
Received 12 October 2023, accepted 22 October 2023, date of publication 27 October 2023, date of current version 2 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3328171

Natural Image Decay With a Decay
Effects Generator
GUOQING HAO 1,2, SATOSHI IIZUKA 1, KENSHO HARA 2, HIROKATSU KATAOKA 2,
AND KAZUHIRO FUKUI 1, (Member, IEEE)
1Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba 305-0085, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan

Corresponding author: Guoqing Hao (hao_guoqing@cvlab.cs.tsukuba.ac.jp)

This work was supported in part by the Japan Science and Technology Agency (JST), Support for Pioneering Research Initiated by the
Next Generation (SPRING) under Grant JPMJSP2124, in part by the JST, Precursory Research for Embryonic Science and Technology
(PRESTO) under Grant JPMJPR21C1, and in part by the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific
Research (KAKENHI) under Grant JP21H04908.

ABSTRACT We present a novel framework for simulating time-varying decay effects for natural images.
Conventional methods assume the input image includes enough decay information and uses the color
or texture information of the decayed regions to transfer its effect to the non-decayed regions. Unlike
these approaches, our framework generates diverse patterns of decay effects by leveraging a decay effects
generator network without referencing the decay features of the input image, which allows us to handle
more general images with non-decayed objects. Our decay generator network is formed by a style-based
generative adversarial network with an arbitrary-sized stationary texture generation mechanism that allows
us to synthesize various sizes of decay textures. This arbitrary-sized stationary texture generation is necessary
to synthesize photo-realistic decay effects since the appropriate resolutions of the decay textures depend on
those of the target objects. We construct a novel decay texture image dataset that contains various types
of decay texture images, such as mossy and rust, to train the decay generator network. We show that
our framework is able to synthesize diverse decay effects on various non-decayed objects without using
additional decayed object images.

INDEX TERMS Arbitrary-sized image generation, generative adversarial networks, image decay, image
editing, image manipulation, image processing, image weathering, texture generation.

I. INTRODUCTION
Realistic image manipulation is a long-standing goal in the
fields of computer vision and graphics. Many efforts have
been made to create realistic images, such as modeling the
real world or simulating natural phenomena. Decay is a
ubiquitous natural phenomenon in real-world objects, where
the appearance of an object is often dramatically changed
over time. For example, a rock in a moist environment may
grow lichen. Simulating such a phenomenon is not only
beneficial to enhance the realism of virtual objects but also
important to the reproduction of the real world. However, this
simulation is a laborious endeavor performed by experts and
requires a significant amount of time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

Existing image-based decay approaches [1], [2], [3],
[4], also known as image-based weathering, assume the
input image contains enough decay information and extracts
the color or texture features of the decayed regions to
transfer their effects to the non-decayed regions. To han-
dle non-decayed images with these approaches, the user
should provide additional reference images with sufficiently-
decayed objects. However, obtaining a suitable reference
image for the input image is not trivial since there are
variations even in a single type of decay effect, e.g., lichens in
different environments may vary in appearance or structure.

Recently, image-to-image translation approaches based
on convolutional neural networks [5], [6] have advanced
rapidly and have shown remarkable performance in various
image processing tasks, such as image super-resolution [7],
image enhancement [8], [9], and image completion [10]. Very

120402

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6132-8830
https://orcid.org/0000-0001-9136-8297
https://orcid.org/0000-0001-6463-7738
https://orcid.org/0000-0001-8844-165X
https://orcid.org/0000-0002-4201-1096
https://orcid.org/0000-0002-4558-9803

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

FIGURE 1. Time-varying decay results with the proposed method. Given a natural image (the first image in each row), our method is able to simulate
the decay effects for non-decayed images without referencing additional decayed images, which is not possible with previous works.

recently, [11], [12] employed Diffusion Models (DM) [13]
for the image-to-image translation approaches, achieving
superior performance in various tasks and producing more
realistic outputs than the methods of [5], [6]. However, apply-
ing the image-to-image translation approaches to the task of
converting an input image into a decayed one is difficult. The
supervised image-to-image translation method [5] requires
a large number of paired training data, i.e., natural images
and their corresponding decayed ones. In practice, however,
it is impossible to construct such a large paired dataset as the
decay process in the real world is a years-long or decades-
long process. Although the unsupervised image-to-image
translation method [6] does not need paired data for training,
it only functions effectively on curated unpaired data that
belong to analogous domains, e.g., decayed and non-decayed
images with rough object shape matching or under similar
scenes. Such curated unpaired data is also difficult to collect
because of the lengthy decay process. More importantly,
image-to-image translation methods cannot preserve details
of the object shape that are not related to decay because they
re-synthesize the objects.

Inspired by the work of Iizuka et al. [4], we bypass the need
for paired data through a unique approach: generation and
composition. We first generate a decay effect texture using
a variant of generative adversarial networks (GANs) [14]
and then synthesize them on the target object together with
a global shading. Consequently, our natural image decay
framework is able to simulate various time-varying decay
effects in a single image without using external decayed
images (FIGURE 1).

Our approach has several advantages. First, we can obtain
diverse patterns of decay effects with the decay effect
generator network, where the user can control the types
of decay generation, such as rust and peeling. Second,
we can easily preserve the details of the object shapes

that are not related to decay in contrast to the image-
to-image translation techniques that sometimes change them
unintentionally. For example, image-to-image translation
requires not only generating decayed regions but reproducing
the remaining regions accurately through the translation
network. In contrast, our method simply blends the decay
effect texture and target regions with a global shading, which
can stably preserve the appearance of the objects. Third,
our framework does not require paired data or analogous
data as training data for training the internal network. Our
decay effects generator network is trained on unsupervised
decayed texture images, which enables us to directly use
texture images from the internet. We construct a novel decay
texture dataset containing four types of decay texture images,
i.e., rust, peeling, cracked, and mossy, which allows the
generator to synthesize various types of decay effects.

In the decay effect generation, decay textures are required
to be arbitrarily large while maintaining stationarity. Specif-
ically, a decay texture containing repeating patterns with
some randomness is necessary to be arbitrarily large since
the appropriate resolutions of the decay textures depend
on those of the target objects. A visualization of the
importance of arbitrary-sized stationary texture is shown in
FIGURE 2. We observe inconsistent sizes between decay
texture and the target object cause structure artifacts. Besides,
the result of InfinityGAN demonstrates that non-stationary
texture produces a chaotic appearance. To address the
problems, we introduce an arbitrary-sized stationary decay
texture generation mechanism into the decay generator.
This arbitrary-sized stationary texture generation allows for
simulating photo-realistic decay effects for natural images.

We quantitatively evaluate the quality of generated decay
texture against other generative texture models in terms
of Fréchet Inception Distance (FID) [17]. Additionally,
we propose to use the Gram matrix [18], [19], [20] to

VOLUME 11, 2023 120403

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

FIGURE 2. The importance of arbitrary-sized stationary texture in the
proposed framework. The result of the StyleGAN2 is synthesized by
resizing a 128 × 128 pixels texture, while other results are generated by
matching the size of the output with that of the input image. The
InfinityGAN [15] generates arbitrary-sized non-stationary textures,
whereas our method generates arbitrary-sized stationary textures.

measure the style similarity of the texture patches, which
allows us to evaluate the spatial stationarity of the generated
decay texture. We also perform a perceptual user study on
decayed results of a broad range of natural images, where
our framework shows a significant performance over other
generative texture models [15].
Our contributions are as follows:
• We propose a novel framework that can generate
diverse decay effects on non-decayed images without
referencing other decayed images.

