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ABSTRACT AutomaticModulation Classification (AMC) is a technique used to identify signal modulations
in applications like IoT devices, cognitive radar, software-defined radio, and electronic warfare. These appli-
cations could be applied to IoT devices. With future wide applications of IoT devices, AMC algorithms need
to bemore compact yet suitable for embedded deviceswith limited resources and remain acceptable accuracy.
Although current AMC algorithms deliver high accuracy, they require substantial computing power, making
them unsuitable for IoT devices. This paper introduces the novel Chessboard-based Automatic Modulation
Classification (CAMC) algorithm, which has dramatically high accuracy. Test results reveal that CAMC
achieves 99%∗ accuracy under a 3dB SNR condition and 100% above 5dB SNR. Meanwhile, this algorithm
is scalable and demands less computing power. It offers better accuracy results compared to state-of-the-art
AMCalgorithms, classifyingmainstreammodulations in IoT devices like BPSK,QPSK, 8PSK, and 16QAM,
but requires less computing power than existing algorithms. Additionally, CAMC is hardware-friendly due
to its inherent parallelism and scalability. The novelty of this paper is to classify 4 different modulations in
a low-computation-loading required and hardware-friendly way and achieve a high accuracy of over 99%∗

above SNR of 3dB. (∗ Accuracy that most of the time could reach)

INDEX TERMS Communications technology, classification algorithms, modulation, Internet of Things,
parallel algorithms, image classification, software radio, phase modulation.

I. INTRODUCTION
Automaticmodulation classification (AMC) serves as an
intermediary process between signal detection and demod-
ulation, enabling the identification of signals with unknown
modulations [1]. AMC finds applications in radio frequency
(RF) signal processing fields, including cognitive radar and
electronic warfare, as well as mobile communication systems
such as software-defined radio (SDR) [2], [3]. By addressing
high-density spectrum issues in communication environ-
ments, AMC enhances the efficiency of demodulating signals
with unknown modulations, thereby alleviating spectrum
congestion and improving overall system performance [4],
[5]. Based on the advantages of AMC, now it is a trend that
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AMC-related technologies are being applied to IoT devices.
Due to the large quantity of IoT devices in this world, the
spectrum limits problem is not ignorable. Therefore, more
communication-based technologies like cognitive radar and
SDR, are now applied to an IoT device [6], [7].

AMC methodologies can be broadly categorized into
two main approaches: feature-based approach and decision-
theoretic approach. In the feature-based approach, features
are first extracted from the signals, and then the modu-
lation is classified based on these features. This method
is straightforward and does not necessitate prior knowl-
edge of communication or modulation. On the other hand,
the decision-theoretic approach demands comprehensive
communication knowledge and detailed information, such
as phase jitter, erroneous channel state information, and
frequency offset. This method involves maximizing the
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likelihood information before using it to classify the mod-
ulation [2]. Recently, traditional AMC methods have been
integrated with deep learning applications to achieve higher
accuracy, as demonstrated in [4] and [8]. In [4], constellation
and spider images serve as input for a Convolutional Neural
Network (CNN) to classify the signal via the constellation
image.

In recent years, Software-Defined Radio (SDR) has gained
popularity, with ARM(Advanced RISC Machine)-based,
DSP(Digital Signal Processor)-based, and FPGA(Field Pro-
grammable Gate Arrays)-based SDRs available. However,
ARM-based andDSP-based SDRsmay not meet the stringent
timing requirements of future communication systems due to
shrinking symbol time windows. Consequently, FPGAs, with
their high sampling frequency capabilities [9], [10], could
become the only viable option. Thus, it is essential to consider
hardware implementation aspects of AMC algorithms during
the design stage. Although the algorithm in [11] achieves
nearly 100% accuracy even at −2dB of SNR, its complexity
poses challenges for FPGA implementation due to the loga-
rithmic, root, and division operations involved.

Performing operations like logarithms on FPGAs is
resource-intensive and power-consuming [12]. Additionally,
limited reconfigurable hardware capability for floating-point
calculations may decrease accuracy during implementation.
Utilizing lookup tables can attain high accuracy but signif-
icantly increases hardware resource usage and necessitates
hardware expertise [13], [14].

