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ABSTRACT The concept of Deep learning is a part of machine learning which is very useful nowadays
to achieve accurate voice and speech recognition based on the training data by creating robust algorithms.
It is also possible to separate the noise from original speech as well as the separation of tracks in particular
audio signal with the help of machine learning algorithms. In this paper, the implementation is applicable
for voice assistant to separate the tracks and the noises from the multiple original audio which reproduces
simultaneously using the speech enhancement and universal code book. For that, the Hybrid Deep Learning
Algorithm has been developed and the training data sets are also created and achieve the accuracy in the
speech recognition for the variety of voice assistants. Most of the time, the voice assistant recognizes the
voice with noises and musical audio which results in the malfunction of devices which can be controlled by
the same voice assistant. The Generative adversarial networks from Deep learning and the blind source
separation method from multi-channel model are combined to form this proposed hybrid deep learning
model.

INDEX TERMS Blind source separation (BSS) method, deep learning method, generative adversarial
networks (GAN), multi-channel method, noise separation, speech recognition, speech enhancement, track
separation, voice assistant.

I. INTRODUCTION
The usage of voice assistant in recent trends and technol-
ogy has become severe nowadays to control the appliances
of all types like home appliances, industrial appliances
and machines, automated vehicles, smart phones, and other
related applications. In that, the major input for that voice
assistant is the human voice to control and operate all the
terminal nodes. If the input collapses or adds noises, then the
voice assistant starts malfunctioning, based on the corrupted
inputs. To reduce this effect in the input side, the Hybrid Deep
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Learning Algorithm has been proposed and the training data
sets are also created and tested to achieve accuracy in the
speech recognition for the variety of voice assistants. The
track separation process is not an easy task if the unwanted
information which is also called as interfering source which
is like the actual original payload information which is also
called as target source. Here, the interfering sources are more
and there is only one target source. First, the unwanted tracks
should be found out and it must be separated by using the
Hybrid Deep Learning Algorithm. Speech separation is a
fundamental problem in audio processing, with applications
ranging from improving audio quality in communication sys-
tems to enhancing speech recognition in noisy environments.
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Traditional methods, such as the Universal Codebook, have
been used to separate speech signals from background noise.
However, these methods might have limitations in dealing
with complex real-world scenarios and varying noise condi-
tions.

The advent of deep learning has revolutionized various
fields, including audio processing. Deep neural networks
(DNNs) have shown remarkable success in speech enhance-
ment and separation tasks, leveraging their ability to learn
complex patterns and features directly from the data. Despite
their success, DNNs might require a significant amount of
labeled training data and computational resources.

The hybrid approach proposed in this research leverages
the strengths of both traditional signal processing methods
and deep learning techniques. By combining the Universal
Codebook’s ability to capture structured speech components
and the DNN’s capacity to handle intricate patterns, the
goal is to achieve improved track and noise separation.
Wood et al. [1] developed a framework for speech enhance-
ment using the universal code book to highlight the features
of original voice and the noise based on the atomic speech
presence probability. Subramanian et al. [2] minimized the
error in the automatic speech recognition and optimized the
speech enhancement based on the word error rate usingmulti-
channel end-to-end system. He et al. [3] implements the
wiener filter to separate the noise and the original information
signal with the help of code book which estimates the Auto
regressive parameters. Baby et al. [4] making the weighted
sum of noisy signals by using decomposition of original
signals and enhancing the noise to distinguish the original
signal.