• Our approach incorporates a decay effect genera-
tion mechanism capable of generating stationary and
arbitrary-sized decay textures. This allows for a realistic
simulation of decay effects on natural images.

• We construct a unique decay texture dataset that includes
major categories of real-world decay, ensuring the
diversity of decay effects.

II. RELATED WORK
In this section, we discuss the related work on decay
simulation, texture synthesis, and arbitrary-sized image
generation.

A. DECAY SIMULATION
Simulating time-varying decay effects has been extensively
explored over the past three decades. We discuss the related
work that addresses the problem of decay simulation.

1) PHYSICALLY-BASED DECAY
Several approaches [23], [24], [25], [26], [27], [28],
[29], [30] generate decay effects using physically-based

simulation. They have achieved accurate results by address-
ing the simulation of specific decay effects, such as metallic
patinas [23], stone erosion [25], paint cracks and peeling [26],
water flow [24], corrosion [31], stretches [27], and lichen
growth [28]. Although this type of method produces reliable
decay results, it cannot generalize well to pending modeling
scenarios. A set of techniques [32], [33], [34] creates
convincing decay results for different decay effects by
capturing the time-varying reflectance of materials. However,
these approaches require an understanding of geometrical
details and the surrounding environment of an object, which
is difficult to obtain from a natural image.

2) IMAGE-BASED DECAY
To model more general decay effects of images, Wang
et al. [35] introduced appearance manifolds, which model
the time-variant surface appearance of material from data
captured at a single instant in time. Although their method
mainly targets 3D models, they also made a simple
attempt to model decay effects from a single image. Xue
et al. [1] thoroughly extended the appearance manifolds
method to the single image decay scenario. They developed
an iterative method to construct the appearance manifold
in color space for modeling the reflectance variations.
Bandeira and Walter [2] simplified the appearance manifold
to a two-dimensional appearance map, which significantly
reduces computational costs. Endo et al. [3] further improved
this method by extracting fine-scale geometries as high-
frequency components of the image. Iizuka et al. [4] proposed
a texture variations-based method to model and propagate
complicated appearance variations. Specifically, they first
model the distribution of decay degrees using Radial Basis
Functions. Afterward, they propagate the appearance features
by sampling patches from decayed regions and compositing
them on a target surface according to the decay degree. Most
recently, Du et al. [36] introduced a new image-based decay
technique that automatically extracts multiple exemplars
from different decay stages, giving the user the flexibility
to suit different applications, such as customized decay
generation and decay transfer.

Nonetheless, those existingmethods cannot simulate decay
effects on non-decayed objects without referencing the decay
features (e.g., color or texture) on decayed regions. To
simulate decay effects on non-decayed objects with previous
work, a reference decayed image is collected and analyzed to
transfer its decay effects to non-decayed objects. However,
it is non-trivial to obtain an appropriate reference decayed
image because there exist large variations even in a single
type of decay effect. Thus, natural image decay still remains
a challenging task.

Unlike previous work [1], [2], [3], [4] exclusively relies on
the use of decayed objects, we generate various decay effects
with a decay effects generator to process more general images
without referencing the decayed regions. In particular, our
framework adopts the strategy of [4] that simulates decayed

120404 VOLUME 11, 2023

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

TABLE 1. Comparison of different approaches for simulating decay effects. Patch-based [21] and learning-based [22] texture decay methods can only be
applied to the texture space. Conventional image-based decay approaches, including low-level feature variation [1], [2], [3] and texture variation [4],
simulate decay effects by transferring decayed features. More importantly, none of the existing methods can produce diverse patterns of decay effects. In
contrast, our method can generate diverse patterns of decay results for arbitrary-sized natural images.

results by compositing decay texture onto the target surface
according to a decay degree.

The decay effects in objects can be decomposed into
two aspects: appearance and geometry changes. Traditional
image-based decay methods [1], [2], [4] focus on appearance
changes while ignoring the geometry changes. To achieve
geometry-aware decay, we considered using the normal map
to model geometry details, which requires accurate normal
estimations from images. However, we found existing normal
estimation methods generalize poorly on natural images.
In contrast, we observed the shading-aware strategy used
in previous work [4] produces accurate results on most
natural images. Therefore, we employ a robust shading-aware
strategy, following the strategy used in [4].

3) TEXTURE DECAY
Recently, a problem of texture space decay has been
addressed. Bellini et al. [21] presented a technique to
synthesize time-varying decayed textures. Specifically, given
a single decayed input texture, they estimate the decay degree
at different regions by prevalence analysis of texture patches.
With the estimated decay degree, they can generate backward
and forward time series to create decay and inverse decay
effects. Chen et al. [22] leveraged this method as a basis
and proposed to generate the decay process using the image-
to-image translation technique [5]. They first analyzed the
input texture to obtain paired data of the decay degree and
an input image. Then, an image-to-image translation model
is trained to generate texture patches for a single input. After
training, new decay results can be generated by modifying
the decay degree. Although their work [21], [22] can only be
applied to the texture space, one might imagine generating a
decayed image from a natural image with an image-to-image
translation model [5], [12]. In practice, however, we cannot
employ the image-to-image translation method directly in the
task of natural image decay because it is impossible to collect
a sufficient number of training paired data of natural images
and their decayed ones.

Our framework overcomes the limitations of the previous
works by generating decay textures with a deep generative
model, not propagating existing weathering features of
weathered regions. A high-level comparison of different

methods is shown in TABLE 1. Conventional image-based
decay approaches, including low-level feature variation
methods [1], [2], [3], texture variation [4], and patch-based
texture decay [21], can only transfer decay effects, which rely
on the use of the decayed feature. More importantly, none of
the existing methods can produce diverse patterns of decay
effects. In contrast, our method can generate diverse patterns
of decay results for arbitrary-sized natural images.

B. TEXTURE SYNTHESIS
Most existing texture synthesis methods [37], [38], [39],
[40], [41] generate textures from a given exemplar. Tra-
ditional texture synthesis methods use non-parametric or
optimization-based techniques to synthesize a texture image
while considering the exemplar. Therefore, none of the
traditional texture synthesis methods can generate textures
from scratch. Recently, a group of works [42], [43] has
been proposed to generate textures from scratch with a
generative adversarial network. However, their work can only
generate small-size realistic textures and shows less diversity
in generated textures.

C. ARBITRARY-SIZED IMAGE GENERATION
Generative Adversarial Networks (GANs) [14] have shown
a remarkable ability in fixed-size image synthesis. Although
several approaches [16], [44], [45] have been proposed to
address the problem of high-resolution image synthesis,
conventional GANs cannot generate arbitrary-sized images
because of the limitation of computational resources. Several
works [15], [46], [47], [48] have been proposed to address
the problem of arbitrary-resolution image generation. Lin
et al. [48] generated large images in a seamless manner
by learning a coordinate manifold. Although Lin et al. [48]
can generate seamless high-resolution images, they can only
extrapolate a few patches beyond the training patch size.
Lin et al. [15] further introduced a padding-free genera-
tor and a coordinate-based implicit function to generate
arbitrary-sized images in a seamless synthesis-by-part man-
ner. This method sets a state-of-the-art in landscape image
generation.

