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ABSTRACT Existing research on geometry optimization of switched reluctance motor (SRM) using
machine learning algorithms has focused only on the machine’s static characteristics. The dynamic
characteristics, however, are critical to improve the SRM performance, particularly at high speeds. This paper
introduces an advanced optimization method utilizing a supervised learning algorithm to act as a surrogate
model for both static and dynamic characteristics of the SRM. In this work, back-propagation neural network
(BPNN) is applied to map out the SRM geometrical parameters, stator and rotor pole arc angles and their
dynamic performance metrics such as average torque and torque ripples. To capture the training data, finite
element analysis (FEA) and MATLAB Simulink models are implemented to study the static and dynamic
characteristics of the considered 6/14 SRM. Levenberg-Marquardt is applied to train the BPNN. The results
of the proposed optimal design candidates are verified using FEA and MATLAB simulations, confirming
the effectiveness of the optimal design. The optimal design improves the average torque by around 2%
and reduces the torque ripples by around 24%. Moreover, the proposed method significantly decreases the
computational overhead.

INDEX TERMS Electric motor design, machine learning (ML), supervised learning, switched reluctance

motor (SRM).

I. INTRODUCTION

Switched reluctance motors (SRMs) are gaining popularity
due to their uncomplicated and robust structure, which does
not include any magnets or windings in the rotor [1]. The
absence of permanent magnets and rotor windings enables
the SRM to operate efficiently at high temperatures and
speeds [2]. This design feature also results in a lighter
rotor, leading to a higher torque-to-inertia ratio and improved
dynamic performance as compared to induction machines
(IMs) and permanent magnet synchronous motors (PMSMs)
[3]. Furthermore, the SRM’s lack of rare-earth material makes
it a cost-effective alternative to PMSMs.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

Despite these potential benefits, this motor still faces
some drawbacks that hinder wide industrial applications.
The structure of SRMs, with its doubly salient nature, poses
certain challenges, such as significant torque ripples, acoustic
noise, and vibrations [4]. Another primary concern is the
complexity of modeling SRMs because of its highly nonlinear
characteristics. Also, the need for uncommon converters for
driving this motor is another weakness. To address these
challenges and enhance the motor’s static and dynamic
performance, extensive research was conducted.

SRM geometry optimization has been employed to
improve machine performance and address design chal-
lenges. Geometry optimization requires predicting the per-
formance of SRMs across all magnetic circuit parameters
for certain operating conditions [5], [6]. Lumped parameter
models have been employed in the literature for the machine’s
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preliminary sizing and analysis. Using these methods within
an optimization procedure results, however, in imprecise
outcomes [7]. The advancement of computer hardware and
software facilitated the utilization of finite element analysis
(FEA) for multi-objective optimization, which involves
representing a precise magnetic circuit geometry [8], [9].
However, utilizing a time step FEA within an optimization
procedure for electric machines results in prohibitive execu-
tion time [7], [10].

Moreover, integrating SRM dynamic simulations into FEA
software poses challenges due to the need to incorporate
a power electronics inverter requiring a current controller
[11]. The current controller generates switching signals
that, in turn, are supplied to the inverter for switching the
DC-link voltage thus regulating the phase current [1]. Exe-
cuting these tasks within FEA software is computationally
expensive.

Generally, the conventional design process for the electro-
magnetic aspect of SRMs is an iterative, multi-stage process.
Initially, a static analysis using FEA is conducted to create
look-up tables that map the characteristics of flux linkage
and static torque with respect to various rotor positions
and currents. Subsequently, dynamic analysis is conducted
via MATLAB simulations using the generated look-up
tables. Conduction angles optimization is then performed
for each geometry design candidate to enhance the dynamic
performance. This process is repeated until an optimal design
is achieved [12], resulting in a significant execution time for
both static (FEA) and dynamic (MATLAB) analyses [13].

Recently, Machine Learning algorithms (MLAs) have
gained significant attention in the field of motor design due
to their ability to learn from data and generate accurate
predictions. MLA can be used to map out the nonlinear
profiles of the motor parameters and the output performance.
In the context of PMSM, previous studies (e.g. [7], [14])
have successfully utilized extreme learning machine and
support vector regression approaches for geometry opti-
mization. Similarly, in [15], a Bayesian regularization back-
propagation neural network was introduced to address the
geometry optimization challenges of synchronous reluctance
motors.

