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ABSTRACT Intuitionistic hesitant fuzzy sets, which enable the representation of an element’s membership
and non-membership as a set of multiple possible values, offer significant utility in describing uncertainty
in various aspects of people’s daily lives. Fundamental mathematical techniques known as intuitionistic
hesitant fuzzy aggregation operators are employed to merge multiple inputs into a single result based
on predetermined criteria. However, conventional approaches that rely on classic intuitionistic hesitant
fuzzy aggregation operators have faced criticism due to their limited understanding of criteria character-
ization. We introduce two novel operators, namely the intuitionistic hesitant fuzzy partitioned Maclaurin
symmetric mean (IHFPMSM) and intuitionistic hesitant fuzzy weighted partitioned Maclaurin symmetric
mean (IHFWPMSM), which draw inspiration from the partitioned Maclaurin symmetric mean concept.
Subsequently, we thoroughly examine various characteristics and special cases of these operators. Building
upon the IHFWPMSM operator, we propose a novel multiple-criteria decision-making (MCDM) method
that effectively selects the most suitable alternative from a set of options. To demonstrate the effectiveness
of our proposed approach, we discuss a systematic methodology for selecting the optimal location for shoe
company construction. Lastly, we demonstrate the superior prevalence and effectiveness of the developed
approach through comprehensive comparative and sensitivity analyses, surpassing the capabilities of existing
approaches.

INDEX TERMS Intuitionistic hesitant fuzzy set, Maclaurin symmetric mean, partitioned Maclaurin sym-
metric mean, multiple criteria decision-making.

I. INTRODUCTION
To make the best decision, people employ a cognitive pro-
cess called multi-criteria decision-making (MCDM). It has
been widely applied in a number of fields. A common
need for decision-makers (DMs) in MCDM situations is to
provide evaluative information on the criteria and alterna-
tives in the form of classical data, which is inadequate for
dealing with issues like ambiguity, imprecision, or fuzzi-
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ness [1], [2], [3], [4], [5], [6], [7]. Zadeh [8] developed
the fuzzy set (FS) as a solution, and it has since been the
subject of extensive research. Membership (MS) functions
are used in FS theory to quantify how strongly elements
belong to a given set, enabling more flexible representations
of ambiguous or inaccurate data. FS has garnered significant
attention from various academics, and various scholars have
conducted multiple studies. For instance, Aydin [9] presented
the fuzzy MCDM technique based on fermatean FSs. John
[10] explored the specific implications of type-2 FSs, Mandel
and John [11] discussed the simplification of type-2 FSs, and
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Ali [12] introduced the concept of a probabilistic hesitant
bipolar FS, described its Hamacher operational rules, and
employed it to decision-making issues.

FS has attracted the interest of a number of scholars,
and various academicians have implemented various appli-
cations. However, FS theory has limitations when it comes to
expressing more complex fuzzy information that may require
various levels of MS function or fuzzy interactions amongst
multiple components. For example, if a person encounters
information in the form of {0.8, 0.9, 0.7}, then the FS concept
has been disregarded. To make up for this deficiency, Torra
[13] introduced the well-known concept of hesitant FS (HFS)
by transforming the strategy of FS into HFS, which includes
the MS grade whose maximum value falls within the interval
[0, 1]. HFS is an altered variant of FS that has attracted the
focus of various experts. In particular, Meng and Chen [14]
came up with correlation measures for HFSs, Li et al. [15]
explored distance and similarity measurements for HFSs, and
Wei et al. [16] studied entropy and a number of measures
according to on HFSs. Pant and Kumar [17] put forward an
integrated time series forecast approach using HFS, which
allows the adoption of particle swarm optimization (PSO)
and a support vector machine. Under hesitant fuzzy setting,
Wang et al. [18] introduced a three-way decision strategy in
accordance with regret theory; they also offered a three-way
classification mechanism founded on the preference ranking
organization approach for enrichment evaluations.

If an intellectual entity presented details within the form of
‘‘yes’’ or ‘‘no,’’ the FS concept has been disregarded. For this
purpose, Atanassov [19] introduced the well-known idea of
intuitionistic FS (IFS) by improving an earlier form of FS into
IFS, which incorporates the MS as well as non-membership
(NMS) function, where the sum of both functions is lim-
ited to 1. The IFS theory has been frequently used in the
resolution of MCDM problems due to the inclusion of this
NMS function. An improved conceivable degree technique
was put out by Garg et al. [20] to ordering intuitionistic fuzzy
numbers (IFNs); in contrast, Joshi [21] developed a brand-
new bi-parametric exponential data methodology based on
IFS. A distinct relationship between two variables among
IFSs was produced by Thao et al. [22], who also described
their technique. In [23], Garg and Kumar looked into the
application of an intuitionistic fuzzy MCDM approach using
set pair evaluation to decision-making problems. Several
academics have researched and utilized a wide range of addi-
tional methods that rely on intuitionistic fuzzy theory [24],
[25], [26], [27], [28].

It was found that the prevalent data computed with the
help of FSs, HFSs, and IFSs can be put to use in a wide
range of disciplines, such as finance, information technology,
engineering, and transportation. Still, it can’t be denied that
they’re constrained in many ways. For example, we acknowl-
edge that IFS has only ever operated with two-dimensional
data that is in terms of a singleton set, i.e., each dimension of
data can represent a single value. But what if a DM supplied

two-dimensional information in the form of more than one
value? In such a case, DMs observed the IFS theory could not
accurately operate with the above data. To accomplish this,
the well-known concept of an intuitionistic hesitant fuzzy
(IHF) set (IHFS) was first proposed by Beg and Rashid [29],
who adapted the IFS setup to create IHFS, which includes
the MS and NMS values as a finite subset of [0, 1], with the
sum of the supremum of the duplet falling within [0, 1]. IHFS
is a hybrid of IFS and HFS that has attracted a lot of atten-
tion from academic circles because of its ability to handle
complex and uncertain data in real-world problems. Various
academics have implemented a number of applications. For
instance, Peng et al. [30] used IHFSs to pioneer cross-entropy
measures, and Zhai et al. [31] studied probabilistic interval-
valued IHFSs. Chen et al. [32] developed the technique for
order preference by similarity to an ideal solution (TOPSIS)
algorithm based on their offered IHF distance measures.
In [33], Mahmood et al. provided a number of power aggre-
gation operators (AOs) with IHFSs and researched their basic
properties. The authors of [34] linked IHFS to the theory of
set pair analysis, which examines certainty and uncertainty
as a cohesive system and expresses them from numerous
viewpoints. Albaity and Mahmood [35] initiated the core
theory of generalized dice similarity measures based on IHFS
and discussed their specific cases via parameters. In addi-
tion, they addressed their proposed measures’ applications to
healthcare diagnosis and pattern analysis.