Recently, a few attempts have been made at the task
of generative texture synthesis. We refer to texture as

VOLUME 11, 2023 120405

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

FIGURE 3. Overview of the proposed framework. Given an input image and a manually labeled corresponding mask, the decay effect generator
takes three sets of inputs, i.e., a user-specified one-hot class vector c, a style code Zstyle that controls the overall style of the output texture, and a
stationary flexible-sized input Zres that affects the resolution of the output texture. Afterward, the generator outputs a decay effect texture that is
used for the decay effects rendering, where the final output image is synthesized with the input image, decay texture, and global shading, according
to the degree map.

the terminology in texture synthesis [37], where textures
are images containing repeating patterns with some ran-
domnesses(spatial stationarity). Li et al. [49] presented a
deep generative network for generating diverse outputs of
multiple types of textures. Jetchev et al. [42] modified the
DCGAN [50] architecture to allow for scalability and the
ability to create any desired output texture size. They [43]
further improved the [42] by extending the structure of the
input noise distribution to gain a better learning capacity.
They also showed the improved version has a property
of texture manifolds, where smooth interpolation between
generated samples is completed. Although arbitrary-sized
texture synthesis [42], [43] has shown impressive empirical
results, a theoretical basis is absent in this task. Lu
et al. [51] presented a comprehensive theoretical interpreta-
tion for arbitrary-sized texture synthesis. They showed that
marginalization consistency and permutation invariance are
fundamental to synthesis-by-part texture synthesis. To satisfy
these two properties, they extensively analyzed convolutional
neural networks (CNNs) building blocks and provided
instructions on modification of the current CNNs building
blocks. Although Lu et al. [51] provided a comprehensive
interpretation for arbitrary-sized texture synthesis, their
proposed framework showed a learning capacity shortage
due to the use of simple GANs architecture. Our approach
is related to the work of [51], we propose a decay effects
generation, which is based on the StyleGAN2 [16] with an

TABLE 2. A specification shows the number of images of each category
and the overall dataset.

arbitrary-sized stationary generation mechanism, to generate
a spatial stationary decay texture.

III. APPROACH
An overview of our framework is shown in FIGURE 3. Fol-
lowing the previous works of natural image weathering [1],
[2], [3], [4], the input is a natural image with a corresponding
mask that indicates the region of a target object. We first
generate a decay texture with the decay effects generator.
The decay effects generator takes three inputs, a class c is
specified by users, a style code Zstyle is randomly sampled to
represent the overall style of generated texture, and a white
Gaussian noise Zres of which size is modified to generate
a texture that matches the size of the target object. After
that, we calculate a global shading that describes the surface
details of the object with an image intrinsic decomposition
method [52]. And then, we initialize a degree map that
represents the decay degree of each pixel. The degree map is
initialized by sampling random patterns inside object regions
and filling them with the Perlin noise. Finally, we follow the

120406 VOLUME 11, 2023

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

rendering step in [4] to simulate time-varying effects with the
decay texture, a global shading, a degree map, and the input
image.

A. DIVERSE TEXTURE SYNTHESIS
To generate various decay effects, we create a novel decay
texture dataset that includes four categories of decay textures,
i.e., rust, mossy, peeling, and cracked. In detail, we first crawl
texture images from Google and Naver websites by using
names of different decay textures as keywords to increase
the diversity of the dataset. Although we obtain a large
number of different textures, not all of these are qualified to
train the decay effects generator. Most collected textures are
extremely noisy, such as including a watermark or an easily
recognizable object. Therefore, we apply a manual filtering
process to remove noisy images that are unqualified to train
the decay effects generator. In total, the decay texture dataset
contains 3,368 images that are divided into 4 categories of
decay textures, including rust, cracked, mossy, and peeling
textures. A specification of the dataset is shown in TABLE 2.
Several examples are shown in FIGURE 4.
Furthermore, we apply a mode-seeking diversity loss [53]

that encourages the generators to be able to generate diverse
patterns of decay textures. This mode-seeking diversity loss
is described as follows:

Lms =

∥∥∥G(c,Z1
style) − G(c,Z2

style)
∥∥∥
1∥∥∥Z1

style − Z2
style

∥∥∥
1

, (1)

where Z1
style and Z2

style are different style inputs, G is the
decay effects generator, and c is the class label.

B. ARBITRARY-SIZED DECAY TEXTURE GENERATION
Our framework generates arbitrary-sized stationary decay
textures, matching the sizes of the texture with those of the
input image, to produce photo-realistic decay effects. We
achieve seamless arbitrary-sized textures generation with a
decay effects generator that is based on a StyelGAN2 [16]
model. In particular, the decay effects generator takes three
inputs: a user-specified class label c, a randomly sampled
style code Zstyle, and a spatial stationary Gaussian noise
Zres. We can generate diverse patterns of textures in varying
sizes by manipulating inputs. The generation process can be
formally described as follows:

ω = FC(Concat(MLP(Zstyle),CE(c)))

TH×W
= G(ω,Zres

h×w). (2)

Here, MLP and CE are both embedding functions that are
based on a Multilayer Perceptron. The MLP maps a Zstyle ∈

R512 to an intermediate latent space. The class embedding
CE layer maps a one-hot class vector c ∈ R4 to the
same dimensions as the latent Zstyle. Concat operation is
conducted in the channel dimension. The FC represents a
fully connected layer that maps ω ∈ R1024 to ω ∈ R512. After

FIGURE 4. Examples of our decay texture dataset. We collect a novel
decay texture dataset that includes four categories of decay textures,
i.e., rust, mossy, peeling, and cracked.

that, a style code ω is fed into the decay effects generator
G with a spatial stationary Gaussian noise Zres ∈ Rh×w to
generate a decay texture T ∈ RH×W . The h×w is set to 12 ×

12 to generate a 132 × 132 image in the training phase, while
can be arbitrarily set in the inference phase.

We introduce an arbitrary-sized stationary texture genera-
tion mechanism into the decay effects generator. Specifically,
we replace a learned constant input of the StyleGAN2 with
a flexible-sized spatial input to generate arbitrarily large
textures. A decay texture, formally described as a realization
of a stationary ergodic stochastic process [54], is generated
by sampling the flexible-sized input from white Gaussian
noise. The white Gaussian noise can also be formulated as
a stationary ergodic stochastic process. This stationary input
provides stationarity to the decay effects generator to generate
stationary decay textures. However, conventional GANs do
not transform a stationary input into another stationary
output due to the abuse of inconsistent transformation. For
example, the zero-padding layer in convolutional neural
networks (CNNs) is a typical inconsistent transforma-
tion, which induces redundant positional information and
produces noticeable inconsistent structure artifacts in the
output.