II. RELATED WORK
Xiang et al. [5] separates the speech harmonicswhich consists
of residual noise which can be removed by the same driven
code book by speech enhancement. Pfeifenberger et al. [6]
uses Eiggenet architecture for gain mask estimation from
the signal received from the different input sources and all
the signals are enhanced to achieve Phase Aware Normaliza-
tion (PAN), Generalized Eigenvalue (GEV) and Minimum
Variance Distortion Less Response (MVDR). Hassani et al.
[7] demonstrated the speech processing from more than one
source using the noise reduction algorithm which involves
the multi-channel wiener filter. Huang et al. [8] uses the
multi-band excitation model for speech enhancement along
with theDeep neural network to achieve the log power spectra
of the signal which are having the noises. Gaich et al. [9]
improving the performance and reliability of speech enhance-
ment signal using the phase aware methods which helps to
achieve good results in noise reduction. Xiang et al. [10]
implements the deep neural network and trains the same
network for speech enhancement and noise separation based
on multi objective learning. Zhang et al. [11] also uses
wiener filtering for noise enhancement using the driven code

book which estimates the Signal to Noise Ratio and improv-
ing the same for the betterment reproduction of original
speech signal. Pirolt et al. [12] uses the phase invariance
property to find the harmonics with the help of harmonic
phase estimator which separates the signal phase and noise
phase. Hussain et al. [13] combines the Adaptive noise can-
cellation technique and the degenerate unmixing estimation
technique to find the correlation between the signals for
separating the same. The CEGM approach of Chai et al. [16]
can also be used to enhance the speech if the speech is
from a single source, if the input is from multiple sources,
the frequency and signal strength may vary as well as the
sampling rate also changed which results the variation in
the DC output power. The hybrid voice activity detection
method of Wang et al. [17] can also overcome this effect
hence, the output noise power and distortion power dominate
which results in the suppression of primary input signal. The
multi-channel speech enhancement implementation from Lee
et al. and Zang et al. [18] and the improvement in SNR from
Nian et al. [20] and Zhang et al. [30] in multi- channel envi-
ronment are challenging tasks, hence, the bandwidth handling
by Zhu et al. [22] of the signal from multiple sources are
distinguishable which helps to separate the tracks and noises
from the original information. Einizade et al. [34] intro-
duces U-GraphJADE-GL, a method for blind separation of
graph signals. It addresses the limitation of assuming known
underlying graphs in graph-based methods, proposing a uni-
fied objective function optimized using Block Coordinate
Descent. U-GraphJADE-GL is compared with other methods
in blind source separation tasks and applied successfully to
denoise epileptic EEG signals and audio speech separation.

Wang et al. [35] introduces a novel multichannel blind
source separation (BSS) method using a convolutive trans-
fer function (CTF) for overdetermined scenarios. It employs
a frequency-wise convolutive mixture model, estimating
demixingmatrix via iterative projection and NMF parameters
using multiplicative update. The method, advantageous for
representing long impulse responses with short windows,
outperforms ILRMA and FastMNMF in separating sources
in reverberant environments.

Du et al. [36] presents a computationally efficient
algorithm for BSS in overdetermined mixtures. It intro-
duces a modified iterative source steering (ISS) algorithm for
overdetermined independent vector analysis (OverIVA) and
independent low-rank matrix analysis (OverILRMA). Exper-
imental results demonstrate comparable or superior speech
separation performance with lower computational cost com-
pared to conventional iterative projection-based methods.

Brendel et al. [37] addresses convolutive BSS in audio
processing, focusing on Independent Component Analysis
(ICA) methods. It clarifies the relationships between Fre-
quency Domain ICA (FD-ICA), Independent Vector Analysis
(IVA), and TRIple-N Independent component analysis for
CONvolutive mixtures (TRINICON), establishing a common
framework for these algorithms.

120708 VOLUME 11, 2023



S. V. Aswin Kumer et al.: Track and Noise Separation Based on the Universal Codebook

Munakata et al. [38] introduces an unsupervised multi-
channel method for separating moving sound sources using
amortized variational inference (AVI). It enhances the neu-
ral full-rank spatial covariance analysis (FCA) method by
incorporating time-varying spatial information, improving
performance in separating and localizing moving sources
compared to existing methods.

Muñoz-Montoro et al. [39] introduces a harmonic con-
strained Multichannel Non-Negative Matrix Factorization
(MNMF) method for BSS. It encodes spatial informa-
tion using magnitude and phase differences, models source
variances with harmonic constrained NMF, and uses the
constant-Q transform for the spatial covariance matrix. The
method, initialized with steered response power (SRP) with
the phase transform (PHAT), exhibits reliable results in music
source separation tasks.