Focusing on the SRM, which is the primary scope of
this study, a generalized regression neural network (GRNN)
was developed to optimize the pole arc angles of 12/8
SRM in [16]. To analyze the static characteristics, an FEA
model was implemented, and the GRNN was utilized as
a surrogate model to represent these static characteristics
[16]. However, it is important to note that this work is
limited to low-speed operations of SRMs. In [17], another
study introduced the utilization of GRNN for modeling a
12/8 SRM. The aim was to capture the nonlinear correlations
between motor performance against rotor yoke and pole arc
angles. The sample data used in this study, however, was
only based on FEA static analysis. Moreover, this approach
involves designing two separate GRNN structures to predict
the motor performance, which added complexity to the design
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process. The developed approach in [17] did not estimate new
geometrical parameters that could potentially enhance motor
performance. It is important to highlight that both previous
studies, [16], [17], lack the consideration of SRM dynamic
characteristics and conduction angles optimization.

This paper introduces an advanced optimization approach
that harnesses the power of a supervised learning algorithm to
accurately model both the static and dynamic characteristics
of 6/14 SRM. Specifically, we have adopted a Back-
Propagation Neural Network (BPNN) to study the impact
of variations in stator and rotor pole arc angles on the
machine’s static and dynamic performance. The Levenberg
Marquardt (LM) algorithm has been utilized in this study to
ensure fast and efficient learning of the BPNN. The dynamic
modeling incorporates the utilization of a genetic algorithm
for conduction angles optimization, thereby enhancing the
torque performance of the considered SRM. As a result,
the proposed method not only acts as a surrogate for the
machine’s static characteristics but also effectively models its
dynamic behavior, including the optimization of conduction
angles.

Our proposed methodology is evaluated using various
performance metrics, and the results are compared with
those of traditional design methods. The findings of this
study demonstrate the effectiveness and efficiency of ML-
based approaches in SRM design. Moreover, this method
demonstrates a substantial reduction in computational time
and costs in comparison to traditional iterative techniques.

The rest of the paper is structured as follows: Section II
explores the impact of the design parameters, specifically
the pole ac angles, on the motor performance. Section III
introduces the utilized approach to acquire the training data.
In Section 1V, the structure of the proposed BPNN and its
evaluation approach are presented. Section V then focuses
on the generation of new design candidates, followed by
an analysis and selection of the optimal design candidate.
Finally, concluding remarks are listed in Section VI to
summarize the findings and implications of the study.

Il. POLE ARC ANGLES DESIGN EFFECT AND
CONSTRAINTS

Generally, the SRM pole arc angles are carefully selected.
Increasing the stator pole arc angle, By, widens the stator
teeth increases the aligned flux linkage and extends the
SRM torque angle at each pulse which might cause lower
torque ripples. The excessive increase in S5, however, can
reduce the motor saliency, thus decreasing the peak and
RMS of the output torque [18]. Moreover, a larger B, can
compress the winding space, and this can reduce the number
of turns, which leads to a torque reduction [18]. Similar to S;,
slightly increasing rotor arc angle, §,, widens the rotor teeth
and would boost the aligned flux linkage which enhances
the output torque. Also, the excessive increase in 8, would
reduce the motor saliency, and as a result, the output torque
production can be decreased [18]. Therefore, the design of
the SRM pole arc angles is sensitive and crucial.
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The approach focuses on maximizing the average torque
based on the pole arc angles variations. In SRMs, pole
arc angles have a powerful effect on the inductance and
torque quality profiles. Electromagnetic torque production is
contingent on the changes in magnetic reluctance. To ensure
this, the design of the length of the stator and rotor pole arcs
should guarantee a fully unaligned position. Otherwise, the
rotor tooth of the SRM will partially or totally align with
the stator tooth at any rotor position. Therefore, to maintain
this condition, the stator tooth arc length should be lower
than the arc length between two successive rotor teeth [1].
This condition defines the maximum values of B and S,.
Furthermore, the minimum values of S; and B, should
guarantee the self-starting capability of SRMs [1]. The
applied constraints of S and B, are identified in (1) for the
given number of phases, m and rotor poles, Nr [19]. Based
on these constraints, the range of possible combinations of B
and B, is [8.57:12.85]. These bounds are given by:

