IEA [34] emphasizes the importance
of developing sustainable energy solutions yearly. Thus
positioning our research within the context of striving for
global scarce energy. In this reference [35], the objective was
to investigate integrating renewable energy sources into smart
grids. Their study advanced some new control strategies
for optimizing the grid. The papers of this review [36]
explored methods for designing and optimizing hybrid solar
and wind combinations. Their contributions are beneficial
for the energy mix microgrid Djibouti case. Reference [37]
proposed an evaluation of different storage systems. Their
study considered the impact of batteries and supercapacitors
on energy source integration. Reference [38] has further
explored community microgrids fostering resilience to gen-
erate renewable energy. Reference [39] presented microgrid
development’s policy and regulatory aspects by investigating
the policies that can yield microgrid developments in the
United States, the European Union, and China to understand
the regulatory landscape of long-term sustainability. The
authors of reference [40] examined the demand side energy
management efficiency for microgrids. Their research is
valuable for energy consumption and distribution within
microgrid systems. Reference [23] also focused on energy
forecasting by utilizing machine learning and meteorological
data for accurately predicting solar and wind power gen-
eration. The review of this reference [41] proposed a deep
examination of the resilience ofmicrogrids against the natural
disasters caused by global warming and climate change for
maintaining power supply. These strategies can be beneficial
when analyzing renewable sources’ integration into the
electrical grid. The reference [42] proposes an economic
case analysis, which considers the costs and the long-term
benefits. This study targets the financial viability ofmicrogrid
decision-making. The paper [43] suggested an analysis of
the possibility of integrating renewable sources in academic
campuses. This study bases the educational and research
opportunities on incorporating natural sources into campus
infrastructure. These references highlighted [44], [45], [46]
the grid resilience for effectively providing strategies and
operations for proposed an ameliorated grid. Moreover, the
reference [47] addressed a comprehensive survey paper on
MGs and ESS integration to control challenges. DER control
with the advancement of microgrid systems is the future of an
efficient smart grid [48]. Microgrids are generally isolated or
grid-connected and connected to energy sources or neither.
These different operation modes signify the improvement
of the DERs control systems [49]. A novel approach
for determining the reliability uncertainties capacity of
the microgrid is proposed in this paper [50]. This study
analyzed both supply and demand risk uncertainty. The
results were convenient as they were tested on an islanded
hotel microgrid. Microgrid economics are fundamental in
building the microgrid and investing in sustainable energy.
This paper [51] assessed a business case for evaluating
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natural gas technologies. The main results were structured
around controlling the carbon emissions from these plants.
In addition to the microgrid energy market, cybersecurity
importance has been highlighted in recent years with the
developments of technology. The reference [52] addressed
the roles of the cybersecurity utility in distributed electric
power systems. The integration of renewable energy sources
in microgrids is simulated through various tools in the
literature [53], [54], [55]. This paper presented a plan for
demand response integration in the microgrid. The study
proposed to shift from bottom-up microgrid planning to
reshape traditional power system planning approaches [56].
This study emphasized the architecture’s communications
functions when integrating DER into the grid and compared
the current centralized, unidirectional grid structure [57].
Techno-economics consists of a crucial step in maximizing
DER usage. This paper [58] focused on the solar-based
microgrid to study the economic and efficiency sustainability.
This reference [59] offered an examination of the various
challenges present in the photovoltaic power industries for
reducing emissions and costs. This related work sums up
the related studies on renewable integration in microgrids.
It groups energy solutions and machine learning. We draw
from these studies the landscape of microgrid development.

III. PROPOSED MODEL
Figure 1 visually depicts the method flow, illustrating the
sequential steps in exploring energy integration within the
model. For a comprehensive understanding, please refer to
the subsequent subsections for a detailed explanation:

Step 1: We began collecting weather data for each of the
parameters in the study.

Step 2: We prepared and processed the collected data for
analysis in a suitable format.

Step 3: We employed a Decision Tree Classifier to classify
whether the climatic data parameters are within the desired
range. This step consists of training the Decision Tree for
feasibility prediction purposes.

Step 4: We analyzed the results of the Decision Tree clas-
sification. We interpreted the feasibility of each parameter
and understood which ones were within the desired range.
We then identified important relations from the classification
results.