Drawing inspiration from Lu et al.’s work [51], we metic-
ulously redesign the architecture of the StyleGAN2 to
form consistent transformations, which preserves stationarity

VOLUME 11, 2023 120407

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

between input and output. In detail, we first modify
all convolution layers with zero-padding to padding-free
convolution layers. And then, all bilinear up-sampling layers
are followed by a boundary crop operation where boundary
pixels are discarded. By introducing an arbitrary-sized
stationary texture generation mechanism, the decay effects
generator can generate arbitrary-sized stationary textures
in a seamless manner. We encourage those interested
in a deeper dive into the theoretical underpinnings of
our modifications to refer to the foundational paper by
Lu et al. [51].

C. DECAY EFFECTS RENDERING
1) GLOBAL SHADING
Due to the fact that the visual appearance of an object
is replaced with the decay texture in a decay process,
geometrical details of the object are easily lost. Following the
previous work [4], we use a global shading that describes the
geometrical details of an object to preserve its geometrical
details in the decay process. To compute the global shading,
we leverage an intrinsic image algorithm [52] based on a
dense conditional random field (CRF) formulation [55] that
considers long-range material relations.

2) DECAY DEGREE INITIALIZATION
In a decay process, we utilize a decay degree to control
decay effects. A range of a decay degree spans from 0 to 1,
in which 0 indicates that the object retains its original
appearance, while 1 represents that the appearance of an
object is completely replaced with the decay texture. To
define a degree, we first generate random patterns in the
regions of the object, where continuity and density can be
controlled by sampling different parameters. We then fill
the random patterns with the Perlin noise commonly used
to increase the realism of synthetic textures in computer
graphics. A visualization of synthetic degrees is shown in
FIGURE 5.

FIGURE 5. Decay degree initialization. We use random patterns filled with
the Perlin noise to initialize a degree that controls the decay effects. The
random pattern generation can be controlled by two parameters:
continuity and area.

3) DECAY SYNTHESIS
To render the final output for a given input image, we employ
a decay effect rendering step to generate the final output O
with the decay texture T, a degree D, a global shading S,
the input image I, and the corresponding mask M. In detail,
we first convert an input image and a generated decay texture
from the RGB space into the LAB space. And then, the
luminance channel of the input image is adjusted with the
luminance channel of the decay texture according to
the degree. This process can be formally described as:

Olum = (DTlum + (1 − D)Ihue) ⊙ S,

Ohue = DThue + (1 − D)Ihue, (3)

where 1 represents an all-one matrix with the same shape
of D, ⊙ denotes Hadamard product, and the terms with
subscripts lum and hue represent the luminance channel and
chroma channels in Lab space, respectively.

To further enhance the realism, we apply a color transfer
algorithm [56] to match the color distribution between the
decay texture and input image for peeling and cracked
effects before the rendering step. Armed with our proposed
framework, it is possible to simulate diverse patterns of decay
effects for non-decayed objects.

4) DECAY EFFECTS DIFFUSION
We introduce a diffusion concept to the time-varying simula-
tion of decay effects. Diffusion is the movement of molecules
from a region of higher concentration to a region of lower
concentration down the concentration gradient. We assume
that the time-varying decay process fulfills the diffusion
rule along with two regularizations: self-growth and non-
decreasing. This is based on an observation that the natural
decay process spreads out from highly-weathered regions and
grows irreversibly in decayed regions. We compute the decay
degree by solving a partial differential equation:

∂D
∂t

= α(
∂2D
∂x2

+
∂2D
∂y2

), (4)

where D is the decay degree to be solved, x and y are
spatial coordinates, and t is time. The coefficient α is the
diffusion coefficient that determines how fastD changes over
time. The decay degree at time step t + 1 can be computed
by applying finite difference approximations and the decay
regularizations:

Dt+1
x,y = Dt

x,y + α1t × Divtx,y, (5)

where a finite difference approximation determines 1t , Div
is the divergence at location x, y. And then, we apply two
regularizations on Dt+1

x,y :

Dt+1
x,y =

{
Dt
x,y + Zx,y if Dt

x,y > 0.25
Dt
x,y otherwise

, (6)

Dt+1
x,y = Maximum(Dt+1

x,y ,Dt
x,y), (7)

120408 VOLUME 11, 2023

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

where Zx,y is sampled from a uniform distribution to express
self-growth property. Time-varying decay results can be
found in Section C.

5) DECAY DEGREE EDITING
We also provide spatial control of the degree map to the users
for interactive editing of decay effects. Specifically, we can
initialize the degree map with user inputs to offer early-stage
controls to the users, where users specify the beginning area
of decay effects. We can also introduce spatial disparity to
the decay effects diffusion by using spatial regularization,
where the degree of a region is always higher/lower than the
degree of other regions. This is especially important in editing
objects with complicated geometry because some regions in
objects with complicated geometry are easy or difficult to
grow decay effects. As for the forms of user inputs, we can
take as input varying forms, such as brush or control points.

IV. EXPERIMENTAL RESULTS
In this section, we discuss experimental details and demon-
strate the decay results of different approaches.

A. EXPERIMENTAL DETAILS
1) MODEL TRAINING
The decay effects generator is trained on our decay texture
dataset with a batch size of 16 for 900,000 iterations. The
patch size used in the training phase is set to 132× 132 pixels.
For model training, we add the mode-seeking diversity
loss [53] to the objective functions used in StyleGAN2 [16].
The overall loss function used to train the decay effects
generator is described as follows:

Ltotal = Lstylegan + λmsLms, (8)

where the weight λms is set to be 1 during training, Lstylegan
and Lms denote the original objective function and the
mode-seeking diversity regularization, respectively.

FIGURE 6. A visualization of texture images with different stationarities.
Texture images with a lower metric of stationarity show a better
perceptually local consistency. This supports the effectiveness of using
style similarity between texture patches to assess stationarity. The metric
of stationarity of each image is shown under the image.

2) COMPARISON WITH EXISTING APPROACHES
We compare our decay effects generator with several existing
approaches in texture generation.
PSGAN: The PSGAN is a DCGAN-based [50] texture

generator that allows for scalability and the ability to generate
any desired output size. We use an official implementation to
train the model and to generate arbitrary-sized textures.
CT-PSGAN: The CT-PSGAN is a modified version of

the PSGAN based on the consistent transformation of the
[51]. Although Lu et al. [51] provide a comprehensive
interpretation of arbitrary-sized generation, their proposed
method does not have enough learning capacity to generate
diverse decay textures. Therefore, we modify the PSGAN
architecture, making it satisfy the consistent transformation
proposed by [51], to compare with our proposed model.
InfinityGAN: We also compare our decay effects gener-

ator with InfinityGAN [15], which is the state-of-the-art
arbitrary-sized image generation approach.We use an official
implementation of InfinityGAN for training and inference.

For a fair comparison, we modified the baselines to
conditional ones by giving a one-hot class vector. All
approaches are trained using exactly the same training data.
We use the officially released implementation if available.