Data aggregation is a challenging endeavor in uncertain
circumstances, and different AOs have been devised to cope
with fuzzy contexts. A series of AOs were created by Xia and
Xu [36] employing quasi-arithmetic techniques in hesitant
fuzzy situations. Yu [37] formed a number of hesitant fuzzy
aggregation operators based on Einstein triangular norms.
Ali and his coauthors reported IHF Aczel-Alsina weighted
averaging (geometric) operators and their desired results in
numerous journals [38], [39], [40]. By pondering the prioriti-
zation of input data, numerous prioritized AOs [12], [41] have
been explored for utilization in different fuzzy contexts. All
the preceding AOs only aggregated data and considered only
weights. None of them contemplate the connection between
the input data. As a result, a number of other forms of AOs
have been created, such as heronian mean operators [42],
Bonferroni mean operators [43], power operators [33], and
maclaurin symmetric mean operators [44], which link the
data input to some extent used in the aggregate step. We addi-
tionally suggest [45], [46], [47], [48], [49] for more reading
on MCDM and AOs analysis.

However, there may not always be connections between
criteria in real-world decision-making situations. For exam-
ple, we are comparing four varieties of coffee according to
the following standards: aroma (S1), bitterness (S2), acidity
(S3), and aftertaste (S4). P1 = ‘‘S1, S4’’ and P2 = ‘‘S2, S3’’
are two groups under which these requirements fall. We may
infer that S1 is linked to S4 and that they all belong to P1,
and that S2 is linked to S3, and that they all reside in P2. The
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subcategories P1 and P2, though, have no connection with
one another. The partitioned Bonferroni mean (BM) operator
by Dutta and Guha [50] and the partitioned Maclaurin sym-
metric mean (MSM) (PMSM) operator relying on IFNs was
suggested by Liu et al. [51]. These two operators presuppose
that overall criteria have been divided into a small number
of categories as well as a connection among criteria within a
single category but not among criteria of different categories.
The MSM operator clearly differs from the BM operator,
with the MSM operator capturing connections among the
input arguments (or criteria) of any number specified by a
parameter, while the BM operator is limited to describing
the connections between only two arguments. To summarize,
the MSM operator proves more generalized than the BM
operator and outperforms it in addressing decision-making
issues with numerous input arguments that have connec-
tions to each other. As a result, we focus on how the MSM
operator handles IHF MCDM situations with both interac-
tion and partitioning connections among criteria. By keeping
the wide-ranging foundation of IHFSs, where both aspects
(belongingness and non-belongingness) of several uncertain
data can be characterized, reducing the possibility of data loss
and the importance of MSM operator in mind, our goal in this
work is to create the theory of PMSM operators for IHFSs.
When dealing with cases in which criteria within the same
partition are related to one another, but criteria within other
partitions are unrelated to one another, the PMSM operator
offers various benefits: i) It can show how various factors
interact with one another; ii) It breaks the criteria down into
a number of unrelated categories, each of which contains its
own set of factors that are interconnected.

The main goals of the present research are as follows:

• To suggest the IHF PMSM (IHFPMSM) and IHF
weighted PMSM (IHFWPMSM) operators to overcome
the aforementioned review’s drawback.

• To investigate several properties, theorems, and specific
instances of the propound PMSM operators.

• To establish an MCDM strategy depending on the cre-
ated IHFWPMSM operator.

• To conduct a case study and a comparative analysis
to show the value and superiority of the conventional
technique.

The subsequent sections of this research are organized as
follows. Section II provides an exposition of the fundamen-
tal concepts of IHFS and the underlying principles of its
operation. In Section III, we delve into the development
of the IHFPMSM and IHFWPMSM operators and establish
their core characteristics. Section IV introduces a method for
decision-making utilizing the proposed operators. Section V
presents a detailed case study to showcase the proposed
approach’s implementation and application. In Section VI,
we conduct comparisons with existing methods by analyzing
their ranking results and performing a validity test to assess
the feasibility of our approach. Section VII contains some
concluding remarks and future outlines.

II. SOME BASIC CONCEPTS
In this section, we allocate some basic concepts related to
IHFS and partitioned Maclaurin symmetric mean.
Definition 1 [13]: Let S be a domain of discourse. Then,

a HFS D on S is described as

D = {(s, G (s)) |s ∈ S} , (1)

where G is a function taking values in the unit interval [0, 1]
which speak to the membership degree of s ∈ S in D.
For convenience, G = G (s) is referred to as a hesitant

fuzzy element (HFE), and D is the set of all HFEs.
Xia and Xu [52] established the following comparison

procedure for two HFEs:
Definition 2 [53]: For an HFE G, the score function is

defined as:

Sc (G) =

#G∑
l=1

µl/#G , (2)

where #G represent the number of elements in G.

For any two HFEs G1 and G2, if Sc (G1) > Sc (G2) , then
G1 > G2; if Sc (G1) = Sc (G2) , thenG1 = G2; if Sc (G1) <

Sc (G2) , thenG1 < G2. For any twoHFEsG1, andG2, Torra
[13] and Xia and Xu [36] described the following operation
rules:
Definition 3: Let G1, and G2 be two HFEs and λ > 0,

then
1. G1 ⊕ G2 =

⋃
k=1,2,...,#G1,
l=1,2,...,#G2

{µk + νl − µkµl};

2. G1 ⊗ G2 =
⋃

k=1,2,...,#G1,
l=1,2,...,#G2

{µkµl};

3. λG1 =
⋃

k=1,2,...,#G1

{
1 − (1 − µk)

λ
}
;

4. Gλ
1 =

⋃
k=1,2,...,#G1

{
µk

λ
}
;

5. (G1)
c
=

⋃
k=1,2,...,#G1

{1 − µk}.

Definition 4 [34]: Let S be a domain of discourse. Then,
an IHFS I on S is described as

I = {(s, G (s) , H (s)) |s ∈ S} , (3)

where G (s) and H (s) represent the MS and NMS values,
respectively ranging value from [0,1] for all s ∈ S with given
conditions:

0 ≤ max (G (s)) + min (H (s)) ≤ 1, and
0 ≤ min (G (s)) + max (H (s)) ≤ 1,

For convenience, J = (G (s) , H (s)) is named as a IHF
element (IHFE).
Definition 5 [34]: For an IHFE J, the score function and

accuracy functions are defined as:

Sc (J) =
Sc (G) − Sc (H)

n
, (4)

Ac (J) =
Sc (G) + Sc (H)

n
, (5)

where Sc(G) =
Sum of all the element of(G)

order of(G)
and Sc(H) =

Sum of all the element of(H)
order of(H)

.
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Definition 6: For any two IHFEs J1 and J2, denoted by J1
> J2 depend upon the following criteria:

(i) Sc (J1) > Sc (J2);
(ii) Sc (J1) = Sc (J2) and Ac (J1) > Ac (J2).
MSM is characterized by the following characteristics:
i. If each φk = φ (k = 1, 2, . . . , n) , then

MSMρ (φ1, φ2, . . . , φn) = φ.
ii. If ϕk ≤ φk (k = 1, 2, . . . , n) , then MSMρ

(ϕ1, ϕ2, . . . , ϕn) ≤

MSMρ (φ1, φ2, . . . , φn).
iii. min

k
{φk} ≤ MSMρ (φ1, φ2, . . . , φn) ≤ max

k
{φk} .