Step 5: We introduced a step to model energy consumption
and microgrid modeling characterization based on climatic
data.

Step 6: We introduced PVLib andWindpowerlib.Wemod-
eled the PV and wind power that will be predicted with the
LSTM model. This step is primordial for integrating PVLib
and Windpowerlib with the existing workflow.

Step 7: We transitioned to predicting power production
using the LSTM deep learning method.

Step 8: We trained using the required evaluation metrics
and predicted the LSTM model using the historical PV and
wind power data simulated in PVLib and Windpowerlib.

Step 9: We proposed a Tree-LSTM Fusion Model in this
step. This model will learn climatic parameters by utilizing
the decision scores of the Decision Tree and the LSTM
features from the LSTM sequential data model to create a
fusion layer.

Step 10: We then summarized the findings from the
Decision Tree classification, LSTM power prediction, and
power modeling with PVLib and Windpowerlib.

In this part, we expose the proposed model to reach the
feasibility process of renewable energy resources. It consists
of four major processes: Data preparation, Parameter evalua-
tion using the Decision Tree classification method, the power
prediction from the LSTM deep learning method, and the
Tree-LSTM fusion method.

A. DATA PREPARATION
In the first step of the research methodology, data processing
is performed to prepare the dataset for further analysis.
The dataset is sudden to transformations and adjustments to
ensure the data is consistent for machine learning exploration.
A series of operations exist before applying the data to
the Decision tree and LSTM methods. The time frame was
initially changed to a DateTime format to provide temporary
interpretations. Next, we divided the data into numerical
and DateTime features. The Min-Max operation scaled the
normalization of the numerical features. The data will be
ready to examine and arrive at results by defining these
operations.

B. PARAMETER EVALUATION USING DECISION TREE
ANALYSIS
In our study, we used the decision tree classifier to classify
whether the parameters of the climatic data are in the
desired range. This interval relates to the maximum operating
condition of the power generation. The model yields rules
that identify the right situation for the integration into the
microgrid of renewable energy sources that combine climatic
conditions and energy production.

C. POWER GENERATION FORECASTING USING LSTM
After having classified the feasibility of the different
parameters of the climatic data and having interpreted the
feasibility of all the parameters included in the interval,
we also tried to predict the power produced by the machine
learning LSTM model. This model is based on the history of
the energy produced by wind and solar power. By analyzing
them, the LSTM can give a model capable of predicting the
power produced by the microgrid. This prediction provides
a plus to the planning and optimization of the integration of
renewable energies in the microgrid.

D. COMBINING THE DECISION TREE AND THE LSTM
METHODS
Next, we proposed to combine the Decision Tree and the
LSTM methods. To test their complementary strengths,
we tested the Decision Tree and LSTM fusion in this part.
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TABLE 1. Summary of research studies in renewable energy integration into microgrids.

IV. RESEARCH METHOD
We referred in this part to the methods and frameworks
employed in the results section. This section contains
the choice of methods that shape the study. The deci-
sion Tree method is introduced, followed by the LSTM
method, the fusion of the proposed Tree-LSTM method,
and therefore the energy system modeling tools are
explained.

A. DECISION TREE
The decision tree was applied successfully in several
applications, such as finance, healthcare, and engineering.
The decision tree method is a supervised machine learning
that can construct a decision tree [60]. This tree model
is performed in classification, regression problems, and
anomaly detection. The decision tree consists of nodes,
branches, and leaf nodes. The nodes of the tree permit to
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FIGURE 1. Feasibility of renewable microgrid: solar PV and wind power integration at the university of djibouti.

FIGURE 2. Decision tree architecture.

denote the feature, and the branch states the decision based
on that feature. Then, leaf nodes give the class label or the
result.

1) NODES
The internal node is prominent in decisions and training
the data. Features require characteristics of the node. Based
on the information received at the node level, the data is
split, and this will determine how to split the data with a
value of tolerance, knowing that each node corresponds to a
feature [61]. This selection is essential because it induces data
division from hereditary nodes. Figure 2 shows an example of
a decision tree. The nodes signify that they split the criteria
given by the input data of the feature. They are separated to
show the associated decisions, the features, and the threshold
value.