3) METRICS
FID: To evaluate the quality of generated textures, we quan-
titatively compare our decay effects generator against other
generative models in terms of Fréchet Inception Distance
(FID) on different sizes of decay textures. Following the
InfinityGAN, we resize all images into a fixed size before
computing the FID.
Stationarity: Although the FID metric can evaluate the

quality of generated textures, it cannot assess the stationarity
of the generated textures. A stationary decay texture should
contain repeating patterns with some randomness. In other
words, the style of a texture patch is consistent with the styles
of other texture patches in the same texture image. Based on
the observation, we propose to use theGrammatrix [18], [19],
[20] to assess the stationarity of textures. The Gram matrix
represents the style of an input image with feature maps of the
VGG16 network [57]. Suppose x with shape of Hj ×Wj ×Cj
is an input texture, the Gram matrix of the x is defined as:

Gramj(x) =
1

HjWj

Hj∑
h=1

Wj∑
w=1

φj(x)h,w,cφj(x)h,w,c′ , (9)

where φj(x) is the activation at jth layer of the VGG16
network for the input x. The overall representation of the
Gram(x) is the sum of Gramj(x) for different layer j in the
VGG16 network. Following the [20], we use the relu1_2,
relu2_2, relu3_3, and relu4_3 layers of the VGG16 network
to calculate the overall Gram matrix.

Upon defining the Gram matrix, we measure the distance
between the Gram matrices of different texture patches in
the same texture image. Specifically, given a texture image

VOLUME 11, 2023 120409

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

FIGURE 7. Comparative texture generation results using different approaches. Our method generates stationary decay texture, while
InfinityGAN [15] generates locally varying textures. A stationary decay texture contains repeating patterns with some randomness. In other words,
random texture patches are homogenous, as indicated by red boxes.

T ∈ RH×W×C , we crop a set of random patches {(Pi,Qi)}Ki=1
from it, where Pi ∈ Rh×w×C and Qi ∈ Rh×w×C are non-
overlapping patches, h = H/N ,w = W/N , and K is the
comparison time of the distance of Gram matrix between
non-overlapping patches in the same texture image. The N
is a constant that defines the scale of cropped patches. After
that, we calculate the distances of the Gram matrix between
non-overlapping patchesK times and report the average value
of those distances. The calculation of the stationarity dstat is
formally described as:

dstat =
1
K

K∑
i=1

∥Gram(Pi) − Gram(Qi)∥2 . (10)

In our experiment, we set theN to be 4 and theK to be 10. For
a better understanding of the stationarity metric, we provide
several examples with different stationaries in FIGURE 6.

4) COMPUTATIONAL TIME
We measure the computational time of our method. Our
decay effects generator takes 34ms to generate a 132 ×

132 texture with a single Nvidia GTX 1080Ti GPU. More
importantly, our method can generate larger textures with
negligible additional time in a seamless synthesis-by-patch
manner.

B. QUALITATIVE RESULTS
1) TEXTURE GENERATION
FIGURE 7(a) and FIGURE 7(b) demonstrate texture gen-
eration results of different approaches on varying sizes. We
omit results of the PSGAN [43] and the CT-PSGAN [43],
[51] in visualization as their methods generate unreasonable
textures. From FIGURE 7(a) and FIGURE 7(b), we observe
that InfinityGAN [15] does not generate stationary decay
textures since their structure synthesizer tends to produce

120410 VOLUME 11, 2023

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

FIGURE 8. Disentanglement results. We show decay textures by switching different resolutions of Zres while maintaining the same Zstyle. The
texture results demonstrate the Zstyle and the Zres are properly disentangled.

FIGURE 9. Comparisons with other generative texture models. We show decay results on different images and compare our approach with the
InfinityGAN [15]. The first row shows the input image, and the last two rows are decay results generated by using different approaches. Textures used
for rendering are put in the upper-left corner.

local structural variations in the output. In contrast, our
method generates reasonable decay textures while maintain-
ing stationarity with the arbitrary-sized stationary texture
generation mechanism. The arbitrary-sized stationary texture
generation mechanism consistently transforms a stationary
flexible-sized Gaussian noise to a stationary arbitrary-sized
texture image. This mechanism allows us to generate
arbitrarily large textures while ensuring stationarity in output.
We also find that InfinityGAN fails in conditional generation
inmost cases, where the one-hot class input does not precisely

control the category of generated decay texture, while our
method shows outstanding conditional generation ability.

2) DISENTANGLING STYLE AND RESOLUTION
Our decay effects generator uses the style code Zstyle to
control the overall style and the Zres to define the resolution
of the output. For investigating the disentanglement of those
two inputs, we show texture results by switching different
Zres while maintaining the sameZstyle. The texture results are
shown in FIGURE 8. From FIGURE 8, we find that the Zstyle

VOLUME 11, 2023 120411

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

FIGURE 10. Decay results with our method. The first row shows varying decay results of different target objects. The second row shows diverse
results of different categories of decay effects on the same object. The last row shows different results of the same category of decay effect for an
object. Textures used for rendering are put in the upper-right corner or upper-left corner.

and the Zres are properly disentangled, where Zstyle controls
the overall style and Zres defines the resolution of the output.

3) DECAY EFFECTS SIMULATION
We evaluate our method using images from a broad range of
scenes and compare it with the existing approaches. Since
existing approaches cannot produce decay results exclu-
sively, we incorporate these methods into our framework,
where texture generation is replaced with existing methods.
Comparisons between the results of our method and the
existing method can be seen in FIGURE 9. We find that our
framework producesmore realistic decay results than existing
methods.We argue that unrealistic results of the existingwork
are produced due to the poor conditional generation ability
and non-stationary output. In addition to comparisons with
existing methods, we also show diverse patterns of decay
results produced by our method in FIGURE 10. We also
show a decay result on complicated scenes with varying
effects on different objects in FIGURE 11. The decay effects
are initialized and conditioned with the user inputs. Our
framework can also produce realistic and seamless results
for partially decayed cases, as illustrated in FIGURE 12.
This capability is ensured through the integration of Perlin
noise initialization (Section III-C2) and our decay diffusion
strategy (Section III-C4).

C. QUANTITATIVE EVALUATION
1) TEXTURE GENERATION
The results with the FID are shown in TABLE 3. The results
of the InfinityGAN and our method at 2048 × 2048 pixels
are generated in a patch-by-patch manner, while others
are generated at one single forward pass. From TABLE 3,
we observe that PSGAN and CT-PSGAN are far from
generating realistic decay textures. Although InfinityGAN
and our method both generate realistic textures, our method
outperforms InfinityGAN in most cases.

The results with the stationarity metric are shown in
TABLE 4. We report the average value of 4,000 textures
generated by each method at different resolutions. We omit
the results of the PSGAN and the CT-PSGAN because of
the poor quality of generated textures. From TABLE 4,
we can observe that textures generated by our generator show
more stationarity than textures generated by InfinityGAN.
Moreover, our decay effects generator maintains a consistent
performance at varying resolutions of textures.

2) DECAY EFFECTS SIMULATION
We further conduct a perceptual user study to quantitatively
verify the effectiveness of our framework. Similar to
qualitative comparison, we also incorporate other generative
models into our framework. We use 57 images for evaluation

120412 VOLUME 11, 2023

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

TABLE 3. Comparisons between our method against other texture generation models at different sizes, in terms of FID. The results of the InfinityGAN [15]
and our method at 2048 × 2048 pixels are generated in a patch-by-patch manner, while others are generated at one single forward pass.

TABLE 4. Comparisons between our method against InfinityGAN at different sizes, in terms of metric of the stationarity. The results of the PSGAN and
CT-PSGAN are omitted since they failed at generating convincing textures. Our decay effects generator surpasses InfinityGAN and maintains a consistent
performance at varying resolutions of texture images.