Hasuike et al. [40] addresses frequency-domain blind
source separation for audio signals. It introduces a deep
neural network-based permutation solver to tackle the
long-standing permutation problem in estimating source
components. Experimental results validate the effectiveness
and robustness of the proposed approach across different
datasets.

The self-supervised [22] approach is also a solution to
find the actual information from the multiple signal envi-
ronments, if the attentive training [23] is included, then the
efficiency can be improved for speech recognition. Involving
the Convolutional Neural Network [24] for speech recogni-
tion and the trained DNN [25], [26], [27], [29], along with
different algorithms can help to achieve efficient results in
speech enhancement. The art of separating [28] the track after
enhancement produces better results than other approaches,
the combined approach followed in the proposed method.

III. PROPOSED METHODOLOGY
The voice assistant receives the input signal from the mul-
tiple sources, and it has no knowledge about that, which
signal is information and which signal is an unwanted sig-
nal. To distinguish that, the speech enhancement process is
implemented. The process of speech enhancement having
different methodologies, but, in this proposed model, the
universal code book is used to enhance the entire input from
multiple sources and after that, with the help of code book,
the entire input information signal is enhanced and applied to
the Hybrid Deep Learning which is shown in Figure 1. The
process of discriminating the signals using the data samples
in the dynamic system is known as Generative Adversarial
Network (GAN). The GAN along with Blind Source Sepa-
ration (BSS) method represents an algorithm to separate the
noise tracks and the original track.

A. UNIVERSAL CODEBOOK FOR TRACK AND NOISE
SEPARATION
The Universal Codebook is a traditional method used in
speech processing to model speech components and back-

ground noise separately. It provides a structured framework
for representing different speech elements and has been used
effectively in various speech separation tasks.

B. DEEP LEARNING FOR ENHANCED SPEECH
RECOGNITION
Deep learning methods, particularly deep neural networks,
have gained attention due to their capability to learn complex
features from raw data. In the context of speech separa-
tion, DNNs can be trained to differentiate between speech
and noise patterns, leading to improved quality in separated
tracks.

C. HYBRIDIZATION FOR IMPROVED PERFORMANCE
The hybrid approach seeks to capitalize on the comple-
mentary nature of traditional methods and deep learning.
By integrating the Universal Codebook with a DNN-based
model, the research aims to enhance the quality of separated
speech tracks, thereby leading to better speech recognition
performance in noisy environments.

D. CHALLENGES AND EXPECTATIONS
While deep learning methods have shown promise, they often
require a substantial amount of labeled data for training and
significant computational resources. The hybrid approach
aims to address potential limitations of DNNs by leverag-
ing the structured representations provided by the Universal
Codebook, potentially leading to enhanced performance with
a reduced need for extensive labeled data.

IV. IMPLEMENTATION METHODOLOGY
The implementation of this proposed method involves the
basic steps like speech enhancement, needs reference from
the universal code book and the Hybrid Deep Learning
Algorithm to separate the noise tracks from the actual infor-
mation signal.

A. HYBRID DEEP LEARNING ALGORITHM
Pre-processing

◦ Themixed speech signal is first pre-processed to remove
any background noise. This can be done using a variety
of methods, such as noise cancellation or spectral sub-
traction.

◦ The pre-processed signal is then divided into frames.
Each frame is a short segment of the signal, typically
20-30 milliseconds long.

GAN-based separation

◦ A GAN is trained to learn the distribution of the speech
signals in the mixed signal. The GAN consists of two
networks: a generator and a discriminator.

◦ The generator is responsible for creating fake speech
signals that are like the real speech signals in the mixed
signal. The discriminator is responsible for distinguish-
ing between real and fake speech signals.
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FIGURE 1. Sequence diagram of proposed implementation.

◦ The GAN is trained by alternating between training the
generator to create more realistic speech signals and
training the discriminator to become better at distin-
guishing between real and fake speech signals.