2
<Bitpr < — 1)
mN, N,

Ill. TRAINING DATA ACQUISITION

To effectively model and design an SRM using an MLA,
it is crucial to accurately capture sample data that depicts
the correlation between the input design parameters variation
and the corresponding output objectives. Electromagnetic
modeling is thus conducted to study the static analysis of
the considered SRM. Following that, a dynamic analysis is
carried out to determine the output objectives for each design
candidate. This dynamic model includes conduction angles
optimization to ensure optimal performance. In this section,
we present a detailed explanation of the static and dynamic
modeling required to generate the required training data.

A. FINITE ELEMENT MODELING

Electromagnetic modeling forms the basis of SRMs geo-
metrical design optimization. The modeling methods can
be categorized into numerical and analytical approaches
[13]. Analytical-based modeling methods are possibly used
in the static analysis of SRMs. However, they commonly
require various assumptions, which are not usually easy to
provide [20]. These approaches do not accurately account
for motor nonlinearities [1]. Therefore, in this study,
we employ a numerical FEA-based modeling method, which
is recommended for static characterization of SRMs [1].
FEA is the most widely used numerical modeling method.
The FEA model is applied to characterize the static flux
linkage and static torque profiles of the 3-ph 6/14 SRM
at different rotor positions and phase currents. The major
geometrical parameters of the base design of the 6/14 SRM
are summarized in Table 1, and its full FEA JMAG model is
shown in Fig. 1.

The study of static phase characteristics is pivotal for
understanding the operational principles and nonlinear
behavior of the switched reluctance machines. In this
research, the static characteristics of the considered SRM are
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TABLE 1. Parameters of the considered 6/14 SRM.

Parameter Symbol Value
DC-link Voltage [V] VDC 163
Stack length [mm] L 74
Stator outer diameter [mm] Ds 139.21
Shaft diameter [mm] Dsh 12.7
Air gap length [mm] Lg 0.4
Stator back iron thickness [mm] Vs 10
Rotor back iron thickness [mm] yr 35.78
Stator pole height [mm] hs 10
Rotor pole height [mm] hr 7.08
Stator pole arc angle [°] Ps 9.5
Rotor pole arc angle [°] Br 9.3
Stator taper angle [°] Ts 4
Rotor taper angle [°] Tr 4

FIGURE 1. The FEA JMAG full model of the considered 6/14 SRM.

referred to as the flux linkage, induced voltage, and phase
torque when a single phase is excited by a constant current
over the entire electrical cycle. This is because the mutual
coupling among phases is neglected in this work.

In traditional configurations of switched reluctance
machines, which possess an even number of stator poles
per phase, as is the case with the SRM under investigation
in this study, mutual coupling occurs momentarily during
each cycle. Generally, this effect can be disregarded when
formulating a model for an SRM [1]. This is because when
current is applied to the coils of a typical SRM phase, the
bulk of the resulting magnetic flux is interlinked with the
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coils of the very same phase. Hence, in FEA conducted in this
research, a single phase is energized with a constant current
throughout one complete electrical cycle.

Subsequently, we relatively increased the static current
applied to energize the phase to simulate the impact of
core saturation. The static flux linkage and torque profiles
at various rotor positions and phase currents are depicted
in Figs. 2 and 3, respectively. Fig. 2 illustrates that the
incremental rise in the flux linkage diminishes at high
currents due to the elevated magnetic flux density, resulting
in a higher level of core saturation. Furthermore, it is worth
noting that the look-up tables (LUT) created for one phase
can be effectively employed to model all phases.

To cover the entire design domain while adhering to
the given constraints, 50 different configurations with
appropriate pole arc angles are considered. The static
characteristics of each SRM design are then imported into
a MATLAB/Simulink model for dynamic analysis. The
dynamic analysis provides the average torque and torque
ripples values for each design candidate for performance
assessment.