III. PROPOSED IHFPMSM OPERATOR AND IHFWPMSM
OPERATOR
In this section, we implement the PMSM operator into the
IHF model in order to develop two clear synthetic operators,
IHFPMSM and IHFWPMSM:

A. IHFPMSM AGGREGATION OPERATORS
Definition 7: Let J1, J2, . . . , Jn be a range of n IHFEs.

Then, IHFPMSM operator is characterized as

IHFPMSM (ρ) (J1, J2, . . . , Jn)

=
1
t

⊕
t
⋎=1

(
⊕1≤k1<...<kl≤o⋎(⊗

ρ
l=1Jk l)

Cρ
o⋎

) 1
ρ

, (6)

where t denotes the number of categories, ρ is a parame-
ter, ρ = 1, 2, . . . , o⋎, o⋎ denotes the number of criteria
in category t⋎,

(
k1, k2, . . . , kρ

)
includes all the ρ-tuples

of (1, 2, . . . , o⋎), Cρ
o⋎ expresses the binomial coefficient,

whose expression is Cρ
o⋎ =

o⋎!

ρ!(o⋎−ρ)!
.

Theorem 1: For given IHFEs Ji (i = 1, 2, . . . , n). The
aggregated result of formula citation is still IHFEs, charac-
terized as in Eq. (7), shown at the bottom of the page:

Proof: By the operational laws of IHFEs, we can write

Likewise, we can also find the IHFPMSM operator has some
features, including idempotency, monotonicity, and bounded-
ness.
Theorem 2: (Idempotincy) If the given, IHFEs Ji(i =

1, 2, 3, . . . , n) are equal i.e., Ji = J(i = 1, 2, . . . , n).

IHFPMSM (ρ) (J1, J2, . . . , Jn) = J. (8)

Proof: By Eq. (7), we have
Theorem 3: (Monotonicity) let J1, J2, . . . , Jn be IHFs

where Ji = (ui, vi)and i=1,2,. . . ,n and let J′
1, J′

2, . . . , J′
n

where J..
i = (u′

i, v
′
i) and i=1,2,. . . ,n which meet the condition

ui ≥ u′
i and vi ≤ v′i for all i=1,2,. . . ,n. Then

IHFPMSM (ρ) (J1, J2, . . . , Jn)

≥ IHFPMSM (ρ) (J′

1, J
′

2, . . . , Jn
)
. (9)

Proof: We can capture that ρ ≥ 1 and Cρ
o⋎ ≥ 1 easily.

Firstly, let us consider the membership part. Because ui ≥ u′
i

for all i, we have
ρ∏
l=1

uil ≥

ρ∏
l=1

u′
il . Thus

⋃
uil∈Jil

∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)

≤

⋃
u′
il∈J′

il

∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

u′
il

)

H⇒

⋃
uil∈Jil

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)
1

Cρ
o⋎

≤

⋃
u′
il∈J′

il

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

u′
il

)
1

Cρ
o⋎

H⇒

⋃
uil∈Jil

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)
1

Cρ
o⋎


1
ρ

≥

⋃
u′
il∈J′

il

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

u′
il

)
1

Cρ
o⋎


1
ρ

Now, we consider the non-memberships part. Because vi ≤

v′i for all i, we have
ρ∏
l=1

(1 − vil) ≥

ρ∏
l=1

(
1 − v′il

)
. Thus, we can

get ⋃
vil∈Jil

∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(1 − vil)
)

≤

⋃
v′il∈J′

il

∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(
1 − v′il

))
Now compare the val-

ues of IHFPMSM (ρ) (J1, J2, . . . , Jn) with the value of
IHFPMSM (ρ)(J′

1, J
′

2, . . . , Jn) let J=
(
uJ, vJ

)
=

IHFPMSM (ρ) (J1, J2, . . . , Jn) and let J′=(uJ′ , vJ′ )=
IHFPMSM (ρ)(J′

1, J
′

2, . . . , Jn). Then, we can get As a
result to uJ ≥ uJ′ in the aforementioned analysis,
then J ≥ J′, that is IHFPMSM (ρ) (J1, J2, . . . , Jn) ≥

IHFPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil


1 −

(
t∏

⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎

) 1
ρ
)) 1

t

,(
t∏

⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vil

))) 1
Cρ
o⋎

) 1
ρ
)) 1

t

 . (7)
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IHFPMSM (ρ)
(
J′

1, J
′

2, . . . , Jn
)
, which complete the proof of

this property.
Theorem 4 (Boundedness): For a given IHFEs suppose

that J−
= min

i
Ji and J+

= max
i

Ji and (i=1,2,. . . ,n), then

J−
≤ IHFPMSM (ρ) (J1, J2, . . . , Jn) ≤ J+. (10)

Proof: As given that J−
= min

i
Ji ≤ Ji from Theorem

2 and 3, we can write

J−
= IHFPMSM (ρ) (J−, J−, . . . , J−

)
≤ IHFPMSM (ρ) (J1, J2, . . . , Jn)

Same as above

IHFPMSM (ρ) (J1, J2, . . . , Jn)

≤ IHFPMSM (ρ) (J+, J+, . . . , J+
)

= J+.

Thus, we have

J−
≤ IHFPMSM (ρ) (J1, J2, . . . , Jn) ≤ J+.

Then, we explore the effects of parameter ρ on the devel-
oped IHFPMSM operator.
Theorem 5: Suppose that J1,J2,. . . and Jn are the IHFs,

where Ji=(ui, vi) and i=1,2,. . . ,n and let ρ = 1,2,. . . ,min
⋎

o⋎.
As ρ decreases, the IHFPMSM operator increases monoton-
ically.
Theorem 6: Suppose that J1,J2,. . . and Jn are the IHFEs,

where Ji=(ui, vi) and i=1,2,. . . ,n and let ρ = 1,2,. . . ,min
⋎

o⋎.
As ρ decreases, the IHFPMSM operator increases monoton-
ically.

Proof: From Eq. (7) we have
Now we prove that the function Qu(ρ) increases mono-

tonically as the parameter ρ decreases. According to the
Maclaurin inequality ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)
1

Cρ
o⋎

≤

∑
1<i1<...<o⋎

1 −

ρ∏
l=1

uil

Cρ
o⋎

⊗
ρ
l=1Jil =

⋃
uil∈Jil ,vil∈Jil

{ ρ∏
l=1

uil, 1 −

ρ∏
l=1

(
1 − vil

)}

⊕1<i1<....<ik<o⋎

(
⊗

ρ
l=1Jil

)
=

⋃
uil∈Jil ,vil∈Jil


1 −

∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)
,∏

1<i1<...<0⋎

(
1 −

ρ∏
l=1

(
1 − vil

))
(

⊕1<i1<....<ik<0⋎ (⊗
ρ
l=1Jil)

Cρ
o⋎

) 1
ρ

=

⋃
uil∈Jil ,vij∈Jil


(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎

) 1
ρ

,

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vil

))) 1
Cρ
o⋎

) 1
ρ


⊗
t
⋎=1

(
⊕1<i1<....<ik<0⋎ (⊗

ρ
l=1Jil)

Cρ
o⋎

) 1
ρ

=

⋃
uil∈Jil ,vij∈Jil


1 −

t∏
⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎

) 1
ρ
)

,

t∏
⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vil

))) 1
Cρ
o⋎

) 1
ρ
)


1
t

⊗
t
⋎=1

(
⊕1<i1<....<ik<0⋎ (⊗

ρ
l=1Jil)

Cρ
o⋎

) 1
ρ

=

⋃
uil∈Jil ,vij∈Jil


1 −

(
t∏

⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎

) 1
ρ
)) 1

t

,(
t∏

⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vil

))) 1
Cρ
o⋎

) 1
ρ
)) 1

t

 .