Deep-learning-aided methodologies can enhance accu-
racy but exhibit drawbacks, such as being computationally
intensive, energy-consuming, and less practical in real-life
scenarios [11]. Furthermore, generated features are not
easily explainable, hindering optimization based on domain-
specific knowledge. Existing AMC algorithms exhibit an
imbalance between complexity and accuracy.

To sum up, based on the related work mentioned above, the
problems that remain in the state-of-the-art designs are listed
below:

1) Complicated calculations (decision-theoretic method)
or a large number of calculations (deep-learning-aided
method) are required to achieve high accuracy, which
leads to a large amount of computation loading.

2) Algorithms mentioned are hardware-friendly and
could lead to accuracy degeneration when applied to
hardware.

3) Existing work consumes a long processing time.

With more stringent speed and accuracy requirements in
future communication systems, we propose a novel, low-
complexity AMC algorithm capable of accurately detecting
four mainstream modulations: BPSK, QPSK, 8PSK, and
16QAM. These four modulations are chosen since they
are still widely used in the IoT communication stan-
dards, including WIGHTLESS-P and WEIGHTLESS-W
[15]. By choosing the feature-based method combined with
a hardware-friendly algorithm, calculation loading could be

FIGURE 1. BPSK scatter plot under different SNR (a) 20 dB (b) 5 dB
(c) −2 dB.

eliminated, and it could keep a better performance when
applied to a hardware platform. Our inherently parallel,
scalable, and hardware-friendly algorithm achieves accuracy
comparable to existing methods while significantly reducing
complexity. Detailed contributions are as follows:

1. We propose a Chessboard-based AMC (CAMC)
algorithm which has competitive accuracy as the existing
algorithms. The accuracy could reach 99%when SNR is over
3dB and 100% when SNR is over 5dB.

2. This CAMC algorithm could reach 97% accuracy under
2000 of test symbols and perform with good noise-tolerant
ability. When the number of test symbols increases, accuracy
will also increase.

3. The algorithm requires less computing complexity com-
pared with other published works.

The rest of the paper is organized as follows: In
Section II, we provide a detailed description of the chessboard
algorithm. In Section III, the simulation results from MAT-
LAB and real-world data, comparisons with other papers are
provided. In Section IV, the conclusion and future perspective
are indicated.

II. ALGORITHM AND ANALYSIS
The initiation of the AMC algorithm typically begins with the
constellation graph, which provides coordinates containing
both real and imaginary parts of a signal, as exemplified by
the Constellation Image (CI) method in [4]. As illustrated in
Figure 1 after phase lock, high SNR signals can be manually
distinguished by observing the distinct characteristics of vari-
ous modulations, such as the locations where most points are
concentrated. Signals are collected assuming the receiver is
in symbol phase-lock, or the frequency error is sufficiently
low so that the constellation rotation over the analysis period
is less than a symbol boundary.

Because of the noise, constellation points are distributed
around the actual constellation points according to the noise
level. To facilitate a more straightforward yet effective dis-
tinction between different constellation points, we introduce
the chessboard concept. As depicted in Figure 2, we first
use small grids to divide the constellation plane and count
the number of points located within each square, giving the
constellation plane a chessboard-like appearance. Grid_scale
is the side length figure of the squares used to divide the
constellation graph as shown in Figure 2. Subsequently,
the CAMC methodology quantifies the number of points in
each square, providing insight into the points’ distribution.
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FIGURE 2. Concept of CAMC.

This information is then transformed into a matrix. Finally,
by applying an inner product between the chessboard matri-
ces of the symbols and the testing signal, we can maximize
the similarity extent between the symbols and testing input
modulation; larger results indicate a higher likelihood of the
same modulation.

The detailed process of the CAMC algorithm is repre-
sented in Figure 3 and the equations will be analyzed below:

Chessboard Matrix Generation Process:
First, the initially set XY_scale (XYS) and grid_scale (GS)

are used to generate a square matrix (M). The column/row
size (S) of the matrix will be:

S = XYS/GS (1)

Then, I/Q pairs as input data will be inserted as I and Q
respectively. Before passing to the next procedure, I and Q
need to meet the if statement below:

If(∗|I| <= XYS)&&(| Q| <= XYS)

After the if statement above, I and Q will be transformed to
coordinate data of the squarematrix C_I and C_Q. C_I will be
the row and C_Q will be the column. R() refers to the round
function.