BSS-based separation
◦ After the GAN has been trained, it can be used to create

a preliminary estimate of the individual speech signals
in the mixed signal.

◦ The preliminary estimate is then used as input to a BSS
algorithm. The BSS algorithm is responsible for further
separating the individual speech signals from the mixed
signal.

Post-processing
◦ The output of the BSS algorithm is then post-processed

to improve the quality of the separated speech signals.
This can be done by using a variety of methods, such as
noise reduction or spectral smoothing.

B. SPEECH ENHANCEMENT AND PROCESSING
The input signal from multiple sources having the various
amplitudes which are enhanced for processing the same sig-
nals. This implementation is called preprocessing of the input
signal for further processing which improves the quality of
the speech. Here, the spectral subtraction method is used to
increase the perceptual quality and the intelligibility of the
noise affected signal. It restores the magnitude spectrum of
actual information signal which cancels the noise spectrum
in the unbounded input information.

I (n) = A(n) + N (n) (1)

where, the I(n) indicate the input signal which is equal to the
Actual information Signal A(n) and the Noise Information
N(n) in time domain. By taking Fourier Transform and mag-
nitude for this signal to find the Actual information Signal in
the spectrum,

|A (w)|2 = |I (w)|2 − |N (w)|2 (2)

The noise information should be subtracted from the input
information to obtain the actual information, which is indi-
cated in equation 2, also the representation of the input

information spectrum is shown in Figure 3 and the representa-
tion of the actual information spectrum is shown in Figure 6.
The Speech pauses are combined for averaging the same to
estimate the noise spectrum, which is indicated in equation 3,
in that the number of pulses is represented as P [14] and the
Spectrum of the noise information is shown in Figure 5.

|N (w)|2 =
1
P

∑P−1

i=0
|I (w)|2 (3)

The parameters from Maximum Likelihood Estimator will
be processed along with the Actual information Signal and
given to the Hybrid Deep Learning Algorithm for further
processing.

C. MAXIMUM LIKELIHOOD ESTIMATOR
The code book driven receives the signal spectrum and noise
spectrum from the speech enhancement module and the same
will be processed to estimate the maximum likelihood param-
eters as shown in equation 4 [15] which is shown in Figure 7.{

k∗, l∗
}

= argmax
k,l

max
σ 2
x σ 2

w

py(Y | ukx , u
l
w; σ 2

x , σ 2
w) (4)

where the variables k and l are represent parameters that max-
imize the likelihood function, and the functions argmax

k,l
(k, l)

represents the values of k and l for which the expres-
sion inside the parentheses attains its maximum value and
max(σ 2

x σ 2
w) represents the maximum value with respect to

σ 2
x and σ 2

w, and the σ 2
x and σ 2

w represents the Variance of the
random variable x and w, and py(Y |) represents the condi-
tional probability density function of Y | given the specified
parameters, and ukx , u

l
w are parameters related to the random

variables x and w, respectively, and k and l index different
values of these parameters.

D. GAN AND BSS BASED SEPARATION
A novel algorithm has been developed to separate the noise
tracks and the actual information track with the help of
Hybrid Deep Learning algorithm, which combines generative
Adversarial Network approach and Blind Source Separation
approach for speech enhancement. This algorithm has been
shown to be effective in separating multiple speech signals
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FIGURE 2. Input information.

FIGURE 3. Spectrum of input information.
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FIGURE 4. Noise information.

FIGURE 5. Spectrum of noise information.
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FIGURE 6. Spectrum of sampled information with 44100 sampling rate.

FIGURE 7. Block diagram of maximum likelihood estimator.

from a mixed signal. It can achieve good separation quality
even in the presence of background noise. Usually, the signal
parameters have a similar range of values, so, the separation
of tracks becomes complicated. So, the algorithm uses the
frequency of the signal to separate the tracks with the constant
time slots. Each frequency received from the sources will
be put up in the frequency Bins and based on the value of
frequency, the bin has been chosen. The rest of the parameters
like harmonics, Bin power and total power may change based
on the instants and not by the frequency.