B. DYNAMIC MODELING

In contrast to PMSMs and IMs, SRMs do not operate
with sinusoidal currents. The switching nature of the SRM
magnetic field makes it challenging to directly apply phase
transformation techniques to drive SRMs [1]. Consequently,
SRMs require distinct modeling approaches to study their
dynamic behavior. The developed dynamic model in this
work assesses the motor’s performance while operating at
a constant speed considering the dependency of the flux
linkage on the current and rotor position. This dynamic model
computes the dynamic average torque and torque ripples by
exciting the phase for given firing angles, motor speed, and
DC link voltage.

In this section, we explain the utilized MATLAB Simulink
model and how it exploits the offline phase flux linkage LUT
generated from FEA simulations. The model is primarily built
based on the voltage equation (2), which relates the SRM
phase voltage, v, to the phase current, 7., and flux linkage,
Apn [217:

dlph(iph» eph)
+ & @)

The Simulink model of the SRM is formulated as a
discrete-time domain with a fixed time step. Solving (2) for

the flux linkage in discrete time domain form and look up the
current based on the past flux values, we get:

Vph = Rpniph

Apn(k) = Apn(k — 1)
+ [Vph(k) - Rphilut(lph(k — 1), Octec(k — )T
3)
where k is the discrete step value and T is the sampling time.

i 1s the current required to get a specific flux linkage at a
certain electrical angle, 6,,.. This ij,; can be derived from the
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FIGURE 2. The static flux linkage characteristics of the 6/14 SRM at
various rotor positions and phase currents.
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FIGURE 3. Static torque profiles of 6/14 SRM at various rotor positions
and phase currents.

inversion of the phase flux linkage LUT. Using (3), a dynamic
simulation model can be implemented to solve for the SRM
flux linkage and current. The calculated current waveform
can then be employed to evaluate the torque, as depicted in
Fig. 4.

The dynamic model of the SRM also includes the
angle model and hysteresis current controller model. The
correlation between the SRM phase voltage and current
relies on the current control method, with the current being
regulated by an asymmetric bridge converter and various
control parameters. Typically, the primary control parameters
are the reference current and turn-on and turn-ff angles,
which are utilized to generate the commanded current for
phase current regulation. Hysteresis control is applied in
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FIGURE 4. A simplified chart for the developed dynamic model for the considered SRM.

SRM drives to maintain tracking of the reference current.
When the phase current achieves the reference current value,
the hysteresis controller maintains it within the predefined
hysteresis band. Fig. 4 shows a simplified chart for the
developed dynamic model.

C. CONDUCTION ANGLE OPTIMIZATION

The current control at low speeds can track the reference
current to achieve the proposed torque, while the conduction
angles can decrease the ripples and enhance motor efficiency
[1]. On the other hand, tracking the peak current at high
speeds is not attainable due to the high induced voltage.
In such cases, the conduction angles would be the sole control
parameters. Therefore, to enhance the SRM performance
at various operation conditions, the selection of conduction
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angles, turn-on, 6,, and turn-off, 6,4 angles, should be made
with utmost precision.

Tuning the conduction angles manually for each geomet-
rical design candidate is considerably time-consuming [1].
Therefore, in this paper, an optimization algorithm based on
a Genetic Algorithm (GA) is applied to speed up getting the
optimal candidate firing angles. The main objective used in
the developed genetic optimization algorithm is maximizing
the average torque, T g,

ec'ycle

T6)do 4)

Jory = Tavg =

cycle

The average torque is determined based on the instantaneous
phase torque, T'(0) over one complete electrical cycle, Ocycie.
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Linear constraints are set for the range of the 6,,, and 6, to
effectively cover the operation within the application design
space [12]. A nonlinear constraint is set for the phase RMS
current, Igys, that is calculated based on the instantaneous
phase current, Iph as follows:

9(?}'1716

/ i;h(e)de = IRMS?constraint ()

Trms =
Ocycle

After running the FEA simulation using JMAG software for
the base design of the considered SRM, the generated LUTs
are implemented in the developed dynamic SIMULINK
model and executed at the base speed, 1103RPM. The 6,,
and 6,4 are optimized to maximize the average torque. The
dynamic model was executed so that the initial two cycles
were designated as transient periods, and the subsequent
cycles were employed for the calculation of average torque
and torque ripples. The average torque per phase and total
torque of the third electrical cycle are shown in Fig. 5.