This completes the verification.
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H⇒ 1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)
1

Cρ
o⋎

≥

∑
1<i1<...<o⋎

ρ∏
l=1

uil

Cρ
o⋎

H⇒

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)
1

Cρ
o⋎


1
ρ

≥

 ∑
1<i1<...<o⋎

ρ∏
l=1

uil

Cρ
o⋎


1
ρ

IHFPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil


1 −

(
t∏

⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎

) 1
ρ
)) 1

t

,(
t∏

⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vil

))) 1
Cρ
o⋎

) 1
ρ
)) 1

t


=

⋃
uil∈Jil ,vij∈Jil


1 −

(
t∏

⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 − uρ

)) 1
Cρ
o⋎

) 1
ρ
)) 1

t

,(
t∏

⋎=1

(
1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

(
1 − v

)ρ)) 1
Cρ
o⋎

) 1
ρ
)) 1

t


=

⋃
uil∈Jil ,vil∈Jil


1 −

(
t∏

⋎=1

(
1 −

(
1 −

((
1 − uρ

)Cρ
o⋎
) 1

Cρ
o⋎

) 1
ρ
)) 1

t

,(
t∏

⋎=1

(
1 −

(
1 −

((
1 −

(
1 − v

)ρ)Cρ
o⋎
) 1

Cρ
o⋎

) 1
ρ
)) 1

t


=

⋃
uil∈Jil ,vij∈Jil


1 −

(
t∏

⋎=1

(
1 −

(
1 −

(
1 − uρ

)) 1
ρ
)) 1

t

,(
t∏

⋎=1

(
1 −

(
1 −

(
1 −

(
1 − v

)ρ)) 1
ρ
)) 1

t


=

⋃
uil∈Jil ,vij∈Jil

{
1 −

( t∏
⋎=1

(
1 − u

)) 1
t

,

( t∏
⋎=1

(
1 −

(
1 − v

))) 1
t
}

=

⋃
u∈J,v∈J

(u, v) = J

H⇒

⋃
uil∈Jil

t∏
o⋎

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)
1

Cρ
o⋎


1
ρ



≤

⋃
u′
il∈J′

il

t∏
o⋎

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

u′
il

)
1

Cρ
o⋎


1
ρ



H⇒

⋃
uil∈Jil

1 −

 t∏
o⋎

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)
1

Cρ
o⋎


1
ρ




1
t



≥

⋃
u′
il∈J′

il

1 −

 t∏
o⋎

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

u′
il

)
1

Cρ
o⋎


1
ρ




1
t

 .
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Next, we solve by using the contradiction method. Suppose
that it is monotonically decreasing as the ρ decrease,

Qu

(
min
⋎

(o⋎)
)

≥ . . .≥ Qu(2) ≥ Qu(1) thus we have

Qu (1) ≥ 1 −


t∏

o⋎=1

1 −

 ∑
1<i1<...<o⋎

1∏
l=1

uil

C1
o⋎


1
1



1
t

= 1 −


t∏
o⋎

1 −


o⋎∑
il=1

uil

o⋎





1
t

.

Now we suppose that every criterion has the same category,
namely o⋎ = o(⋎ = 1, 2, . . . , t) because min

⋎
(o⋎) = o,

we can get Thus, based on assumptionQ(o⋎)≥ Q(1).We can
get

Q(o) = 1 −

 t∏
o

1 −

(
o∏
l=1

uil

) 1
o


1
t

≥ Q(1) ≥ 1 −


t∏

o⋎=1

1 −


o⋎∑
il=1

uil

o⋎





1
t

(
o∏
l=1

uil

) 1
o

≥


o∑

il=1
uil

o



H⇒

⋃
vil∈Jil

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(1 − vil)

)
1

Cρ
o⋎

≤

⋃
v′il∈J′

il

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(
1 − v′il

))
1

Cρ
o⋎

H⇒

⋃
vil∈Jil

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(1 − vil)

)
1

Cρ
o⋎


1
ρ

≥

⋃
v′il∈Jil

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(
1 − v′il

))
1

Cρ
o⋎


1
ρ

H⇒

⋃
vil∈Jil

t∏
l=1

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(1 − vil)

)
1

Cρ
o⋎


1
ρ



≤

⋃
v′il∈J′

il

t∏
l=1

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(
1 − v′il

))
1

Cρ
o⋎


1
ρ



H⇒

⋃
vil∈Jil

 t∏
l=1

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(1 − vil)

)
1

Cρ
o⋎


1
ρ




1
t

≤

⋃
v′il∈J′

il

 t∏
l=1

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(
1 − v′il

))
1

Cρ
o⋎


1
ρ




1
t

.
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Thus,

(
o∏

il=1
uil

) 1
o

≥


o∑

il=1
uil

o

 is the contradiction to the

Theorem 1. Thus as ρ decrease the function Q(ρ) increases
monotonically. Likewise, we can prove that the functionP(ρ)

decreases monotonically. According to the above analysis,
we have

IHFPMSM (ρ) (J1, J2, . . . , Jn)

≥ IHFPMSM (ρ+1) (J1, J2, . . . , Jn) .

uJ =

⋃
uil∈Jil

1 −

 t∏
o⋎

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)
1

Cρ
o⋎


1
ρ




1
t



vJ =

⋃
vil∈Jil

 t∏
l=1

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(1 − vil)

)
1

Cρ
o⋎


1
ρ




1
t

uJ′ =

⋃
u′
il∈J′

il

1 −

 t∏
o⋎

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

u′
il

)
1

Cρ
o⋎


1
ρ




1
t



vJ′ =

⋃
v′il∈J′

il

 t∏
l=1

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

(
1 − v′il

))
1

Cρ
o⋎


1
ρ




1
t

.

1
t

⊗
t
⋎=1

(
⊕1<i1<....<ik<0⋎ (⊗

ρ
l=1Jil)

Cρ
o⋎

) 1
ρ

=

⋃
uil∈Jil ,vij∈Jil

{
1 −

 t∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎


1
ρ




1
t

,

 t∏
⋎=1

1 −

1 −

 ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(1 − vil)

)
1

Cρ
o⋎


1
ρ




1
t }

.

Let

Qu(ρ) =

{
1 −

 t∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎


1
ρ




1
t }

and

PV (ρ) =

{ t∏
⋎=1

1 −

1 −

 ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(1 − vil)

)
1

Cρ
o⋎


1
ρ




1
t }
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Thus, the IHFPMSM operator is monotonically increased
with respect to the parameter ρ.
Theorem 7: For given range of IHFEs Ji = (i =

1, 2, . . . , n), L = 1, 2, . . . ,min
⋎

o⋎. Then

max
{
IHFPMSM (ρ) (J1, J2, . . . , Jn)

}
= IHFPMSM (1) (J1, J2, . . . , Jn) .

We now examine numerous peculiar instances of the
IHFPMSM operator concerning various parameter l values.