C_I = R(I/GS) (2)

C_Q = R(Q/GS) (3)

At last, the square matrix M will be updated by the input:

M (C_I,C_Q) = M (C_I ,C_Q) +1 (4)

The above process is for a single pair of I/Q. The total
number of I/Q pairs could be decided by changing the number
of symbols in the codes.

A. MATRIX INNER PRODUCTION PROCESS
After Matrix Generation Process, 8 matrices will be gener-
ated: 4 of which are from training data for BPSK, QPSK,
8PSK and 16QAM respectively and 4 input matrices with
different angles of rotation. The equation of Inner production
IP will be shown below:

IP(A,B) =

S∑
i=0,j=0

A(i, j) ∗ B(i, j) (5)

The inner production results will be gathered as below:

R = IP(B_M, I_M) (6)

FIGURE 3. Flow Chart of CAMC Algorithm (a) Training (b) Inference.

Finally, the largest results among the 16 will be picked up
as the final result (FR). And the modulation that refers to the
FR will be the classification result.

FR = max(Among All R) (7)

To further improve the accuracy of this CAMC algorithm, a
2-pass classification method is applied. When the first clas-
sification is incorrect, the algorithm will pick up the second
largest results which is not the same modulation type as the
first classification.

The macro view of the CAMC process is shown below:
The chessboard process could be divided into 2 steps:

‘‘training’’ and ‘‘inference’’. It will begin with the training
symbols matrix generation, and then proceed to find the Inner
product between the 4 input matrices (including rotation data)
and 4 different modulation matrices. The modulation with the
largest result will be the prediction.

B. TRAINING PROCESS
Before introducing the training process, it is essential to
define the concept of depth. Depth refers to the number of
points located in a single square on the chessboard, whichwill
later be converted into an element in the chessboard matrix.
First, users set a customized grid scale, which influences the
accuracy and computational load of the results. The grid is
then used to divide the constellation plane into squares. Sub-
sequently, the algorithm counts the number of points located
in the squares, representing the depths. The grid scale can
be defined by users according to their needs; however, rec-
ommended numbers for hardware-friendly purposes include
0.1, 1/4, 1/8, and 1/16, among others. These numbers can
be transferred into hardware using standard multipliers and
shifters without imposing excessive precision requirements
on the number system.

After setting the grid scale, we employ MATLAB to gen-
erate modulation data and obtain 4 classification matrices of
BPSK, QPSK, 8PSK, and 16QAM, respectively. For each
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FIGURE 4. Parallel calculations in chessboard generation.

matrix, we generate a predetermined number of constellation
points (defined by the users) with a fixed SNR. The process of
creating these matrices serves as the training process for the
algorithm, establishing a number in the classification matri-
ces for the subsequent stage, referred to as the ‘‘inference’’
stage.

C. INFERENCE PROCESS
After completing the training process, we can utilize the gen-
eratedmatrices to classify a signal with unknownmodulation.

After receiving input symbols, symbols will be rotated
45◦, −45◦ and 90◦ respectively. Then these 4 sets of data
(including non-rotation data) will proceed to generate 4 input
matrices by using the same depth concept as in the training
process.

Then, the inner productions between the input matrices
and training matrices are calculated to maximize the differ-
ence. Each input matrix will proceed with inner production
with training matrices of BPSK, QPSK, 8PSK, and 16QAM
respectively and 16 results will be gathered in total. The
modulation with the largest output is identified as the clas-
sification result. Furthermore, to improve the accuracy of
CAMC, a 2-pass method is applied. If the first classification
is wrong, then the algorithm will pick up the second-largest
result whose modulation type is different from the first clas-
sification the result.

During this process, the number of input constellation
points is also scalable to accommodate different demands.
For higher accuracy, users can opt for a larger number
of input data; for considerations of high speed and lower
power-resource per classification, a smaller amount of data
can be inserted.

D. PARALLELISM
This algorithm is well-suited for parallel implementation
because there is no data dependency when performing all the
inner products. Figure 4 and Figure 5 separately illustrate the
parallel approach in chessboard generation and matrix inner
product computation.

FIGURE 5. Parallel calculations in the matrix inner-product.

Figure 4 shows the generationN chessboards with the same
size to accumulate the depth and add all depths in chessboards
together after the process. In this way, we could shorten the
processing time to 1/N based on the customized parallelism
degree.

