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ABSTRACT The Controller Area Network (CAN) is a major protocol for in-vehicle network
communications. This protocol is simple and efficient for message transmission and the smooth functioning
of an in-vehicle system. On the other hand, the weaknesses of this protocol, such as the ID-based arbitration
method for message transmission and lack of authentication mechanism, make it vulnerable to various
security attacks, including DoS attacks, Fuzzy attacks, impersonation attacks, and replay attacks. Since there
is no authentication mechanism for transmitted messages, we need a way to distinguish between normal and
attack messages. An intrusion detection system (IDS) is an option for this problem because it can raise
alarms when there are flaws in the system. IDS is very efficient for intrusion detection where messages with
the same IDs are transmitted periodically. The deviation from the normal pattern of message transmission
will force the IDS system to trigger alarms. Most studies on the CAN bus IDS system were based on a
supervised learning approach. On the other hand, the lack of labeled datasets and a huge amount of training
time make it inefficient for new attack patterns. This paper proposes a transfer learning-based IDS system
for in-vehicle network intrusion detection. The extraction of quality features using transfer learning (TL)
and appropriate fine-tuning methodology is used in the proposed model. This approach can use the available
intrusion attack dataset to detect new attacks. The experimental results indicated that the proposed deep
hybrid transfer learning (TL) model detects new threats with a high accuracy of approximately 99.9% when
compared to state-of-the-art methods, while also lowering training and testing time by more than 30%.

INDEX TERMS VANETs, intrusion detection system (IDS), transfer learning, supervised learning, security.

I. INTRODUCTION
In-vehicle networks serve as the foundation for modern
automobile operation. The in-vehicle system consists of
various Electronic Control Units (ECUs), such as Trans-
mission Control Unit (TCU), Anti-lock Braking System
(ABS), Body Control Module (BCM), Speed Control Unit,
Powertrain Control Module (PCM), and Door Control
Unit (DCU) [1]. These ECUs have their specific func-
tions for safe control of the vehicle. These ECUs are
connected with the standard protocol. Various protocols
are used for in-vehicle network communications, including
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Controller Area Network (CAN), CAN Flexible Data-Rate
(CAN FD), Ethernet, FlexRay, Local Interconnect Network
(LIN), and Media Oriented Systems Transport (MOST)
protocol [1].

CAN is the standard protocol used widely for the
interconnection of various ECUs in in-vehicle networks.
This protocol is robust with a less complex design. It is
popular among automobile manufacturers because of its low
design cost. Despite these advantages, security has not been
considered in the design of this protocol. Therefore, this
protocol can be vulnerable to security attacks. There is no
information regarding the sender and receiver of the message
in this protocol. Fig. 1 depicts the CAN bus protocol frame
format. This protocol is a broadcast-type protocol. The CAN
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message is broadcast throughout the network, and the receiver
node can decide whether to accept or reject it based on the
priority mechanism. The protocol works based on a priority
mechanism. It uses the Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) arbitration mechanisms [1].
The messages with the higher priority (i.e., lower id) will
suppress the flow of low-priority messages. For example,
the messages for PCM have higher priority over the DCU
messages. This prioritization mechanism allows hackers to
inject higher-prior messages to control the bus protocol.
Hoppe, Miller, and Nie reported practical attacks exploiting
the CAN bus vulnerability [2], [3], [4]. These authors were
able to launch physical as well as remote attacks on modern
vehicles. Miller and Valasek hacked Jeep Cherokee and
demonstrated the vulnerability of the CAN networks by
disabling the critical functionality of the vehicle [3]. The
CAN bus arbitration mechanism and lack of message encryp-
tion lead to various network vulnerabilities. Various attacks,
such as DoS, fuzzy, replay, spoofing, and impersonation
attacks, are the common attack types on in-vehicle CAN
bus networks [1], [5]. Messages exchanged between various
ECUs via the CAN bus do not meet the security requirements.
Unfortunately, these messages are neither authenticated nor
encrypted [6].

Vehicles are becoming smarter, with connections to other
vehicles and external networks established. The cellular
5G and New Radio (NR) Vehicle-to-Everything (V2X)
technology (i.e., cellular 5G NR V2X) will lead the modern
vehicular ad-hoc networks (VANETs) [7], [8]. This V2X
communication technology can fulfill the latency, bandwidth,
networking, and security requirements essential for future
autonomous vehicles. The advances in this technology will
lead to an increase in vehicle security attacks. A previous
study [1] reported cases of attacks on these networks. A sig-
nificant rise in vehicular network attack surfaces is expected
as the development of smart and autonomous vehicles
accelerates in the coming future [9], [10], [11]. Furthermore,
issues such as trustworthiness of messages in VANET should
be handled properly [12]. The injection of falsemessagesmay
lead to collateral damage to a vehicle. The usage of various
sensors and cameras in the vehicle results in data availability.
The black box information can provide information regarding
vehicle collisions [13]. We can examine these data using
a data analysis technique that employs a machine learning
algorithm to discover and track accidents. In case for CAN
network, there is no chance of complete replacement of this
protocol in the near future. Therefore, security solutions are
needed to protect in-vehicular networks. Authentication and
encryption-based security solutions are inefficient because
many messages are generated in this network within mil-
liseconds. An intrusion detection system (IDS) is the best
option for these networks because the CAN messages follow
specific patterns and any deviations from these patterns can
be considered an anomaly. The report from the IDS system
can be used by the network administrator to take early
action.