Case 1:Consider there is only one category t1 and number
of sets in t1 = n and parameter ρ based on the
IHFPMSM operator, we have This is the IHFMSM
operator.

Case 2: Now if t = 1 and ρ = 1 then the definition of
IHFPMSMS operator, we have which is reduced to
an IHF averaging operator.

Case 3: Now if t = 1 and ρ = 2 then the def-
inition of IHFPMSMS operator, we have which
is reduced to IHF Bonferroni mean operator
DHFBM (1,1) (J1, J2, . . . , Jn) [43].

Case 4: Now if t = 1 and ρ = n then the definition of
IHFPMSMS operator, we have
This is the IHF geometric mean operator.

Example 1: Let J1 = {{0.3, 0.5} , {0.2}}, J2 = {{0.3, 0.4} ,

{0.1, 0.6}}, J3 = {{0.2, 0.4} , {0.2, 0.5}} and
J4 = {{0.4, 0.8} , {0.1, 0.2}} be four IHFEs. Suppose these
four IHFEs are classified into two categories L1 and L2
with L1 = {J1, J2} and L2 = {J3, J4}. Here, we apply the
IHFPMSM operator to aggregate this IHFEs. In general,
we let ρ = 2, then

B. IHFWPMSM AGGREGATION OPERATORS
In this section, we present the IHFWPMSM operator. It is
considered that all the attributes have the same importance.
However, their weights are not equal in applicable decision-
making. Then, it is important to consider that each attribute
has its own weight. Let the weight of each attribute Ji(i =

1, 2, . . . , n) is wi that fulfills 0 ≤ wi ≤ 1 and
n∑
i=1

wi=1.

Thus, the developed IHFWPMSM operator for IHFEs is
characterized as follows.
Definition 8: Let J1, J2, . . . , Jm be the set of m IHFEs.

Then, the IHFWPMSM operator is characterized as

IHFPMSM (ρ) (J1, J2, . . . , Jn)

=
1
t

⊕
t
⋎=1

⊕
1≤k1<...<kl≤o⋎

(
⊗

ρ
l=1(Jk l )

Wkl
)

Cρ
o⋎


1
ρ

, (15)

H⇒

t∏
o⋎

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

ρ∏
l=1

uil

)
1

Cρ
o⋎


1
ρ

 ≤

t∏
o⋎

1 −

 ∑
1<i1<...<o⋎

ρ∏
l=1

uil

Cρ
o⋎


1
ρ


Now, we can get

Qu(ρ) =

1 −

 t∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎


1
ρ




1
t


≥


1 −


t∏
o⋎

1 −

 ∑
1<i1<...<o⋎

ρ∏
l=1

uil

Cρ
o⋎


1
ρ




1
t


.

Q
(
min
⋎

o⋎

)
= Q(o) = 1 −

 t∏
o⋎=t

1 −

1 −

 ∏
1<i1<...<0⋎

(
1 −

o∏
l=1

uil

)
1

Co⋎o⋎


1
ø⋎



1
t

Q(o) = 1 −

 t∏
o⋎=1

1 −

(
o∏
l=1

uil

) 1
o


1
t

.
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where t denotes the number of categories, ρ is a parame-
ter, ρ = 1, 2, . . . , o⋎, o⋎ denotes the number of criteria
in category t⋎,

(
k1, k2, . . . , kρ

)
includes all the ρ-tuples

of (1, 2, . . . , o⋎), Cρ
o⋎ expresses the binomial coefficient,

whose expression is Cρ
o⋎ =

o⋎!

ρ!(o⋎−ρ)!
and wl ≥ 0 show the

weight satisfying
m∑
l=1

wl=1.

Theorem 8: For given IHFEs Ji (1, 2, . . . , n). The aggre-
gated result of formula citation is still IHFEs, characterized
as below:

Proof: Based on the lines of Theorem 1, one can easily
prove it.
Theorem 9 (Idempotincy): If the domain of discourse

of given IHFEs Ji (i=1,2,. . . ,n) are same i.e., Ji = J

min
{
IHFPMSM (ρ) (J1, J2, . . . , Jn)

}
= IHFPMSM

(min
⋎

{o⋎})
(J1, J2, . . . , Jn) .

=

⋃
uil∈Jil ,
vij∈Jil


1 −

 t∏
⋎=1

( ∏
1<i1<...<o⋎

(
1 − uij

)) 1
o⋎


1
t

,

 t∏
⋎=1

( ∏
1<i1<...<0⋎

(
vij
)) 1

⋎


1
t


IHFPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 1∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎

) 1
ρ




1
1

,

 1∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(1 − vil)
)) 1

Cρ
o⋎


1
ρ




1
1



=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

uil

)) 1
Cρ
o⋎

) 1
ρ

,

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(1 − vil)
)) 1

Cρ
o⋎


1
ρ


(11)

IHFPMSM (1) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 1∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

1∏
l=1

uil

)) 1
C1o⋎

) 1
1




1
1

,

 1∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

1∏
l=1

(1 − vil)

)) 1
C1o⋎


1
1




1
1


=

⋃
ui1 ,pi1∈Ji1 ,

vi1 ,pi1∈Ji1

 1 −

( ∏
1<i1<o⋎

(
1 − ui1

)) 1
C1o⋎ ,

( ∏
1<i1<o⋎

(
1 −

(
1 − vi1

))) 1
C1o⋎

 let (i1 = k)

=

⋃
ui1 ,pi1∈Ji1 ,

vi1 ,pi1∈Ji1

{
1 −

( o⋎∏
k=1

(
1 − uk

)) 1
o⋎

,

( o⋎∏
k=1

vk

) 1
o⋎

}
(12)
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(i=1,2,. . . ,n), Then

IHFWPMSM (ρ) (J1, J2, . . . , Jn) = J (17)

Theorem 10 (Monotonicity): let Ji = (ui, vi) and J′
i =

(u′
i, v

′
i) are the two domain of discourse of IHFEs, for

(i=1,2,. . . ,n) such that ui ≥ u′
i and vi ≤ v′

i all (ui, vi) ∈ Ji
and (u′

i, v
′
i) ∈ J′

i, then

IHFWPMSM (ρ) (J1, J2, . . . , Jn)

≥ IHFWPMSM (ρ) (J′

1, J
′

2, . . . , Jn
)

(18)

Theorem 11 (Boundedness): Let Ji be the domain of dis-
course of IHFEs for i=1,2,. . . ,n and J−

= min
i

Ji and J+
=

max
i

Ji

J−
≤ IHFWPMSM (ρ) (J1, J2, . . . , Jn) ≤ J+. (19)

Theorem 12 (Parameter Monotonicity): Let Ji be the
domain of discourse of IHFEs for i=1,2,. . . ,n and ρ =

1,2,. . . ,min
⋎

o⋎ As ρ decrease the IHFWPMSM operator
increase monotonically.
Theorem 13: For given range of IHFEs Ji(i =

1, 2, . . . , n), l = 1, 2, . . . ,min
⋎

o⋎. Then

max
{
IHFWPMSM (ρ) (J1, J2, . . . , Jn)

}
= IHFWPMSM (1) (J1, J2, . . . , Jn)

We now examine numerous peculiar instances of the
IHFPMSM operator concerning various parameter l values.
Case 1: Consider there is only one category t1 and number

of sets in t1 = n and parameter ρ based on the
IHFWPMSM operator, we have which is reduced to
the IHF MSM operator.