In order to capture the complete necessary training data,
a parametric sweep was conducted for the pole arc angles
while considering the previously mentioned constraints. This
resulted in the acquisition of 50 design candidates. Following
this, FEA analysis was carried out, and the Flux linkage and
average torque LUT were imported to the SRM dynamic
drive model. For each design candidate, the conduction
angles were optimized using the GA to achieve maximum
average torque. Therefore, the trained MLA not only acts as
a surrogate for the FEA analysis but also for the dynamic
model, including the GA optimization of the conduction
angles.

To ensure the quality of the output torque, the RMS value of
the torque ripple is determined, in eq. (6), using the developed
dynamic model. The torque ripple of each design candidate
is also utilized as a second output for the MLA. For example,
Table 2 shows 5 samples out of the 50 samples that were
used to train the developed MLA. The MLA can thus predict
the average torque and torque ripples for any new SRM pole
arc angles. This facilitates the selection of the optimal design
candidate considering both the net output torque and torque
quality.

Ocycle

(T(0) — Tavg)*d6 (6)

ATgrys =

cycle

To validate the developed dynamic model, the three
phase current waveforms of the baseline design which were
computed within the MATLAB dynamic model, shown in
Fig. 6, are imported into the FEA static model of the SRM.
Subsequently, we compared the torque waveforms generated
by the dynamic model and the FEA model. The comparison,
as illustrated in Fig. 7, reveals a close match between
the torque waveforms. It is important to emphasize that
mutual coupling was not considered in the dynamic model,
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FIGURE 5. The phase and total average torque of the base design of the
considered SRM.

TABLE 2. Some examples of the training data.

Bs Br Average torque Torque ripples
(ATrus)
8.5 9 4.688 0.413
9 9 4.736 0.367
9 10 4.897 0.311
9.5 9 4.832 0.399
9.5 10 5.024 0.428

whereas the FEA simulations inherently account for mutual
coupling effects. The strong agreement between the results
underscores the insignificance of mutual coupling when
modeling this SRM drive with the optimized firing angles.
It should be highlighted that the validation process using the
FEA demands a substantially longer computational time as
compared to the established dynamic model. This observation
emphasizes the significance of dynamic modeling as an
efficient and practical approach for our study.
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P hi#1
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w S~

N

8 8.5 9 9.5 10 10.5 1" 11.5
Time [s] %107

FIGURE 6. Three phase dynamic currents of the baseline design of the
considered SRM at base speed and peak reference current (6.66A) and for
on = —30.5° and fof =137.47°.
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FIGURE 7. A comparison of torque calculated from the FEA and dynamic
models for the baseline design.

IV. NEURAL NETWORK STRUCTURE AND EVALUATION
Because of the highly nonlinear characteristics of the SRM,
a continuous search within the design domain is necessary
for accurate geometry design optimization [16]. However,
the acquired training data are discrete points in the design
space as presented in the previous section. Simply using
a mathematical formula to fit these discrete data will be
complicated and inadequate to achieve accurate modeling
results [16]. An advantage of using MLA is its ability to
predict the nonlinear characteristics of SRM flux linkage and
torque profiles from limited data [13].

MLA can be divided into three categories; supervised,
unsupervised and reinforcement learning. These learning
styles vary in terms of the captured sample data, as well
as how it is gathered and evaluated [13]. Among these
categories, supervised learning techniques are widely used
for modeling and designing electric motors [7], [13], [14],
[15], [16], [17]. Therefore, in this study a supervised learning
algorithm, especially the BPNN, has been employed.

BPNN commonly uses the gradient decent algorithm
(GDA) to minimize the cost function. However, its delayed
convergence is the main drawback [22]. Newton’s method
was used to overcome the GDA’s drawback. Newton’s
method suffers though from the high computational overhead
due to the necessity to calculate the Hessian matrix [23].
In this work, the Levenberg Marquardt (LM) is used to train
the BBPN, addressing the shortcomings of the Newton and
GDA methods. Furthermore, LM ensures the local minimum
convergence.