2) BRANCHES
Branches are made to interconnect nodes that represent
different decisions [60], [61]. This generates the condition
of the features. These conditions are evaluated in the given
samples. Thus, the decision follows from left to right or from

right to left. The branches are simply the possible results of
each node. The branches make it easier to understand the data
by multiplying the analysis directions. This notion allows us
to analyze and conclude the decision tree decision-making
process in all possible scenarios.

3) LEAF NODES
The leaf node is the node sought or desired to reach the final
decision of the model [60], [61].When the possibility leads to
this node, the decision points of the method are finished. The
class label and regression values represent leaf nodes. Leaf
nodes resume the final prediction offered by the decision tree
model prediction.

4) DECISION TREE EVALUATION ACCURACY
The predictive performance of this decision tree method is
measured at the leaf node level [62]. Because the latter has
an essential influence on the effectiveness of the prediction,
suppose that the information leaves at a point of node i and
has a feature fi and a tolerance value θi of the data separation.
Assume also that a training dataset D has samples and class
labels. As stated before, the decision tree method chooses
to split the data according to the varying conditions of the
features. Therefore, it is judicious to determine the choice
of the best feature and the best threshold value. The Gini
impurity measures the rate of impurity level in the dataset,
and it is expressed as:

Gini(D) = 1 −

k∑
(pk )2 (1)

where pk is the proportion of samples in class k. Entropy is
also proposed to rate the impurity, and it is expressed as:

Entropy(D) = −

k∑
pk log2(p

k ) (2)
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TABLE 2. Evaluation metrics and formulas.

These evaluations will help to detect the impurity of the
data, in other words, the data quality during the splitting.
These impurities were also subject to reductions during data
splitting. This operation is measured and evaluated by the
information gain parameter, and it is expressed as:

Information Gain(D, f ) = Impurity(D)

−

k∑ (
|Dk |
|D|

)
× Impurity(Dk )

(3)

where Dk represents the subset of D that satisfies the split
condition. After evaluating these metrics, the decision tree
algorithm should choose the most significant gain in each
node. Apart from these metrics, the performance of the
classification prediction is evaluated by the specialized clas-
sification metrics. These are Accuracy, F1 score, Precision,
and Recall [63]. Table 2 gives their definition and formulas
where NCP is the number of correct predictions, TNP is the
total number of forecasts, NTP is the number of true positives,
NFP is the number of false positives, and NFN is the number
of false negatives.

B. LSTM
LSTM is widely used in applications such as language
translation, time series data, etc. LSTM is a variant of
recurrent neural networks.

1) LSTM MODEL
This method has the advantage of the presence of memory
to store information that can be deposited over periods such
as short-term. The design objective concept of the LSTM is
the same as the GRU, and it is to tackle the problem of the
vanishing gradient problem. The LSTM architecture consists
of an input gate, a forget gate, a cell state, and an output
gate. These mechanisms have different roles. For instance,
the gates are made for the stability of the transmission of
information, and the cell is the constituent that allows it to
have a memory generating to store information in the short
term. The input and forget gates comprise sigmoid activation
functions σ to perform their gate role [64]. The input gates
are denoted by i(t), and the forget gates are represented

by f (t). The formulas of the gates are expressed as:

i(t) = σ (Wi ∗ [h(t − 1), x(t)] + bi) (4)

f (t) = σ (Wf ∗ [h(t − 1), x(t)] + bf ) (5)

The state of the cell C(t) is gotten by using the previous
cell information Ĉ(t). In contrast to the gates, the cell uses
the hyperbolic function tanh to activate [64]. Their formulas
are given as follows:

Ĉ(t) = tanh(Wc ∗ [h(t − 1), x(t)] + bc) (6)

C(t) = f (t) · C(t − 1) + i(t) · Ĉ(t) (7)

Finally, the output gate also uses the sigmoid function σ to
activate, and its formula is as follows [64]:

o(t) = σ (Wo ∗ [h(t − 1), x(t)] + bo) (8)

TheWi,Wf ,Wc, andWo represent the model weights. The
model’s biases are the bi, bf , bc, and bo. Furthermore, the
LSTM setup process uses backpropagation. In this concept,
the gradients are computed to update the parameters, allowing
learning in the temporal space [64].