IHFPMSM (2) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 1∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

2∏
l=1

uil

)) 1
C1o⋎

) 1
2




1
1

,

 1∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

2∏
l=1

(1 − vil)

)) 1
C1o⋎


1
2




1
1



=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( ∏
1<i1<i2<o⋎

(
1 − ui1ui2

)) 1
C2o⋎

) 1
2

,

1 −

1 −

( ∏
1<i1<i2<o⋎

(
1 −

(
1 − vi1vi2

))) 1
C2o⋎


1
2



=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( ∏
1<i1<i2<o⋎

(
1 − ui1ui2

)) 2
o⋎(o⋎−1)

) 1
2

,

1 −

1 −

( ∏
1<i1<i2<o⋎

(
vi1vi2

)) 2
o⋎(o⋎−1)


1
2



=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( o⋎∏
i1,i2=1;i1=i2

(
1 − ui1ui2

)) 1
2 . 2

o⋎(o⋎−1)
) 1

2

,

1 −

1 −

(
o⋎∏

i1,i2=1;i1=i2

(
vi1vi2

)) 1
2 . 2

o⋎(o⋎−1)


1
2



=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( o⋎∏
i1,i2=1;i1=i2

(
1 − ui1ui2

)) 1
o⋎(o⋎−1)

) 1
2

,

1 −

1 −

(
o⋎∏

i1,i2=1;i1=i2

(
vi1vi2

)) 1
o⋎(o⋎−1)


1
2


, (13)
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Case 2: Consider there is only one category t = 1 and
ρ = 1 based on the IHFWPMSM operator, we have
which is reduced to intuitionistic hesitant weighted
averaging operator.

Case 3: Consider there is only one category t = 1 and
ρ = 2 based on the IHFWPMSM operator, we have
which is reduced to IHF weighted Bonferroni mean
operator DHFWBM (1,1) (J1, J2, . . . , Jn).

Case 4: Consider there is only one category t = 1 and ρ =

o⋎ based on the IHFWPMSM operator, we have

which is reduced to dual hesitant fuzzy weighted
geometric mean operator.

IV. TECHNIQUE FOR SOLVING DECISION-MAKING
PROBLEMS BASED ON IHFWPMSM OPERATORS
This part is intended to organize theMCDM approach around
newly emerging IHF operators. Let R= {R1,R2, . . . ,Rm} be
the alternatives set for each choice, S = {S1, S2, . . . , Sn}
be the set of choices, and w = (w1, w2, . . . ,wn) be the
weight vector of the criteria set S. For

∑n
k=1 wk = 1 and

IHFPMSM (n) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 1∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

o⋎∏
l=1

uil

)) 1
Co⋎o⋎

) 1
o⋎




1
1

,

 1∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

o⋎∏
l=1

(1 − vil)
)) 1

Co⋎o⋎


1
o⋎




1
1


=

⋃
uil∈Jil ,vij∈Jil

{(
1 −

(
1 −

o⋎∏
l=1

uil

)) 1
o⋎

, 1 −

(
1 −

(
1 −

ρ∏
l=1

(1 − vil)
)) 1

ρ

}

=

⋃
uil∈Jil ,vij∈Jil

{(
1 −

(
1 −

o⋎∏
l=1

uil

)) 1
o⋎

, 1 −

(
ρ∏
l=1

(1 − vil)
) 1

o⋎

}
. (14)

IHFPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 2∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

2∏
l=1

uil

)) 1
C2o⋎

) 1
2




1
2

,

 2∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

2∏
l=1

(1 − vil)

)) 1
C2o⋎


1
2




1
2


=


{
0.3737, 0.7373.0.4672, 0.3737, 0.8246, 0.9264, 0.8507, 0.8246,
0.4241, 0.7584, 0.5100, 0.4241, 0.3937, 0.7456, 0.4846, 0.3937

}
,{

0.0563, 0.1346, 0.1181, 0.0808, 0.0736, 0.1759, 0.1543, 0.1055
}


IHFWPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 t∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − (1 − uil)

wil
))) 1

Cρ
o⋎

) 1
ρ




1
t

,

 t∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vwil

il

))) 1
Cρ
o⋎


1
ρ




1
t


. (16)
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wk ∈ [0, 1], the weight vector w is used to indicate the
relative weights of several criteria in the decision-making
process. DMs assess each choice Ri under the criteria Sl in
terms of IHFE Jil . Suppose that S = {S1, S2, . . . , Sm} is
partitioned into t distinct categories {P1,P2, . . . ,Pt }. There
are connections among criteria within the same category and
none between criteria within other categories. The instances

that follow illustrate how the main phases of the proposed
approach are demonstrated as follows:

Step 1:Formation of IHF conclusion matrix: With regard
to the aforementioned circumstance, the MCDM
problem may be formulated in the ensuing creation
of a conclusion matrix:

min
{
IHFWPMSM (ρ) (J1, J2, . . . , Jn)

}
= IHFWPMSM

(min
⋎

{o⋎})
(J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − (1 − uil)

wil
))) 1

Cρ
o⋎

) 1
ρ

,1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vwil

il

))) 1
Cρ
o⋎


1
ρ




,

IHFPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 1∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − (1 − uil)

wil
))) 1

Cρ
o⋎

) 1
ρ




1
1

,

 1∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vwil

il

))) 1
Cρ
o⋎


1
ρ




1
1


.

=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − (1 − uil)

wil
))) 1

Cρ
o⋎

) 1
ρ

,

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vwil

il

))) 1
Cρ
o⋎


1
ρ


, (20)

IHFPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 1∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

1∏
l=1

(
1 − (1 − uil)

wil
))) 1

C1o⋎

) 1
1




1
1

,

 1∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

1∏
l=1

(
1 − vwil

il

))) 1
C1o⋎


1
1




1
1


.

=

⋃
uil∈Jil ,vij∈Jil

 1 −

( ∏
1<i1<...<o⋎

(1 − uil)
wil

) 1
o⋎

,

( ∏
1<i1<...<o⋎

(
vwil
il

)) 1
o⋎

 , (21)
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Km×n =



J11 . . . J1g . . . J1n
...

. . .
...

. . .
...

Ji1 . . . Jig . . . Jin
...

. . .
...

. . .
...

Jm1 . . . Jmg . . . Jmn

 (24)

Step 2:Normality: At this step, the IHF assessment matrix
Kp×r is changed in accordance with a few benefit
and expense criteria. These two criteria respond
in opposing ways, meaning that when the value
increases, the benefit criterion performs best, and
the cost criterion performs badly. As a result,

IHFPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 1∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

2∏
l=1

(
1 − (1 − uil)

wil
))) 1

C2o⋎

) 1
2




1
1

,

 1∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

2∏
l=1

(
1 − vwil

il

))) 1
C2o⋎


1
2




1
1


.