The main aspects of selecting a certain type of neural
network include the computation time, generalization capa-
bility and fitting accuracy. Typically, the BPNN and the radial
basis function neural network (RBFNN) are the most popular
neural network types. The computational scale of the network
can be determined by the number of hidden layers and
neurons. Reducing these numbers is critical in minimizing
the computational burden [23]. Additionally, the size of the
neural network (NN) model is a crucial factor for real-
time applications, such as motor drive controllers [23]. The
RBFNN excels at convergence speed and approximation, but
it has a larger modeling error, which requires a larger network
size than the LM-BPNN. The adoption of LM learning
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algorithm improved the accuracy of the BPNN and reduced
the network scale, which are critical for any NN design. Thus,
in this work, LM-BPNN is used for the geometrical design
optimization of the considered SRM.

Fig. 8 displays the structure of the BPNN, consisting of two
inputs for B; and B, and two outputs for the average torque
and torque ripples. This BPNN has only one single hidden
layer, utilizing Tansig as the activation function for its hidden
neurons. The number of optimal hidden nodes was identified
as 8. The output layer uses a linear activation function for both
outputs.

The decision to employ one hidden layer with eight
neurons was determined through a heuristic approach.
It balances the tradeoff between the training accuracy and
model complexity. Increasing the number of layers or nodes,
the training accuracy may improve, but there is a higher
likelihood of overfitting. Overfitting indicates that the model
structure is complex and fails to achieve an optimal fit
with new data. It occurs when the gap between training
and test errors becomes substantial, resulting in a notable
generalization error [13]. In this section, the generalization
capability has been assessed using a small sample size to test
the overfitting and ensure the proper design of the BPNN.

e )
Input layer Hidden layer Output layer

_»Average
Torque

|, Tf)rque
ripples

FIGURE 8. The basic architecture of a single-layer BPNN comprises
8 hidden neurons to model the considered 6/14 SRM.

LM algorithm was employed as the optimization algorithm
to train the BPNN. To assess the network’s performance,
the mean square error (MSE) was used as the loss function
with a target error set at 0.0001. Additionally, the linear
regression correlation coefficient (R) served as another metric
for evaluating the fitting accuracy and the precision of the test
set [23]. The total number of points in the dataset is 50 points.
The division of the dataset involves allocating 70% of the
points for training, 15% for validation, and the remaining
15% for testing the network.

The LM algorithm successfully trained the network in
17 epochs. Fig 9. shows the error convergence curve for
training, validation, and testing respect to the number of
epochs. The training set’s MSE is 2.706e-4 Nm, and the linear
regression correlation coefficient R is 0.99997. As the MSE
is a relatively small value and R is very close to 1, the BPNN
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exhibits an excellent degree of precision in representing the
nonlinear characteristics of the considered SRM.

After successfully training the BPNN, its generalization
capability was evaluated using 10 data points that were
not involved during the training or testing phases. The
estimated outputs of the BPNN were then compared against
the actual average torque and torque ripples. The MSE for
these 10 samples is 5.646e-4 Nm, with the corresponding
performance indicator R equals 0.977. Additionally, the mean
relative error (MRE) of this test dataset is 2.244%. These
results demonstrate the high accuracy of the designed BPNN
in predicting new data points, validating its capability for
effective generalization without encountering overfitting or
underfitting issues.

The superiority of the proposed BPNN has been verified
through a rigorous comparison with quadratic regression
fitting method. While the quadratic regression model demon-
strates training data fitting accuracy similar to that of the
BPNN, it encounters challenges in achieving a satisfactory
level of accuracy when predicting new data. Specifically,
the MSE for the training dataset is 2.94e-04, while for
the testing dataset, the MSE and MRE are substantially
higher at 475.5e-4 and 25.822%, respectively.. This consid-
erable gap between the training and testing results for the
quadratic regression method clearly signifies the presence
of an overfitting problem. In contrast, the proposed BPNN
showcases its remarkable capability to predict new data with
exceptional accuracy, highlighting its superior performance
and versatility in modeling and forecasting SRM behavior.