In Figure 5, an example inner product of the matrices is
shown, it shows the inner product being found from whole
matrices. However, as shown in Figure 5, the complete matri-
ces can be decomposed into smaller ones to make the process
parallel. After partial inner products, all results will be added
together to get the classification. E.g., If a larger matrix is
decomposed into N smaller partial matrices, then the total
execution time can be reduced to 1/N of the original.

III. RESULTS AND COMPARISON
A. ACCURACY
MATLAB was employed to generate signals with BPSK,
QPSK, 8PSK, and 16QAM modulation, respectively, using
1000 symbols under 20dB SNR and producing four clas-
sification matrices for each modulation. The accuracy was
evaluated under various SNRs (from 0dB to 20dB), different
grid scales, and varying numbers of input data. The outcomes
were compared with those from other published works.

Table 1 presents the detection accuracy under different
grid scales. Under the condition of 6000 inputs, grid scales
of 0.1, 1/4, 1/8, and 1/16 were tested. The results indicate
that accuracy increases under low SNR conditions of QPSK
classification as the grid scale becomes smaller.

Table 2 shows the classification accuracy under varying
numbers of input signals. The accuracy improves as the num-
ber of input data increases. As the input number increases,
the results become more stable with higher accuracy. Mean-
while, for a large input number, only QPSK input will need
a 2-pass method to classify while when a small number of
inputs are applied, QPSK, 8PSK and 16QAM all need 2-pass
method to classify. A larger number of input data provides the
algorithm with more elements in the matrix, which amplifies
the differences in the results and makes the modulation more
distinguishable.
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TABLE 1. Accuracies under different grid scales.

TABLE 2. Accuracy under different numbers of input symbols.

Figure 6 and Table 3 present comparisons between this
work and other published works [2], [4], and [9]. In Figure 6,
the worst cases are highlighted, while in Table 3, the accuracy
rate for different approaches from the papers is provided
(NA denotes data not mentioned). The results of 6000 input
symbols and a grid scale of 0.1 were used for comparison.
Under high SNR conditions, CAMC performs exception-
ally well, with an accuracy of 100% under SNR conditions
above 5dB.

At 0dB, only QPSK presents a challenge, while other
modulation detections achieve over 100% accuracy. QPSK
classification under a low SNR poses a difficult classification
in other papers because of the similar characteristics between
QPSK and 8PSK. For example, the accuracy of QPSK classi-
fication could not exceed 60% in [4] with the results of 54%
(CI [4]), 57% (GRF [4]) respectively, and lower than 70% in
[2] (69.3% using fixed threshold method).

This issue becomes worse in the CAMC algorithm as the
constellation graphs of QPSK and 8PSK are similar as shown
in Figure 7.

FIGURE 6. Comparisons between this work and other works.

TABLE 3. Comparisons between this work and other works.

FIGURE 7. QPSK and 8PSK constellation graph under 0dB.

Also, after grid_scale division, the QPSK, 8PSK,
QPSK_ 8PSK common elements, and QPSK_8PSK non-
common elements are shown below in Figure 8. From the
figure, we could see that most of the elements in the 2 modu-
lations have the same positions. The same positions elements
are counted to 1631 whereas 8PSK has 2022 elements and
QPSK has 1942 elements in total.

In the CAMC algorithm, an inner production will be pro-
cessed. In the inner product, when an element from anymatrix
is 0, then this pair of elements could be ignored in the calcu-
lation since it gives 0. Therefore, in the CAMC algorithm, the
inner production could be simplified into the ‘‘same position
production with trainingmatrices’’ as in Figure 8. In Figure 9,
red centers are from the training matrix of QPSK while red
and blue centers are from the 8PSK matrix. 4 centers are the
same between these twomatrices. Yellow points indicate 0dB
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FIGURE 8. QPSK, 8PSK, QPSK_ 8PSK common elements, and QPSK_8PSK
non-common elements.

FIGURE 9. Inner production simplification in the CAMC.

FIGURE 10. 45◦ rotation QPSK and 8PSK constellation graphs.