=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( ∏
1<i1<i2<o⋎

(
(1 − ui1 )

wi1 (1 − ui2 )
wi2

) 2
n(n−1)

) 1
2

,

1 −

1 −

( ∏
1<i1<i2<o⋎

(
v
wi1
i1

v
wi2
i2

)) 2
n(n−1)


1
2



=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( o⋎∏
i1,i2=1;i1=i2

(
(1 − ui1 )

wi1 (1 − ui2 )
wi2

) 1
2

2
o⋎(o⋎−1)

) 1
2

,

1 −

1 −

(
o⋎∏

i1,i2=1;i1=i2

(
v
wi1
i1

v
wi2
i2

)) 1
2 . 2

o⋎(o⋎−1)


1
2



=

⋃
uil∈Jil ,vij∈Jil



(
1 −

( o⋎∏
i1,i2=1;i1=i2

(
(1 − ui1 )

wi1 (1 − ui2 )
wi2

) 1
o⋎(o⋎−1)

) 1
2

,

1 −

1 −

(
o⋎∏

i1,i2=1;i1=i2

(
v
wi1
i1

v
wi2
i2

)) 1
o⋎(o⋎−1)


1
2


, (22)

IHFPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 1∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

o⋎∏
l=1

(
1 − (1 − uil)

wil
))) 1

Co⋎o⋎

) 1
o⋎




1
1

,

 1∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

o⋎∏
l=1

(
1 − vwil

il

))) 1
Co⋎o⋎


1
o⋎




1
1


.

=

⋃
uil∈Jil ,vij∈Jil

{( o⋎∏
l=1

(
1 − (1 − uil)

wil
)) 1

o⋎
, 1 −

( o⋎∏
l=1

(
1 − vwil

il

)) 1
o⋎

}

=

⋃
uil∈Jil ,vij∈Jil

{( o⋎∏
l=1

(
1 − (1 − uil)

wil
)) 1

o⋎
, 1 −

( o⋎∏
l=1

(
1 − vwil

il

)) 1
o⋎

}
, (23)
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FIGURE 1. Flowchart of the proposed method.

we convert the cost criteria into the benefit criteria.
employing the next normality method to make sure
all requirements are met.

J′
ig =

{
Jig, Sg is a befit criterion,(
Jig
)c

, Sg is cost criteria.
(25)

Step 3:Aggregation: The presented IHFWPMSM method
is used to obtain the aggregated assessment score of
every alternative Ri(i = 1, 2, . . . ,m) as illustrated
below:

where t denotes the number of categories, ρ is a parame-
ter, ρ = 1, 2, . . . , o⋎, o⋎ denotes the number of criteria
in category t⋎,

(
k1, k2, . . . , kρ

)
includes all the ρ-tuples

of (1, 2, . . . , o⋎), Cρ
o⋎ expresses the binomial coefficient,

whose expression is Cρ
o⋎ =

o⋎!

ρ!(o⋎−ρ)!
and wg ≥ 0 is

the weight of the criteria Sg (g=1,2,. . . ,n) and J′
ig nor-

malized value of Jig (g=1,2,. . . ,n) which we take from
Step 2.

Step 4:Score values: From Eq. (2), the score value of the
concluding IHFEs Jig (g=1,2,. . . ,n) are found.

Step 5:Ordering of alternatives: In this final stage, the
options are sorted as per their score values, and the
matching best solution is chosen.

The flowchart of the propound approach is depicted in
Fig. 1.

V. ILLUSTRATIVE EXAMPLE
The practical prime example of choosing a good location for
establishing a new shoe company is described in this part,
followed by an essential for optimizing.

A. EXAMPLE
Suppose a shoe company intends to introduce a new brand
within a specific city. In that case, it is recommended that
the company identifies four distinct locations that could serve
as potential alternatives, denoted as Ri(i = 1, 2, . . . , 4).
The company decides to evaluate the choices based on the
following four aspects, all of which are present, taking into
account the company’s strategic advantages: the price of an
item S1, location of the building S2, people living standard S3,
quality of an item S4. The equivalent weighted vector for the
criterion isw=(0.3, 0.2, 0.3, 0.2). If the criteria S1, S2, S3, and
S4, are separated into two distinct groups, T1 and T2, where
T1 = {S1, S3} and T2 = {S2, S4}, then any two criteria within
each category are related to one another, with l1 = 2 and
l2 = 2. The authorized specialists use the four aforementioned
criteria and their accompanying weightings to assess four
options regarding IHFEs. The DM’s assessment information
is listed in Table 1.
The following lists the stages that make up the proposed

method.
Step 1: The provided IHF assessment information is given

in Table 1.
Step 2: According to Eq. (25), the original data is normal-

ized and is shown in Table 2.
Step 3: Now in Eq. (26), if we let ρ = 2 then the

aggregated values of each alternative Ri(i = 1, 2, . . . ,m) can
be obtain as:

Step 4: Using Eq. (4), the score value of each alternatives
Ri(i = 1, 2, . . . 4) can be fined as presented below: S(R1) =

−0.6086, S(R2) = −0.6448,S(R3) = −0.7007, S(R4) =

−0.5405.
Step 5: According to the derived values, the final ranking

can be determined R4 > R1 > R2 > R3. Thus, the best place
for launching a shoe company is R4.

The derived ranking results are shown graphicly in Fig. 2.

VI. COMPARATIVE STUDY
In the following section, comparison analysis with other exis-
tent aggregation operators including hesitant fuzzy weighted
partition Maclaurin symmetric mean (HFWPMSM) opera-
tor [54], Einstein dual hesitant fuzzy weighted averaging
(EDHFWA) operator [55], Einstein dual hesitant fuzzy
weighted geometric (EDHFWG) operator [55], and Frank
hybrid weighted arithmatic average (FHWAA) [56] opera-
tor are undertaken to illustrate the benefits of the presented
method. The final results obtained from employing all of
these aggregation operators to the preceding example are
displayed in Table 3 and Fig. 3.
According to the results presented in Table 3, the approach

provided in the present article and the approaches established
on EDHFWA [55] and FHWAA [56] operators yield the
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TABLE 1. IHF evaluation matrix.

identical ranking of the four alternatives. This demonstrates
the reliability of the operator designed in the present research.
The list of choices obtained from HFWPMSM [54] and

EDHFWG [55] operators is R4 > R2 > R1 > R3, where
the positions of R2 and R1 varied from those obtained by the
suggested approach, but R4 is still the most suitable option.