V. ESTIMATION, ANALYSIS AND SELECTION OF
OPTIMAL DESIGN CANDIDATES.

Following the training and evaluation of the BPNN, it was
utilized to generate 10,000 new design candidates that were
not previously utilized for network training or testing. The
BPNN’s outcomes are visualized in a 2-D plane, as shown in
Fig. 10, where the objectives, namely the average torque and
the torque ripples, are plotted for each design candidate. From
the results obtained, two design candidates, identified as DC1
and DC2, were chosen as optimal candidates, as shown in
Fig. 10. DCI has the highest average torque, whereas DC2
has the lowest torque ripples. The design variables and the
performance objectives of the optimized design candidates
are compared to the base design. The comparison outcomes
are presented in Table 3.

A. VERIFICATION OF BPNN RESULTS

To verify the estimated output of the neural network,
both static and dynamic analyses were carried out. The
actual values of the average torque and torque ripples were
compared to the BPNN estimated values, as shown in Table 4.
The relative error of the average torque of DC1 and DC2
is 0.05% and 0.36%, respectively. Also, the relative error
of the RMS torque ripples of DC1 and DC2 is 2.10% and
0.03%, respectively. These extremely low error values reflect
the precision of the proposed BPNN model.
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FIGURE 10. A scattered 2-D plane showing the objective outputs of
10,000 design candidates generated by the trained BPNN. The two
recommended designs are identified as DC1 and DC2.

TABLE 3. The design variables and performance objectives of the
baseline and optimized design candidates.

Parameter Baseline DCl1 DC2

Bs [°] 9.5 10.8788 9.00
Br°] 9.3 11.1212 10.7273
Average torque [Nm] 4.88 5.2585 4.9687
Torque ripples [Nm] 0.398 0.6857 0.3032

B. ANALYSIS OF OPTIMAL DESIGN CANDIDATES

To investigate BPNN-estimated design candidates, FEA
JMAG models of DC1 and DC2 were simulated using their
proposed pole arc angles. Fig. 11 illustrates the partial
cross-sectional models of the baseline and optimized design
candidates. The static torque profiles of DC1 and DC2
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FIGURE 11. FEA JMAG partial model of the baseline and the optimized design candidates.

TABLE 4. The actual and estimated values of the average torque and
torque ripples of the optimized design candidates.

DC1
BPNN  Actual

5.2585 5.2610

DC2
BPNN  Actual

49687 4.9865

Parameter

Average torque [Nm]

Torque ripples [Nm] 0.6857 0.6716 0.3032 0.30329

compared to the baseline at different phase currents are shown
in Fig. 12 and Fig. 14, respectively. Whereas the dynamic
torque output for a complete electrical cycle of both design
candidates is shown in Fig.13 and Fig. 15. Notably, enlarging
the stator pole arc angles in DC1 causes a fast rise for the
static torque profile. Thus, the total motor torque output from
the dynamic SIMULINK model is increased as shown on the
blue graph in Fig. 12.

In addition to the analysis of the static behavior of the
optimized design candidates, we also assessed their dynamic
characteristics, particularly the optimization of conduction
angles, to validate the performance of the BPNN output.
In DC1, the optimized turn-on angle of the current is more
advanced than in DC2, as indicated in Table 5. Advancing
the turn-on angle leads to injecting the current before the
build-up of the induced voltage, resulting in an increase in the
total average torque produced. Thus, DC1 experienced higher
average torque than DC2. Although DC1 recorded the highest
average torque, it also exhibited a greater value of RMS
torque ripples. Because the conduction angle optimization
is a single-objective process aimed at maximizing the
average torque, even if it comes at the expense of higher
torque ripples. Future work will include multi-objective
optimization to promote the SRM average torque and torque
quality. It is evident that the proposed BPNN has accurately
surrogated the optimization process of the conduction angles
which saved a significant computational time.

In SRM with a larger number of rotor poles, proximity
between the poles results in flux leakage to adjacent poles
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TABLE 5. Conduction angles of baseline and optimized design
candidates.