TABLE 5. Ablation results of our decay effects generator on decay texture generation in terms of FID. Conditional StyleGAN2 can only generate textures at
a fixed size. Ours w/o consistent transformation (CT) cannot generate large images because it consumes a huge amount of memory. Our full method
generates stationary decay textures with seamless incremental generation.

TABLE 6. Perceptual user study result. The numbers indicate the
percentage of the images that are deemed to be real over the other
method.

and generate decay effects with two different approaches,
including InfinityGAN and our method.Wemanually specify
a class label for each image before the simulation. As for the
degree decision used in the user study, we simulate a most-
decayed case, where the density is 80% and the continuity is
high. Afterward, we obtain 20 random decay results for each
image by each approach. In total, we have 2,280 decay results
that are generated from 57 natural images by two different
approaches. We invite 10 subjects to participate in this study,
given the input image as a reference, the subjects are asked
to pick the more realistic one among the results produced by
the two approaches. As shown in TABLE 6, our framework
is considered to be better in 68.98% of the cases.

In our quantitative evaluation, we compare our approach
with three different methods, as detailed in TABLE 3.
Among these, only InfinityGAN is able to generate relatively
realistic textures. Consequently, our subsequent evaluations
(TABLE 4 and TABLE 6) focused primarily on comparisons
with InfinityGAN. This decision ensured accurate and
unbiased quantitative results. Our evaluation choices are
designed to provide a clear, rigorous, and fair assessment of
our method’s capabilities.

FIGURE 11. Decayed image with multiple decay effects. Our decay
framework is able to process complicated images with multiple effects on
different objects. The decay effects are initialized and conditioned with
user inputs. The user inputs are visualized as colored shapes.

D. ABLATION STUDY
We perform an ablation study to demonstrate the effec-
tiveness of the proposed network in terms of FID on
texture generation. Our model is based on a conditional
StyleGAN2 that achieves conditional texture generation by
concatenating a one-hot class label with the style input. To
generate stationary decay textures, we replace the learned
constant input of the StyleGAN2 with a white Gaussian
noise input (ours without consistent transformation). Our
full method, formed by consistent transformation, achieves
seamless results in an incremental generation fashion, that
is, separate patches of the output are generated individually
and composited seamlessly. The ablation results are shown in
TABLE 5. Note that ours without consistent transformation

VOLUME 11, 2023 120413

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

Algorithm 1 Pseudocode of the Initialization of Degree Map in a Python-Like Style

continuity = 0.06: parameter controls the continuity. The lower it is, the more continuous the output will be.
maks_area = 0.25: parameter defines the density of the mask region.
image_size: the size of the input image
max_size = 10000

low_res_pattern sampled from a uniform distribution
low_res_pattern = np.random.uniform(0, 1, (max_size * continuity, max_size * continuity) * 255)
resize the low_res_pattern to the max_size to construct a high-resolution pattern
pattern = cv2.resize(low_res_pattern, dsize=(max_size, max_size), interpolation=cv2.INTER_CUBIC)
construct binary mask with respect to mask_area
pattern = pattern / 255
pattern = np.less(pattern, mask_area)
mask area refinement
while True:
x, y = np.random.randint(0, pattern.size()[0] - image_size, 2)
mask = pattern[x: x+image_size, y: y+image_size]
pattern_mask_area = mask.float().mean().item()
If mask is whthin +/- 25\% of desired mask area, break
if mask_area / 1.25 < pattern_mask_area < mask_area * 1.25

FIGURE 12. Partially decayed results. Our decay framework can produce
realistic and harmonious outputs in partial decay cases. This seamless
appearance is ensured by the Perlin noise with our decay diffusion
strategy .

FIGURE 13. Failure case produced by our framework. Our framework may
generate an obviously unrealistic decay texture for the input image.

(Ours w/o CT) raises an out-of-memory (OOM) error on
common GPUs when generating the size of 2,048 × 2,048
as it does not support incremental generation.

E. LIMITATIONS
Although our framework is able to generate plausible
results in most cases, it has several limitations. Unfavorable

results, such as FIGURE 13, are produced by using an
obviously unrealistic decay texture with respect to the input
image. To deal with such a case, we can generate another
decay texture by exploring a different style vector as our
framework runs fast. Also, our framework is not able
to propagate decay effects for a decayed image. In this
case, we consider propagating decay effects by inversing
decay regions through our decay effects generator via GAN
inversion techniques [58] or simply using the existing method
such as patch-based weathering propagation [4].

V. CONCLUSION AND FUTURE WORK
We proposed a novel framework for simulating time-varying
decay effects in natural images. The proposed framework can
generate diverse decay effects on non-decayed images with-
out referencing other decayed images, which is impossible
with existing image-based decay methods. One of the key
ideas for the success of our approach is a stable decay effect
generation mechanism that is able to generate stationary and
arbitrary-sized decay textures. Furthermore, we created a
decay texture dataset includingmajor categories of real-world
decay to train the decay generator. We believe our work
makes significant progress in the task of image-based decay
by enlarging the application range. We also conducted
in-depth evaluations to demonstrate the effectiveness of our
proposed framework.

In future work, we would like to extend our framework
to propagate decay effects for a decayed image through the
GAN inversion techniques [58]. In detail, decayed regions
from an input image are first inversed to latent codes
of the decay effects generator. And then, we modify the
size of flexible-sized Gaussian noise to generate a decay
texture that matches the resolution of the input image. Also,
we would like to automatically detect the object regions for
an input image. So far, the object region is obtained by a
user-provided mask, which requires expertise and is time-
consuming. Furthermore, an interesting avenue for future
research would be to integrate the effects of structural decay,
such as rock weathering. This would require a combined
approach addressing both texture variations and structural

120414 VOLUME 11, 2023

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

FIGURE 14. Visual comparisons between our proposed decay effects diffusion strategy and other propagation strategies under less and most
decayed initialization.

deterioration, providing a more comprehensive simulation of
realistic natural decay.

APPENDIX A
RANDOM PATTERN GENERATION
In this section, we provide pseudocode 1 for the random
pattern generation described in Section III-C2.

APPENDIX B
DECAY EFFECTS DIFFUSION
To validate our decay diffusion approach detailed in
Section III-C4, we compare it with decay propagation
techniques from prior image-based decay studies [1], [2].

Traditional methods derive an initial degree map from
decayed images. However, it is impossible to derive an
initial degree map from non-decayed images. To address
this, we utilize our degree map initialization method
(Section III-C4) to provide an initial map for all decay
propagation techniques.We then compare our method against
time-dependent function [1] and smooth expansion [2], using
both less and most decayed maps for initialization. Results
in FIGURE 14(a) and FIGURE 14(b) reveal that while
traditional methods only effectively propagate from highly
decayed cases, our approach succeeds in both varying decay
situations and in extending from decayed to non-decayed
areas.

VOLUME 11, 2023 120415

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

FIGURE 15. Time-varying decay results produced by our proposed framework. The first image in each row is the input image.

APPENDIX C
DECAY EFFECTS SIMULATION
In this section, we present additional time-varying decay
results produced by our framework in FIGURE 15.