IHFWPMSM (ρ) (J1, J2, . . . , Jn)

=

⋃
uil∈Jil ,vij∈Jil



1 −

 t∏
⋎=1

1 −

(
1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − (1 − uil)

wil
))) 1

Cρ
o⋎

) 1
ρ




1
t

,

 t∏
⋎=1

1 −

1 −

( ∏
1<i1<...<o⋎

(
1 −

ρ∏
l=1

(
1 − vwil

il

))) 1
Cρ
o⋎


1
ρ




1
t


. (26)

R1 =



{
0.0657, 0.0708, 0.0865, 0.0973, 0.0992, 0.1023,
0.1110, 0.1176, 0.1297, 0.1411, 0.1480, 0.1769

}
,

0.6629, 0.7077, 0.6890, 0.7263, 0.6787,
0.7245, 0.7053, 0.7436, 0.6955, 0.7425,
0.7228, 0.7620, 0.7070, 0.7548, 0.7348,

0.7747





R2 =




0.0635, 0.0871, 0.0767, 0.1083, 0.0841, 0.1072,
0.0969, 0.1278, 0.0733, 0.0967, 0.0863, 0.1176,

0.1036, 0.1262, 0.1161, 0.1464

 ,
0.7219, 0.7515, 0.7379, 0.7635, 0.7275, 0.7572,

0.7436, 0.7694, 0.6883, 0.7165, 0.7036, 0.7280, 0.7420,
0.7725, 0.7585, 0.7848, 0.7092, 0.7383, 0.7250, 0.7501,

0.7556, 0.7865, 0.7723, 0.7991





R3 =




0.0541, 0.0577, 0.0615, 0.0657, 0.0709, 0.0766, 0.0694, 0.0729,
0.0767, 0.0808, 0.0859, 0.0915, 0.0667, 0.0702, 0.0740, 0.0781,
0.0833, 0.0889, 0.0891, 0.0926, 0.0963, 0.1003, 0.1053, 0.1108,
0.0771, 0.0806, 0.0844, 0.0884, 0.0935, 0.0991, 0.1056, 0.1090,

0.1127, 0.1166, 0.1215, 0.1269

 ,

{
0.7694, 0.7865, 0.7845, 0.7994, 0.7991, 0.8117,
0.7827, 0.8002, 0.7982, 0.8133, 0.8130, 0.8258

}



R4 =



0.1017, 0.1171, 0.1119, 0.1304, 0.1358, 0.1506, 0.1456, 0.1634,
0.1470, 0.1616, 0.1566, 0.1742, 0.1239, 0.1390, 0.1339, 0.1519,
0.1756, 0.1897, 0.1850, 0.2019, 0.1927, 0.2065, 0.2019, 0.2185

 ,{
0.6454, 0.6656, 0.6912, 0.7042, 0.6891, 0.7106, 0.7379, 0.7519

}


VOLUME 11, 2023 121939



M. Azeem et al.: IHFPMSM Aggregation Operators-Based Algorithm and Its Application

TABLE 2. Normalized IHF decision matrix.

FIGURE 2. Ranking results obtained via proposed aggregation operator.

TABLE 3. Comparison with the existing AOs.

TABLE 4. Characteristic comparison of different AOs.

According to the conducted analysis, the propound operators
have the following merits over the existing ones:

i). Our devisedMCDMmethod andAli’sMCDMapproach
[54] can capture interrelationships between criteria and can
divide criteria into several groups, whereas the existing
approaches [55], [56] does not divide criteria into groups.
In addition, these methods do not account for correlations
between criteria.

ii). Although Ali’s [54] approach is capable of dividing
the criteria into partitions, it only considers the membership

portion and ignores the non-membership portion, result-
ing in a significant loss of information. The developed
operators, on the other hand, are based on a dual hesi-
tant fuzzy context and are able to capture all conceivable
information.

iii). The proposed operators have two parameters t and
ρ, which gives DMs greater flexibility and robustness in
selecting the appropriate ρ based on their risk preferences.
Additionally, several existing operators are special cases of
the developed operator for specific parameter values. Thus,
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FIGURE 3. Ranking results obtained via different aggregation operators.

the developed operators are more comprehensive and more
capable of efficiently tackling MCDM problems.

iv). The scores S(Ri)(i = 1, 2, . . . , 4) presented in Table 3
indicate that the proposed operator has greater ability for
discrimination among alternatives than the prevailing oper-
ators [55], [56].

In addition, Table 4 compares the characteristics of our
designed AO with those of the existing ones.

A. VALIDITY TEST
The following test requirements, supported by Wang and
Triantaphyllou [57], are met to show the feasibility of our
technique in an evolving working environment.

Test criterion 1: ‘‘If we substitute the estimation ratings
of the non-optimal choice with a worse choice, then the most
favorable choice ought to remain the same, assuming the
relative weighted condition stays constant.’’

Test criterion 2: ‘‘Procedure ought to be transitive in
nature.’’

Test criterion 3: ‘‘The overall ordering of the possibilities
ought to be similar to the ordering of the un-decomposed one
when a given problem has been split into fewer alternatives
and a comparable MCDM methodology has been used.’’

1) VALIDITY CHECK WITH CRITERION 1
Given that the suggested strategy’s ranking is R4 > R1 >

R2 > R3, the worst alternative R′

3 is used in place of the
suboptimal option R3 to assess if our approach is similar
under evaluate Criteria 1 And the four consideration criteria

are written as follows for the rating value of

R′

3 =


({0.1, 0.3} , {0.5, 0.6}) ,

({0.1} , {0.4, 0.5, 0.6}) ,

({0.3, 0.6} , {0.2, 0.4}) ,

({0.5, 0.6} , {0.1, 0.2})

 ,

These findings led to the use of the suggested strategy, which
resulted in the final score values of the options being as
follows: S(R′

3) = −0.7071 S(R1) = −0.6086, S(R2) =

−0.6448, S(R4) = −0.5405. As a result, the ranking order
is R4 > R1 > R2 > R′

3, with the best alternative
remaining the same as the suggested strategy. Consequently,
our strategy produces consistent outcomes in relation to test
criterion 1.

2) VALIDITY CHECK WITH CRITERIA 2 AND 3
The splintered MCDM sub-problems are designated as A1 =

{R2,R3,R4}, A2 = {R1,R3,R2} and A3 = {R2,R4,R1}
the score values of each alternatives are S(R1) = −0.6086,
S(R2) = −0.6448,S(R3) = −0.7007, S(R4) = −0.5405 to
determine validity in accordance with criteria 2 and 3. Then,
using the stated technique, their ranking is determined as
follows: As according to the subset A1, A2 and A3 have the
ranking order R4 > R2 > R3, R1 > R2 > R3 and R4 >

R1 > R2, respectively. When all of them are combined, the
total ranking is R4 > R1 > R2 > R3, which is identical
to the outcomes of the initial MADM issue that was sug-
gested. Hence it satisfies the transitive property. The proposed
strategy therefore, proves effective when tested against test
criteria 2 and 3.
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VII. CONCLUSION
Since IHFS is one of the best tools for coping with complex
and uncertain information, we studied an MCDM strategy
within an IHF setting in the present research. We originated
IHFPMSM and IHFWPMSM operators to combine IHF data
precisely. Several characteristics of the framed operators are
examined in depth, and it is demonstrated that some present
operators are special instances of the provided operators.
The presented operators consider not only the connection
between criteria but also their partitioned relation. Moreover,
we devised an MCDM strategy relying on the introduced
IHF operators. Using the aforementioned operators, we can
divide the criteria into various groups that measure the rela-
tionship among various criteria that fall within the same
group. In addition, a numerical illustration of a shoe com-
pany problem is provided to demonstrate the Validity and
applicability of the proposed method. The devised method-
ology was then compared to existing methods. From the
comparative analysis, we determined that the proposed
method is more accurate, appropriate for handling uncer-
tain data, and capable of applying multiple partitions among
criteria.

In the future, we will use the developed method for other
real-world decision challenges, such as two-sided matching
problems [58], medical diagnostics [59], and shipping indus-
try 4.0 domains [60], etc.
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