2) LSTM EVALUATION METRICS
The evaluation metrics are the measure of LSTM effective-
ness predictions. From the existing literature, fourwidespread
evaluation metrics are used to assess the accuracy of the
LSTM models [65]. These metrics are generally Mean
Squared Error (MSE), Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Mean Average Percentage
Error(MAPE). Their formulas are expressed as follows:

MSE =
1
n

∑
(y− ŷ)2 (9)

MAE =
1
n

∑
|y− ŷ| (10)

RMSE =
√
MSE (11)

MAPE =
1
n

∑ (
|y− ŷ|

|y|
× 100

)
(12)

C. HYBRID TREE-LSTM FUSION APPROACH
This section proposes a machine-learning pipeline that com-
bines the LSTM and Decision tree classifier functionalities.
Figure 3 displays the system architecture of the model. This
new methodology contains a Decision tree classification
decision score, LSTM features from the LSTM sequential
data model, and a fusion layer. This fusion offers several
advantages, such as combining the ability to target sequential
data with the non-linear capability of the decision tree.
Moreover, the fusion will shorten the overfitting risks. Thus,
it will adapt to every problem and dataset.

D. ENERGY SYSTEM MODELING
This part is dedicated to modeling a representative of
energy generation forecasting in the integration feasibility
assessment. Software tools like MATLAB, EnergyPlus,
or HOMER Pro are mainly employed as simulation platforms
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FIGURE 3. Hybrid Tree-LSTM fusion approach.

in energy feasibility studies. Nowadays, Python has stood
out for its ease in programming mathematical concepts and
reproducing them with extravagant models. This model will
consist of meteorological data from the chosen site. With the
help of the history of these data, which are solar radiation,
wind speed, and temperature, the energies that the microgrid
will potentially generate will be determined. The modeling
in Python is mainly ensured by PVLib, which is a platform to
simulate the performance of PV systems [66] for solar energy
generation, and the Windpowerlib library for estimating the
wind power output [67]. To identify the feasibility of this
microgrid project, this study will exploit the microgrid’s
performance by observing the stability of the usage of wind
and solar to integrate them into the grid and by planning their
reliability. Moreover, the energy demand should be analyzed
to logically represent this microgrid’s potential load to assess
whether a balance between production and consumption
would be possible.

V. RESULTS AND DISCUSSION
In this part of the research, we applied the described methods
to the university microgrid campus to test the proposed
model. Figure 4 shows the localization of the University of
Djibouti in the Republic of Djibouti on the map.

A. MICROGRID CHARACTERIZATION
The university microgrid is a critical component of this
research study. Thus, its characteristics are vital for assessing
the feasibility of renewable energy integration. Then, the
energy generation capacity, load profile, and energy con-
sumption patterns are determined. This campus microgrid
has 19 kW solar photovoltaic systems, a 6.5 kW wind
turbine, and a new, not yet installed battery energy storage

FIGURE 4. Study area map.

FIGURE 5. Synoptic diagram of the microgrid installation.

system. Figure 5 shows the installed microgrid of the Balbala
site campus in Djibouti, which comprises a solar PV array
connected to a junction box, which is further connected to
inverters. A wind turbine is also connected to a converter
connected to the inverters. The inverters are subsequently
linked to a multicluster box, facilitating two connections:
one with loads and another with a BESS. The microgrid
is designed to supply the electrical faculty building of
the university, which consists of 20 classrooms. The load
profile analysis for the regular electric grid supplying the
university’s electrical faculty building revealed a more fixed
approximately 300 kW energy consumption. Generally, peak
demand occurs when the building is occupied, driven by
lighting, air conditioning, and equipment usage, and off-peak
hours of power demand are shown when lower occupancy.

Figure 6 and Figure 7 show the load profile of the electrical
faculty building for over 1-year. The x-axis is given time
in days, and the y-axis is the energy consumption in Watts.
We can conclude how to manage the microgrid’s resources
by analyzing the graph.

B. DATA PROCESSING
In this research study, meteorological data collection is
the heart of assessing the feasibility of renewable energy
integration in the Djibouti Balbala Site. PVGIS is used to
download meteorological data from 2006 to 2016 from the
specified latitude and longitude of the microgrid site. JRC
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FIGURE 6. Daily energy consumption for lighting and air conditioning.

FIGURE 7. Yearly total energy consumption.