The actual sampling rate for hi fidelity audio 44100 Hz is
taken as consideration, with that threshold, the sampling rate
is decreased to 43200 Hz for our proposed method. The fun-
damental frequency taken for the sample is 1687.500000 Hz
and the Sampling Frequency is 43200 Hz. The Spurious Free
Dynamic Range (SFDR) and the Signal to Noise and Interfer-

ence Ratio (SINR) and the Signal to Noise Ratio (SNR) are
also listed in the following tables with the different output
powers of the processing speech signal.

SFDR = Ps − Pn (5)

SINR = 10 ∗ log10(Ps/(Pn + Pi)) (6)

SNR = 10 ∗ log10(Ps/Pn) (7)

The Ps represents the signal power, Pn represents the noise
power, and the Pi represents the interference power.

V. RESULTS AND DISCUSSIONS
By observing the values tabulated in Table 1 and Table 2,
the sampling rate of 43200 provides better results than other
sampling rates. The same approach is applicable for multiple
speech signals received to identify the actual informative
signal. The complex power spectra of multiple speech signals
are shown in figure 9.

The frequency of instants 11, 20 and 27 are the low fre-
quencies which are put up in the low value bins which can be
separated using the Hybrid Deep Learning which are shown
in Table 3, 4 and 5. The frequency of the instants 38, 39, 40,
42, 46, 48 and 49 are also the low frequencies which are put
up in the low value bins which can be separated using the
Hybrid Deep Learning which are shown in Table 6 and 7.
To measure the performance of the proposed method, the

parameters like Signal to Noise Ratio (SNR) (Equation 8),
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FIGURE 8. Sample signal plot with 44100 sampling rate.

TABLE 1. Different output powers of the processing speech signal.

TABLE 2. Different ratios of the processing speech signal.

Short Time Objective Intelligibility (STOI), Perceptual Eval-
uation of Speech Quality (PESQ) and Mean Opinion Score
(MOS) are used and the comparison with other methods with
different datasets like CHIME-4 [31], NOISEX-92 [32], and
WSJO-2 mix [33] are also represented in the table 8.

STOI = 1 − d/D (8)

In STOI measure, d is the normalized difference between the
temporal envelopes of the clean and noisy/processed speech

FIGURE 9. Power spectrum of multiple input signal plot.

FIGURE 10. Power spectrum of input signal plot with 44100 sampling
rate.

FIGURE 11. Output information.

and D is the maximum possible normalized difference.

PESQ = 4.5 − 0.1∗dSYM − 0.0309∗dASYM (9)

In PESQ measure, dSYM is the symmetrical difference
between the degraded and reference loudness spectra and
dASYM is the asymmetrical difference between the degraded
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FIGURE 12. Spectrum of output information.

FIGURE 13. Sampled output information with 43200 sampling rate.

TABLE 3. Signal parameters of time slot 1.

and reference loudness spectra.

MOS = 1 − 5∗(QB − Qw)/4 (10)

In MOS measure, QB is the rating of the best quality speech
sample and QW is the rating of the worst quality speech
sample.

The above tabulated values clearly representing the
proposed method has providing good results than other

FIGURE 14. Spectrum of output information with 43200 sampling rate.

FIGURE 15. Complex power Spectrum of output information with
43200 sampling rate.

TABLE 4. Signal parameters of time slot 2.

approaches, The implementation is applicable for voice assis-
tant to separate the tracks and the noises from the multiple
original audio which reproduces simultaneously using the
speech enhancement and universal code book. The track sepa-
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TABLE 5. Signal parameters of time slot 3.

TABLE 6. Signal parameters of time slot 4.

TABLE 7. Signal parameters of time slot 5.

ration process is not an easy task if the unwanted information
which is also called as interfering source which is like the
actual original payload information which is also called as
target source. For that, the Hybrid Deep Learning Algorithm
has been developed and the training data sets are also created
and tested to achieve accuracy in the speech recognition for
the variety of voice assistants.