QPSK input constellation graph. Because 6000 symbols are
inserted, all 8 centers will have a similar number of symbols.
Besides, as the rotation input matrix is utilized when the
rotation angle is 45◦ of QPSK, there will not be any common
center with the QPSK training matrix. However, there will
be 8PSK common centers instead, as shown in Figure 10.
Therefore, after inner production, the result of the 8PSK will
be much larger than the QPSK result. It leads to the condition
that all the QPSK signals at 0dB will be classified as 8PSK.
But this could also be optimized. Since all the QPSK will
be classified to 8PSK at 0dB, therefore the result will be a
choice only between 8PSK and QPSK. However, when the
SNR is 3dB, the signal power versus noise ratio is around
2. Under this condition, the difference between QPSK and
8PSK will be enhanced a lot, which leads to a large gap
between accuracies under 0dB and 3dB.

The confusion matrix of this CAMC design (6000 input
symbols, grid scale = 0.1) is shown below with SNR of 3dB,
5dB, 10dB, and 20 dB respectively.

Except for errors caused by noise, synchronization error is
another factor that could influence the signals. It is caused
by delays in the circuits [16]. However, other publications of
AMC applications did not mention and test for synchroniza-
tion errors in recent years, therefore, it is fair that this error
test is not shown in this paper.

Moreover, some lab-gathered (real-world) data are tested
to be classified by the CAMC algorithm. The signals were
generated at mmwave frequencies using a Rhode & Schwarz
SMM100A. They were then transmitted over a cable to be
received by a Keysight PXA N9030B signal analyzer. Below
are the confusion matrices. These real-world lab-gathered
data contain synchronization errors. There are 20000 symbols
for each modulation and are divided into 10 groups (each
group contains 2000 symbols). These groups are inserted into
the CAMC algorithm. The results show that by using the
CAMC algorithm, lab-gathered data could be 100% correctly
classified.

B. COMPUTATION DEMANDS AND HARDWARE FRIENDLY
When implementing our algorithm into hardware with time
and power constraints, it is sometimes necessary to adjust the
algorithm, such as modifying precisions or divisions, which
may result in a sacrifice of precision. However, our algorithm
is hardware-friendly and does not require any modifications.
Additionally, our algorithm is computationally simple and
can meet future challenges of the short time window for
classifications.

The number of operations is counted below in Table 4
Table 5 and Table 6.
In (1), SN is the number of input symbols, XY_scale repre-

sents the larger absolute value of both the real and imaginary
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TABLE 4. Number of operations in input data rotation.

TABLE 5. Number of operations in one matrix generation.

TABLE 6. 4 Matrix inner production operations.

parts of the data). Grid_scale refers to the user-determined
grid scale, while symbol_no indicates the number of input
signal data chosen by the user. The second row demonstrates
a choice between shift or multiplication. If users select a
grid scale of 0.1, then multiplication is used; otherwise, bit-
shifting is employed.

Compared to other related work that utilizes deep
learning or AI-assisted methods, this approach demands
less computing power and holds the potential for high
performance-power efficiency implementation. Furthermore,
this methodology is well-suited for FPGA applications, as it
requires much less and simpler operations. Additionally,
users can choose grid scales of 0.1, 1/4, 1/8, and 1/16, which
can be converted to bit-shifting and multiplication instead of
performing divisions.

IV. CONCLUSION AND FUTURE WORK
In this paper, we propose a Chessboard-based Automatic
Modulation Classification (CAMC) algorithm that employs
a depth concept to automatically classify four modulations:
BPSK, QPSK, 8PSK, and 16QAM. This algorithm offers
scalable variables to accommodate different user require-
ments. The CAMC algorithm is hardware-friendly and can
be easily implemented on FPGA for FPGA-based SDR
applications.

From the test results, this algorithm demonstrates higher
performance compared to other works, particularly in high
SNR conditions.

Meanwhile, for real-world lab-gathered data, this CAMC
algorithm still provides a 100% accurate result.

The algorithm is also scalable, allowing users to adjust
the accuracy by varying the number of input symbols and
using different grid scales for improved classification under
low SNRs.

Compared to other published papers, especially those
employing AI or deep-learning-assisted methods, the pro-
posed algorithm demands significantly less computing power
and holds the potential for low-power implementations.
Additionally, the CAMC algorithm’s simplicity substantially
shortens the design period when transferring it to hardware,
such as FPGAs.

However, there are still some problems that need to be
tackled. The QPSK under 0dB will give 0% accuracy, which
is even below the random guess of 25%. In future work, the
solution of this scenario will be developed, and this algorithm
will be implemented on an FPGA and tested using live data
in the future. Subsequently, it will be integrated into an SDR
to evaluate its functionality and potential in a real-world
scenario.
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