TABLE 3. Parameter statistics.

developed PVGIS, and it is an available online platform.
We performed fundamental data analysis to gain initial
thoughts into the dataset. Figure 8 shows the T2m, RH, and
WS10m variations over time in UTC. Figure 9 shows the
solar radiation components G(h), Gb(n), Gd(h), and IR(h)
parameters over time in UTC. Table 3 refers to the statistics
of each meteorological parameter.

C. SIMULATION RESULTS
1) DECISION TREE RESULTS ANALYSIS
Upon aggregating the ranges of climate parameter data,
we assessed them in terms of their auspiciousness or
suitability for energy development, as informed by the
comprehensive literature research conducted in Djibouti [68],
[69], [70], [71], [72], [73], [74], [75], [76], [77], [78],
[79]. The pie chart in Figure 10 shows the distribution of
diverse feasibility decisions through the dataset. Looking
at this figure, each fragment represents a decision made

FIGURE 8. Environmental parameters and wind speed over time.

FIGURE 9. Solar parameters over time.

FIGURE 10. Distribution of diverse feasibility decisions.

on a parameter. The amplitude of the distribution depends
on the repetitive occurrence of the decision. The decision
tree method uses this labeling to perform an in-depth
classification to manage optimal decisions better when
integrating renewable energies.
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The model will use training data to predict the labels
made for the tested data. Figure 11 shows the decision tree
classifier visual exploration constructed in Python, especially
by the sci-kit-learn library. The outcomes of each parameter
are then classified per the influence of individual features
to understand the predictive modeling of the Decision tree.
Figure 14 shows the feature importance for feasibility
prediction. Within the decision tree classifier, we computed
the Gini score, entropy, and information gain for each node
in the decision tree.

The Gini score value near 0 indicates a pure node and
a value near 1 tells an impure node. A lower entropy
indicates better splits. Moreover, information gain measures
effectiveness in splitting the training data. From the analysis
in the Figure and appendix, we understood that the model
effectively splits and minimizes impurity to maximize the
information gain. At node 0, the Gini score indicates 0.748,
meaning a high presence of impurity. Then, the impurity is
reduced to 0, indicated by the zero Gini score and entropy
values at node 3 and node 4, showing pure nodes that show
no gain in information. These are leaf nodes that reveal the
presence of a specific class. We can see from Figure 12 that
the Gini scores, entropy, and information gain of the last
nodes (96, 97, 98) are zero.

Therefore, decision-making processes are quickly resolved
within this classification. Furthermore, this can be backed
by the confusion matrix shown in Figure 13 to assess the
classification performance. Within the matrix, the classifier
predictions are compared to the actual values. A heatmap
represents the confusion matrix to observe the model’s true
positives, true negatives, false positives, and false negatives.
The correct predictions are in the diagonal of the confusion
matrix. In Figure 13, all the elements except the diagonal
are zero, demonstrating a solid identification of the class
instances.

More importantly, it is knowledgeable that the model
performed well from that information. It is also possible to
compute the accuracy, precision, recall, and F1-score metrics
from the confusion matrix, which are generally used to
evaluate the decision tree model. The model data training
and testing results showed that accuracy found a value
of 0.993721. An accuracy of nearly 100% corresponds to
a correct classification of the test instances. Additionally,
the precision score of the decision tree model is settled
to 0.993895, which is a sign that the resulting optimistic
predictions were accurate with no false positives. The recall
with a value of 0.993721 is an added justification that
the model correctly identified all the positive instances.
Summarized by the F1 score with a Value of 0.993748,
the sum of recall and precision marks a balance between
these two metrics. Even if these performance metrics point
out the model’s performance, validating these results with
comparisons of other methods is crucial. The decision
tree is analyzed by implementing different splitting and
hyperparameter settings. We evaluated the decision tree by
creating scenarios. The evaluation metrics are based on

TABLE 4. Classifier performance metrics.

accuracy, precision, recall, and the F1 score. The default
decision tree model has already been previously studied.

In this part, we evaluated and compared the performance of
Decision Tree, Random Forest, Logistic Regression, KNN,
Naive Bayes (GaussianNB), and SVM with a linear kernel
using the split and the hyperparameters tuning. Unfortunately,
Random Forest and the Decision Tree are the only two
that can tune and split into different scenarios. The other
classifiers should then only have the default settings. Table 4
shows the results comparisons of the several scenarios.
Overall, the decision tree scenarios, assigning the Min
samples Split to value five and the entropy criterion setting,
perform best in all the metrics.