Conduction Angles Baseline DC1 DC2
Turn ON, Gon [°] -30.5 -36.9 2292
Turn OFF, Gof [°] 137.47 131.1 138.7

during phase energization. As the adjacent pole experiences
a declining inductance profile, it is reasonable to anticipate a
negative torque output [19]. This leads to increased torque
ripples, negatively impacting the motor’s torque quality.
To address this issue, one solution is to widen the rotor-
pole arc angle compared to the stator-pole arc angle. This
intentional difference introduces dead time in the inductance
profile during turn-off delay, preventing potential negative
torque during phase conduction and promoting self-starting
capabilities [24]. In this study, both design candidates, DC1
and DC2, demonstrate a larger rotor pole arc angle compared
to the stator pole arc angle. However, the difference between
B and B in DC2 is significantly greater than in DC1. This
increases the dead zone in the middle of the static torque
waveform in DC2 compared to DC1, as shown in Fig. 12
and Fig. 14. This eliminates the negative torque production
and hence reduces the torque ripples more effectively in DC2
compared to the baseline and DC1 designs. Consequently,
by reducing the torque ripples, the overall torque quality is
improved, leading to a reduction in audible noise generation
from the SRM.

The recommended designs meet the arc angles constraints
and are deemed as effective solutions with respect to
the output performance of the considered SRM. However,
since both design candidates exhibited an average torque
slightly higher than the baseline, the selection of the best
candidate was prioritized based on its output torque ripples.
Consequently, DC2 was selected as the most optimal design
candidate as it exhibited an average torque enhancement of
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FIGURE 12. Static torque profiles comparison between DC1 and baseline
at various phase currents.
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FIGURE 14. Static torque profiles comparison between DC2 and baseline
at various phase currents.
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FIGURE 13. Total torque of DC1 for one electrical cycle compared to the
baseline.

1.8% and a remarkable reduction of torque ripples by 23.8%
when compared to the baseline design.

The utilization of MLA in motor design offers numerous
benefits, such as a reduction in computational overhead. This
approach effectively acts as a surrogate model for static and
dynamic simulations, including the optimization process of
the conduction angles. As a result, it leads to significant
savings in computational time. To quantify the amount of
time saved, we calculated and recorded the execution time
of all the steps involved in obtaining the design candidates.
It took a total of 2,000 minutes to obtain the 50 data points
comprising the training dataset. Each individual data point
necessitates 25 minutes for executing the static FEA model
and generating the required lookup tables. Additionally,
the MATLAB SIMULINK model, which includes the GA
optimization of conduction angles, consumes 15 minutes
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FIGURE 15. Total torque of DC2 for one electrical cycle compared to the
baseline.

for each data point. Then, the proposed method took
approximately 10 minutes to learn the training data and
generate 10,000 new data points. The studies presented in
this work were conducted using a computer equipped with
an Intel(R) Core (TM) i7-8700 CPU running at a speed
of 3.20GHz and 32.0 GB of RAM. In comparison, using
the conventional FEA and MATLAB method to get 10,000
points would take 400,000 minutes, which is a formidable
computational cost. Therefore, the proposed method offers
significant execution time savings.

VI. CONCLUSION AND FUTURE WORK

This study proposed a non-conventional optimization
approach utilizing the BPNN to accurately map out the
crucial SRM geometrical parameters, stator and rotor pole
arc angles and their dynamic performance, including average
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torque and torque ripples. The developed BPNN acts as
a surrogate model, replacing both static and dynamic
models, including GA optimization of the conduction
angles. To enhance the training process, LM algorithm was
implemented, ensuring efficient and rapid convergence while
reducing network complexity. Using the developed approach,
10,000 design candidates for the considered 6/14 SRM
were obtained. The optimal design was rigorously validated
with high precision using FEA and SIMULINK analysis,
establishing its reliability and superior performance. This
proposed method showcases an improvement of 1.8% in the
motor average torque and a remarkable reduction of 23.8% in
torque ripples compared to the baseline design. Additionally,
this method significantly reduced computational time and
costs compared to conventional iterative techniques. Future
research directions will consider the study of acoustic noise
and vibration as they are out of the scope of this paper.
Moreover, it will extend to consider other geometrical
parameters such as the pole heights and taper angles.
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