TABLE 8. Comparison of proposed method with existing techniques.

FIGURE 16. Comparison of SNR.

In figure 16, it clearly represents the hybrid DNN approach
is having better signal to Noise Ratio (SNR) when compared
to the other approaches in all the three different datasets.

In figure 17, it clearly represents the hybrid DNN approach
is having better Short Time Objective Intelligibility (STOI)
when compared to the other approaches in all the three dif-
ferent datasets.

In figure 18, it clearly represents the hybrid DNN approach
is having better Perceptual Evaluation of Speech Quality
(PESQ) when compared to the other approaches in all the
three different datasets.
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FIGURE 17. Comparison of STOI.

FIGURE 18. Comparison of PESQ.

In figure 19, it clearly represents the hybrid DNN approach
is having better Mean Opinion Score (MOS) when compared
to the other approaches in all the three different datasets.

VI. CONCLUSION
The combined approach of Generative Adversarial Network
(GAN) and Blind source separation (BSS) is a promising
technique for track and noise separation frommultiple speech
signals. GANs can be used to learn the distribution of the
speech signals in the mixed signal, while BSS algorithms can
be used to further separate the individual speech signals from
the mixed signal.

FIGURE 19. Comparison of MOS.

This approach has been shown to be effective in separating
multiple speech signals from a mixed signal, even in the
presence of background noise. It can achieve good separation
quality even when the number of speech signals in the mixed
signal is unknown.

However, there are still some challenges that need to be
addressed to improve the performance of this approach. One
challenge is that GANs can be computationally expensive
to train. Another challenge is that BSS algorithms can be
sensitive to the choice of parameters.

Despite these challenges, the combined approach of GAN
and BSS is a promising technique for tracking and noise
separation from multiple speech signals. It is a powerful tool
that can be used to improve the quality of speech in a variety
of applications.

The work makes a significant contribution by leveraging
deep learning techniques for improved speech recognition.
One notable aspect is the utilization of the Universal Code-
book, a concept likely inspired by the success of adversarial
attacks in deep learning models, such as the ‘‘Intra-Class
Universal Adversarial Attacks on Deep Learning-Based
Modulation Classifiers.’’ Moreover, the mention of ‘‘Track
and Noise Separation’’ suggests a focus on addressing chal-
lenges related to signal processing and background noise in
speech recognition systems. The use of a Universal Codebook
hints at a method to generalize the separation of various com-
ponents within the speech signal, contributing to improved
accuracy in speech recognition tasks. Overall, this work not
only underscores the importance of deep learning but also
showcases a novel approach to enhance the robustness and
performance of speech recognition systems.

Recent developments in deep learning for speech process-
ing have seen advancements in noise separation and enhanced
recognition. The Universal Codebook has been employed
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for effective speech tracking, offering a comprehensive rep-
resentation of speech patterns. Additionally, a combined
approach of Generative Adversarial Network (GAN) and
Blind Source Separation (BSS) has shown promise. GANs
contribute by generating realistic noise samples, aiding
in training models for robustness against diverse acous-
tic environments. BSS techniques further improve signal
clarity by separating mixed audio sources. This synergis-
tic use of GAN and BSS enhances speech recognition
systems, making them more resilient to noise, ultimately
improving their performance in real-world scenarios. These
innovations address challenges in noisy environments, con-
tributing to the reliability and accuracy of speech-based
applications.

The research on ‘‘Track and Noise Separation based on
the Universal Codebook and enhanced speech recognition
using Hybrid Deep Learning Method’’ seeks to explore
the synergy between traditional signal processing methods
and modern deep learning techniques. By integrating the
strengths of both approaches, the goal is to improve the
quality of separated speech tracks and subsequently enhance
the accuracy of speech recognition tasks in challenging
acoustic environments. The paper’s subsequent sections will
delve into the methodology, experimental setup, results, and
discussions that elucidate the effectiveness of this hybrid
approach.
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