In contrast to these two scenarios, assigning the Max
Leaf Nodes to 10 and the Max Features to 5 had lower
performance results. The default Random Forest classifier
showed promised results with an accuracy of 0.993151 and
became the second-best performer classifier behind the
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FIGURE 11. Decision tree for feasibility prediction.

FIGURE 12. Gini, entropy, and information gain scores for each node.

decision tree in this study. However, classifiers behaved at
lower performance in specific scenarios for the Decision Tree
and Random Forest, but the accuracy scores are still good

at approximately 0.98. Logistic regression showed lower
performance in all the evaluated metrics, especially with
an 0.484, which is very bad. For the matter of information
in Table 4, KNN(K = 5), Naive Bayes (GaussianNB), and
SVM (Linear Kernel) showed better results than the Logistic
regression. Notably, these classifiers had an accuracy of
0.752283, 0.638699, and 0.633562, respectively, which is
moderate compared to the high accuracy of the Decision Tree
and Random Forest classifiers and the low accuracy of the
Logistic Regression.

2) PERFORMANCE EVALUATION OF RENEWABLE ENERGY
INTEGRATION IN THE MICROGRID
Evaluating the performance of the energy production of wind
and solar sources is a crucial step in assessing the long-term
use of these energies on this site. In our study, after simulating
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FIGURE 13. Confusion matrix of the decision tree classification.

FIGURE 14. Feature importance for feasibility prediction.

an entire year of power generated by these sources in this
specific location with longitude and latitude in PVLib and
Windpowerlib, which are Python packages, we analyzed the
stability and variability of these energies with the help of
predictions from deep learning methods, in particular LSTM
which is specially used for time series data. Figures 15 and 16
are the daily solar PV production and the monthly solar PV
production, respectively. Figure 17 shows the wind monthly
power distribution. Figures 24 and 18 present the loss training
and validation of solar and wind power prediction by tuning
different hyperparameter scenarios of units and batches sizes
(64, 64), (32, 32), (32, 64), (32, 16), and (64, 32) in the
LSTM model to identify the optimal combination of units
and batches for the best performance respectively. In this
analysis, the loss curves are represented by the MSE. For
each prediction, training and validation losses are zoomed
in. For instance, the PV tuning loss is zoomed between
0.005 to 0.04, and the wind power is zoomed from 0.010 to
0.04 to obtain a clear view of the model behavior. In the
case of wind power, the combination (32, 16) resulted in the
lowest training loss of 0.011923, and generally, the smaller
batch sizes, the more the fit is better. However, it is vital
to measure the balance to avoid overfitting. In contrast,
the validation loss is lower with the larger batch sizes in
the model generalization, with the (32, 64) couple having

FIGURE 15. PV time series of daily AC power output.

FIGURE 16. Monthly average daily AC power PV output.

FIGURE 17. Monthly wind power output.

the lowest loss validation, 0.01274. Similarly, the lowest
PV power prediction training and validation loss combine
(64, 32). Figures 19 and 25 display the performance of wind
and solar hyperparameter tuning using the negative RMSE
metric, which induces higher negative RMSE and loss, thus,
lower performance, respectively. Figures 20 and 22 are the
predicted wind power and solar PV power for the entire
dataset, respectively. Figures 21 and 23 highlight the details
of a specific region of actual and predicted wind power and
solar PV, respectively.

3) ENHANCING BINARY CLASSIFICATION WITH FUSION OF
LSTM AND DECISION TREE MODELS RESULTS
LSTM sequential data is trained with Keras and dense layers
with appropriate loss and optimization functions around
the training data. After this process, LSTM predictions are
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FIGURE 18. Wind power hyperparameter tuning loss.

FIGURE 19. Wind power hyperparameter tuning rmse.

FIGURE 20. Wind power actual vs. predicted power plot.

FIGURE 21. Wind power actual vs. predicted power plot (zoomed version).

trained to learn the data. The model is up to generate
similar predictions for testing data. The method is based
on integrating the LSTM predictions with the original

FIGURE 22. Solar PV power actual vs. predicted power plot.