REFERENCES

[1] S. Xuey, J. Wang, X. Tong, Q. Dai, and B. Guo, ‘‘Image-based material
weathering,’’ Comput. Graph. Forum, vol. 27, no. 2, pp. 617–626,
Apr. 2008.

120416 VOLUME 11, 2023

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

[2] D. Bandeira and M. Walter, ‘‘Synthesis and transfer of time-variant
material appearance on images,’’ in Proc. 22nd Brazilian Symp. Comput.
Graph. Image Process., Oct. 2009, pp. 32–39.

[3] Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui, ‘‘Image editing for
weathering effects with geometric details,’’ in Proc. Comput. Graph.
Int. (CGI), 2011. [Online]. Available: https://api.semanticscholar.org/
CorpusID:5616958

[4] S. Iizuka, Y. Endo, Y. Kanamori, and J. Mitani, ‘‘Single image weathering
via exemplar propagation,’’ Comput. Graph. Forum, vol. 35, no. 2,
pp. 501–509, May 2016.

[5] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976.

[6] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image
translation using cycle-consistent adversarial networks,’’ inProc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242–2251.

[7] Z. Wang, J. Chen, and S. C. H. Hoi, ‘‘Deep learning for image super-
resolution: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 10, pp. 3365–3387, Oct. 2021.

[8] W. Zhang, P. Zhuang, H.-H. Sun, G. Li, S. Kwong, and C. Li, ‘‘Underwater
image enhancement via minimal color loss and locally adaptive contrast
enhancement,’’ IEEE Trans. Image Process., vol. 31, pp. 3997–4010, 2022.

[9] W. Zhang, L. Zhou, P. Zhuang, G. Li, X. Pan, W. Zhao, and C. Li, ‘‘Under-
water image enhancement via weighted wavelet visual perception fusion,’’
IEEE Trans. Circuits Syst. Video Technol., early access, Jul. 27, 2023, doi:
10.1109/TCSVT.2023.3299314.

[10] W. Li, Z. Lin, K. Zhou, L. Qi, Y. Wang, and J. Jia, ‘‘MAT: Mask-aware
transformer for large hole image inpainting,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 10748–10758.

[11] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
‘‘High-resolution image synthesis with latent diffusion models,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 10674–10685.

[12] C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet,
and M. Norouzi, ‘‘Palette: Image-to-image diffusion models,’’ in Proc.
ACM SIGGRAPH Conf., 2022, doi: 10.1145/3528233.3530757.

[13] J. Ho, A. Jain, and P. Abbeel, ‘‘Denoising diffusion probabilistic models,’’
2020, arXiv:2006.11239.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’
in Proc. Conf. Neural Inf. Process. Syst., 2014. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61
f8f06494c97b1afccf3-Paper.pdf

[15] C. H. Lin, H.-Y. Lee, Y.-C. Cheng, S. Tulyakov, and M.-H. Yang,
‘‘InfinityGAN: Towards infinite-pixel image synthesis,’’ in Proc. Int.
Conf. Learn. Represent., 2022. [Online]. Available: https://api.semantic
scholar.org/CorpusID:238419701

[16] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
‘‘Analyzing and improving the image quality of StyleGAN,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 8110–8119.

[17] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
‘‘GANs trained by a two time-scale update rule converge to a local Nash
equilibrium,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 6629–6640.

[18] L. A. Gatys, A. S. Ecker, and M. Bethge, ‘‘A neural algorithm of artistic
style,’’ 2015, arXiv:1508.06576.

[19] L. Gatys, A. S. Ecker, and M. Bethge, ‘‘Texture synthesis using
convolutional neural networks,’’ in Proc. Conf. Neural Inf. Process. Syst.,
vol. 28, 2015, pp. 262–270.

[20] J. Johnson, A. Alahi, and L. Fei-Fei, ‘‘Perceptual losses for real-time style
transfer and super-resolution,’’ in Computer Vision—ECCV 2016 (Lecture
Notes in Computer Science), vol. 9906, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham, Switzerland: Springer, 2016, doi: 10.1007/978-3-
319-46475-6_43.

[21] R. Bellini, Y. Kleiman, and D. Cohen-Or, ‘‘Time-varying weathering in
texture space,’’ ACM Trans. Graph., vol. 35, no. 4, pp. 1–11, Jul. 2016.

[22] L.-Y. Chen, I.-C. Shen, and B.-Y. Chen, ‘‘Guided image weathering using
image-to-image translation,’’ in Proc. SIGGRAPH Asia Tech. Commun.,
Dec. 2021, doi: 10.1145/3478512.3488603.

[23] J. Dorsey and P. Hanrahany, ‘‘Modeling and rendering of metallic patinas,’’
in Proc. ACM SIGGRAPH Courses, 2006, p. 2-es.

[24] J. Dorsey, H. K. Pedersen, and P. Hanrahan, ‘‘Flow and changes in
appearance,’’ in Proc. 23rd Annu. Conf. Comput. Graph. Interact. Techn.,
1996, pp. 411–420.

[25] J. Dorsey, A. Edelman, H. W. Jensen, J. Legakis, and H. Pedersen,
‘‘Modeling and rendering of weathered stone,’’ in Proc. 26th Annu. Conf.
Comput. Graph. Interact. Techn., 1999, pp. 225–234.

[26] E. Paquette, P. Poulin, and G. Drettakis, ‘‘The simulation of paint cracking
and peeling,’’ in Proc. Graph. Interface Conf., 2002, pp. 59–68.

[27] C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, ‘‘A physically-
based model for rendering realistic scratches,’’ Comput. Graph. Forum,
vol. 23, no. 3, pp. 361–370, Sep. 2004.

[28] B. Desbenoit, E. Galin, and S. Akkouche, ‘‘Simulating andmodeling lichen
growth,’’ Comput. Graph. Forum, vol. 23, no. 3, pp. 341–350, Sep. 2004.

[29] A. Ishitobi, M. Nakayama, and I. Fujishiro, ‘‘Visual simulation of
weathering coated metallic objects,’’ Vis. Comput., vol. 36, nos. 10–12,
pp. 2383–2393, Oct. 2020.

[30] A. Ishitobi,M.Nakayama, and I. Fujishiro, ‘‘Visual simulation of crack and
bend generation in deteriorated films coated onmetal objects: Combination
of static fracture and position-based deformation,’’ Vis. Comput., vol. 39,
no. 8, pp. 3403–3415, Aug. 2023.

[31] S.Merillou, J.-M.Dischler, andD.Ghazanfarpour, ‘‘Corrosion: Simulating
and rendering,’’ in Proc. Graph. Interface Conf., Jun. 2001, pp. 167–174.

[32] J. Gu, C.-I. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. Nayar,
‘‘Time-varying surface appearance: Acquisition, modeling and rendering,’’
ACM Trans. Graph., vol. 25, no. 3, pp. 762–771, Jul. 2006.

[33] J. Lu, A. S. Georghiades, A. Glaser, H. Wu, L.-Y. Wei, B. Guo, J. Dorsey,
and H. Rushmeier, ‘‘Context-aware textures,’’ ACMTrans. Graph., vol. 26,
no. 1, p. 3-es, Jan. 2007.

[34] B. Sun, K. Sunkavalli, R. Ramamoorthi, P. N. Belhumeur, and S. K. Nayar,
‘‘Time-varying BRDFs,’’ IEEE Trans. Vis. Comput. Graphics, vol. 13,
no. 3, pp. 595–609, May 2007.