FIGURE 23. Solar PV power actual vs. predicted power plot (zoomed
version).

FIGURE 24. Solar PV power hyperparameter tuning loss.

features. The fusion takes place with the derivatives of
LSTM and the original attributes. Therefore, the roles of
the classification are enriched by this merger. Consequently,
the Decision tree evaluates the combined feature sets. This
methodical approach forms a hybrid approach that combines
deep learning (LSTM) and traditional machine learning
(Decision Tree). To measure the proposed model’s accuracy
and performance, we simulated a hyperparameter tuning
to tune and find the best-performing architecture for the
combined LSTM and Decision tree. Hyperparameter tuning
is the search for the most optimal configuration of hyper-
parameters. This process constitutes an important concept
in machine learning because the choice of hyperparameters
profoundly impacts a model’s performance. The objective
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FIGURE 25. Solar PV power hyperparameter tuning rmse.

FIGURE 26. Hyperparameter tuning results.

is to identify the hyperparameters that result in the highest
model performance. Likewise, hyperparameter tuning is
among the components of model validation. The training
model is validated with hyperparameter tuning. Figure 26
displays the results of the model hyperparameter tuning.
It shows the mean test scores for different combinations
of hyperparameters (max depth and min samples split).
We identified the best combination of hyperparameters to
train the final Decision Tree Classifier. The accuracy of the
best model is shown in percentage. The Figure 26 heatmap
indicates that increasing max depth improves the model
performance up to a certain point. Still, in contrast, a lower
min sample split is associated with better performance. The
highest mean test score highlights the best hyperparameters.
After tuning the hyperparameters, the accuracy associated
with the best model is displayed in the heatmap.With the help
of this result, we assisted with informed decisions regarding
model selection and deployment.

D. ANALYSIS OF METEOROLOGICAL DATA AND
FEASIBILITY ASSESSMENT
In this section, we present a discussion of the obtained
results. Figure 27 shows the correlation analysis of the

FIGURE 27. Correlation matrix of meteorological parameters.

FIGURE 28. Receiver operating characteristic (ROC) curve for the
feasibility classifier.

meteorological parameters. T2m and IR(h) show the closest
correlation with 0.68, inducing that a temperature rise is
followed by an increase of IR(h). Furthermore, T2m and
RH are correlated with -0.82, which induces an inverse
dependency. Similarly, T2m and Gb(n) are correlated with
-0.45, which explains the decrease in radiation when T2m
increases.

Figure 29 displays the feasibility possibility of the nine
meteorological parameters. The distribution is described
by the whiskers of the box plot between the median
of both feasible and non-feasible cases. This comparative
analysis highlighted the relationship between feasibility and
meteorological parameters. For illustration, the T2m median
is higher in the feasible case than the non-feasible one.

The literature proposes that T2m and G(h) are fundamen-
tals of solar generation [80], [81]. Thus, we presented a
decision boundary visualization in Figure 30a of the Decision
tree classifier. The blue areas are the feasible regions, and
the red ones are the non-feasible solar generation. We can
determine the solar feasibility with these two meteorolog-
ical parameters’ feasible overlapping areas. Literature also
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FIGURE 29. Distribution of meteorological parameters for feasible and non-feasible solar and wind energy generation.

approves that WD10m and WS10m are the most determined
parameters for wind generation feasibility [82], [83]. The
decision boundary of Figure 30b proposes the regions where
the classifier predicts the overlapping areas to assess the
wind generation. Figure 28 presents the ROC curve with the
AUC score to yield the classifier’s performance. This figure
presents the optimal operating point calculated by Youden’s
J statistic. This model has 0.99 AUC, which approves that the
feasible and non-regions were ideally classified. The optimal
operating point where the threshold indicates a 0.99 good
True positive and a low 0.01 False Positive Rate.

E. POLICY IMPLICATIONS AND REGULATORY
FRAMEWORKS
The paper aims to develop a model of the sets of
Decision trees and LSTM. The Decision tree classified
the weather input parameters for optimizing the microgrid
decisions regarding meteorological decisions for integrating

renewable energy into the grid. Furthermore, the LSTM
deep learning method was used to predict the perfor-
mance of the microgrid energy production of wind and
solar sources. Classification and prediction results establish
solutions and strategies for global efforts to transition to
sustainable energy sources [84]. The feasibility and potential
benefits of renewable energy integration form the core of
the paper’s findings. The study region has recently been
subject to considerable studies to implement renewable
geothermal, wind, and solar energy technologies because of
the ongoing challenges of urban development and climate
change [85], [86]. The developedmethodology can be applied
to regions with the same meteorological behaviors as in
the case study region [87]. Similarly, the research flow is
possible to expand for worldwide microgrid development.
The research practice is implemented with stakeholder
collaborations, researchers, and the development of suitable
infrastructure [88].
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FIGURE 30. Feasibility of decision boundary solar and wind power generation visualization.

F. FUTURE DIRECTIONS AND RESEARCH OPPORTUNITIES
Research into microgrids will be advanced shortly. Industries
are pressing to control and automate the systems of the
microgrids. Energy consumption, renewable energy genera-
tion, and transmission are among the developments of these
systems [89]. Microgrids are competent with smart grids
interconnected and reliant on digital technologies [90]. These
new frameworks are critical to cyber threats [90]. Addition-
ally, DER integration to the grid and energy storage still
currently presents opportunities for making newly innovative
research [91], [92], [93].Market interactions further empower
consumers for decentralized energy systems [94]. It is
then logical that researchers explore the feasibility of these
models. By far, buildings are in the utmost place for optimized
energy usage [95]. Integrating electrical grids and buildings
is guided by the study of energy efficiency. The regions
and context are different for each study, thus highlighting
the need to follow policies and regulatory frameworks [96].
With global warming becoming more severe year after year,
it is paramount to prioritize resilient systems. Future research
should focus on studies on ways of accessing microgrid
technology and renewable energy.

VI. CONCLUSION
The importance of the power system in today’s world is
perceived as the main concern for all endeavors. Hospitals,
universities, and rural areas benefit from reliable microgrid
energy.Mainly, in Africa and the third world, where industrial
development is still rudimentary, the successful feasibility
of energy integration will significantly help prepare against
the variability of renewable energies. First, this paper’s idea
was based on evaluating the meteorological parameters by
classifying them with decision boundaries produced by the

Decision tree classifier, which divided the parameters into
feasible and non-feasible regions. Thus, these regions overlap
between solar and wind energy integration generation feasi-
ble intervals. The accuracy of this decision tree is 0.993721,
outperforming the Random Forest, Logistic Regression,
KNN, Naive Bayes, and SVM in the classification tasks.
The various scenarios presented in the paper demonstrated
that tuning the decision tree’s hyperparameters can increase
the classification process’s efficiency. When increasing the
max depth to 10, the accuracy rises to 0.994292. When
assigning min-samples split to 5, the accuracy increases
to 0.996005. The metrics have shown additionally that by
assigning the min sample leaf to 10, or max-leaf nodes to
10, and or the max feature to 5, the accuracy underperforms
slightly. Solar and wind power predictions with LSTM deep
learning algorithms backed the classification task. PVLib and
Windpowerlib python packages were explored to model the
microgrid’s solar and wind power generation for specific
latitudes and longitudes. This task’s objective is a year of solar
and wind power forecasting. The MSE training loss for solar
and wind power showed excellent results with 0.01025 and
0.011923 loss values. In combination with the decision
tree classification, LSTM forecasting offers a more precise
step in the magnitude of the power yielded by renewable
energies. The paper’s model assembles a framework based
on the technical part of energy integration. We identified
the optimal conditions for integrating renewable energy by
analyzing the Decision Tree. With LSTM, we evaluated the
energy production of the microgrid, which copes with the
fluctuations of renewable energy to adapt to consumption
needs. Decision scores from Decision Tree and LSTM
feature integration were finally tested. The accuracy of this
combination was validated by a hyperparameter tuning that
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showed an accuracy of 0.98. Even though the accuracy is
lesser than 0.1 from the single Decision Tree. This method
sets apart a new architectural concept with the ability to target
sequential data and the non-linear capability of the decision
tree. This combination helps decision-makers identify areas
that need improvements for a resilient microgrid. Future
research may be based on a similar analysis to this paper
to offer responses for energy storage, load management, and
scheduling energy integration.
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