[35] J. Wang, X. Tong, S. Lin, M. Pan, C. Wang, H. Bao, B. Guo,
and H.-Y. Shum, ‘‘Appearance manifolds for modeling time-variant
appearance of materials,’’ ACM Trans. Graph., vol. 25, no. 3, pp. 754–761,
Jul. 2006.

[36] S. Du and Y. Song, ‘‘Multi-exemplar-guided image weathering via texture
synthesis,’’ Vis. Comput., vol. 39, no. 8, pp. 3691–3699, Aug. 2023.

[37] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk, ‘‘State of the art in
example-based texture synthesis,’’ in Proc. Eurographics, State Art Rep.,
EG-STAR, Mar. 2009, pp. 93–117.

[38] A. A. Efros and W. T. Freeman, ‘‘Image quilting for texture synthesis
and transfer,’’ in Proc. 28th Annu. Conf. Comput. Graph. Interact. Techn.,
Aug. 2001, pp. 341–346.

[39] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, ‘‘Texture optimization
for example-based synthesis,’’ ACM Trans. Graph., vol. 24, no. 3,
pp. 795–802, Jul. 2005.

[40] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi,
‘‘Describing textures in the wild,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2014, pp. 3606–3613.

[41] D. Dai, H. Riemenschneider, and L. V. Gool, ‘‘The synthesizability of
texture examples,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 3027–3034.

[42] N. Jetchev, U. M. Bergmann, and R. Vollgraf, ‘‘Texture synthesis with
spatial generative adversarial networks,’’ 2016, arXiv:1611.08207.

[43] U. Bergmann, N. Jetchev, and R. Vollgraf, ‘‘Learning texture manifolds
with the periodic spatial GAN,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 469–477.

[44] T. Karras, T. Aila, S. Laine, and J. Lehtinen, ‘‘Progressive growing
of GANs for improved quality, stability, and variation,’’ in Proc. Int.
Conf. Learn. Represent., 2018. [Online]. Available: https://openreview.net/
forum?id=Hk99zCeAb

[45] T. Karras, S. Laine, and T. Aila, ‘‘A style-based generator architecture for
generative adversarial networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 4217–4228.

[46] R. Xu, X. Wang, K. Chen, B. Zhou, and C. C. Loy, ‘‘Positional encoding
as spatial inductive bias in GANs,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 13564–13573.

[47] E. Ntavelis, M. Shahbazi, I. Kastanis, R. Timofte, M. Danelljan, and
L. Van Gool, ‘‘Arbitrary-scale image synthesis,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 11523–11532.

[48] C. H. Lin, C.-C. Chang, Y.-S. Chen, D.-C. Juan, W. Wei, and H.-T. Chen,
‘‘COCO-GAN: Generation by parts via conditional coordinating,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 4511–4520.

[49] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, ‘‘Diversified
texture synthesis with feed-forward networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 266–274.

VOLUME 11, 2023 120417

http://dx.doi.org/10.1109/TCSVT.2023.3299314
http://dx.doi.org/10.1145/3528233.3530757
http://dx.doi.org/10.1007/978-3-319-46475-6_43
http://dx.doi.org/10.1007/978-3-319-46475-6_43
http://dx.doi.org/10.1145/3478512.3488603

G. Hao et al.: Natural Image Decay With a Decay Effects Generator

[50] A. Radford, L. Metz, and S. Chintala, ‘‘Unsupervised representation
learning with deep convolutional generative adversarial networks,’’
in Proc. Int. Conf. Learn. Represent., 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:11758569

[51] C. Lu, R. E. Turner, Y. Li, and N. Kushman, ‘‘Interpreting spatially
infinite generative models,’’ in Proc. 37th Int. Conf. Mach. Learn.
Workshop Hum. Interpretability (WHI), 2020. [Online]. Available:
https://arxiv.org/abs/2007.12411

[52] S. Bell, K. Bala, and N. Snavely, ‘‘Intrinsic images in the wild,’’ ACM
Trans. Graph., vol. 33, no. 4, pp. 1–12, Jul. 2014.

[53] Q. Mao, H.-Y. Lee, H.-Y. Tseng, S. Ma, and M.-H. Yang, ‘‘Mode seeking
generative adversarial networks for diverse image synthesis,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2019, pp. 1429–1437.

[54] G. Georgiadis, A. Chiuso, and S. Soatto, ‘‘Texture compression,’’ in Proc.
Data Compress. Conf., Mar. 2013, pp. 221–230.

[55] P. Kraehenbuehl and V. Koltun, ‘‘Parameter learning and convergent
inference for dense random fields,’’ in Proc. Int. Conf. Mach. Learn., 2013,
pp. 513–521.

[56] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, ‘‘Color transfer
between images,’’ IEEE Comput. Graph. Appl., vol. 21, no. 4, pp. 34–41,
2001.

[57] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ inProc. Int. Conf. Learn. Represent., 2015.
[Online]. Available: http://arxiv.org/abs/1409.1556

[58] W. Xia, Y. Zhang, Y. Yang, J.-H. Xue, B. Zhou, and M.-H. Yang, ‘‘GAN
inversion: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 45,
no. 3, pp. 3121–3138, Mar. 2023.

GUOQING HAO received the M.S. degree from
the Department of Computer Science, University
of Tsukuba, Japan, in 2021, where he is currently
pursuing the Ph.D. degree. He is a Research
Assistant with the National Institute of Advanced
Industrial Science and Technology, Japan. His
research interests include image processing, com-
puter vision, and computer graphics.

SATOSHI IIZUKA received the Ph.D. degree
in engineering from the University of Tsukuba.
He is currently an Associate Professor with the
Faculty of Engineering, Information and Systems,
University of Tsukuba. His research interests
include computer graphics and vision, including
image processing and editing based on machine
learning.

KENSHO HARA received the B.E. degree in infor-
mation engineering, the M.S. degree in informa-
tion science, and the Ph.D. degree in information
science from Nagoya University, in 2012, 2014,
and 2017, respectively. He is currently a Research
Scientist with the National Institute of Advanced
Industrial Science and Technology. His research
interest includes video action recognition.

HIROKATSU KATAOKA received the Ph.D.
degree in engineering from Keio University,
in 2014. He is currently a Senior Researcher
with the National Institute of Advanced Industrial
Science and Technology (AIST). His research
interests include computer vision and pattern
recognition, especially in large-scale dataset for
image and video recognition. He has received
the ACCV 2020 Best Paper Honorable Mention
Award, the AIST 2019 Best Paper Award, and the

ECCV 2016 Workshop Brave New Idea.

KAZUHIRO FUKUI (Member, IEEE) received
the Ph.D. degree from the Tokyo Institute of
Technology, in 2003. He joined the Toshiba Cor-
porate Research and Development Center. He was
a Senior Research Scientist with the Multimedia
Laboratory. He is currently a Professor with
the Department of Computer Science, Graduate
School of Systems and Information Engineering,
University of Tsukuba. His research interests
include the theory of machine learning, computer

vision, pattern recognition, and their applications. He is a member of the
SIAM.

120418 VOLUME 11, 2023