An intrusion detection system is a software program that
can detect suspicious activity in a network or a system.
The IDS types can be signature-based, anomaly-based,
misuse-based, and hybrid intrusion detection systems [6].
An anomaly-based intrusion detection system is suitable
for CAN messages because regular CAN messages show
discernible patterns that set them apart from abnormal
messages, including consistent repetition of an ID at regular
intervals [5] and specific arrangements among a group of IDs
[14]. With this approach, the injected messages that show
deviations from normal messages can be detected easily.
Deep learning has been widely used for intrusion detection
in CAN networks. However, deep-learning based security
solutions for in-vehicle networks require a large amount of
training data. Despite the security flaws, the in-vehicle dataset
is not readily available for security analysis. The automotive
industry can not publicize vehicle data because of security
concerns and other reasons [14], [15]. The collection and
labeling of CAN data are expensive and time-consuming.
With technological advances, new attack patterns also appear
in vehicular networks. The IDS system should be dynamic
and adaptive enough to detect new intrusion messages. With
conventional machine learning algorithms, the model needs
to be trained whenever a new attack pattern is detected. Thus,
there is a need of an algorithm that can use the features
learned from previous learning algorithms and utilize it for
future intrusion detection purposes. Transfer learning (TL)
can be an optimal solution for intrusion detection in this
network, because it has the capability of knowledge transfer
and learning in a dynamic manner [16]. TL is a machine
learning strategy that uses the features acquired from one
task to solve another. Pre-trained models are developed on
large-scale datasets from a certain domain and are used to
train a new model, reducing training time and generalization
error. When there is insufficient data to train a full-scale deep
learning model from scratch, this strategy can be useful.

This paper provides with experiments on the feasibility
of TL for intrusion detection in CAN networks. TL can
be an option for mitigating the drawbacks observed when
deploying traditional machine learning and deep learning-
based IDS systems. For this purpose, a hybrid transfer
learning-based IDS model was developed using CNN and
LSTM machine learning algorithms. The effectiveness of
the proposed model was tested using two sets of real-world
datasets and evaluated based on several machine learning
evaluation metrics.

FIGURE 1. CAN bus protocol frame format.
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A. CONTRIBUTIONS
The main contributions of this paper can be summarized as
follows:

• This paper proposes an IDS for CAN based on deep
learning. Unlike previous studies that used individ-
ual machine-learning models, such as CNN, LSTM,
or GAN, the proposed system employs a hybrid
approach combining CNN and LSTM. By leveraging
CNN, the system effectively extracts distinctive fea-
tures characterizing individual messages, while LSTM
enables the correlation of these features among subse-
quent messages, leading to the accurate identification of
a series of attack messages.

• Furthermore, a transfer-learning method specifically
tailored for the hybrid model was also proposed. This
approach allows the model to learn new attacks while
leveraging the knowledge gained from previous attacks,
substantially reducing the time and effort required to
retrain the entire model from scratch.

• To validate the effectiveness of our proposed methods,
we conducted evaluations using two real-world datasets
containing nearly 21 million CAN messages, including
four types of attack patterns. The results demonstrate
that our IDS successfully detects attack messages with
an accuracy exceeding 0.999, outperforming previous
schemes. Furthermore, our transfer-learning approach
reduces training time by more than 30% of the time
required for training from scratch while maintaining a
high level of accuracy.

The abbreviations used in this paper are listed in Table 1.

B. PAPER ORGANIZATION
The remainder of the paper is organized as follows. Section II
outlines the related studies on machine learning-based IDS
systems in CAN networks. Section III describes the proposed
transfer learning-based anomaly detection system. Section IV
provides experimentation and performance analysis of the
proposed algorithm. Finally, the paper is concluded with
future work in Section V.

II. RELATED WORK
Academia and industry are interested in developing a solution
for underlying vulnerabilities in CAN Bus networks. The
use of machine learning and deep learning for anomaly
identification in CAN networks has attracted considerable
attention. The widespread use of video cameras and sensors,
such as light detection and ranging (LIDAR) sensors, radio
detection and ranging (RADAR) sensors, and ultrasonic
sensors, has aided the development of autonomous and
self-driving vehicles. The in-vehicle networks support the
exchange of sensory signals between the ECUs. These
sensors generate vast amounts of data that can be used to
discover anomalies using machine learning algorithms and
data analysis techniques.

Avatefipour et al. proposed a modified one-class support
vector machine algorithm for anomaly detection in CAN

bus networks [5]. The messages in CAN networks exhibit
some patterns from the repetition of a specific ID at regular
intervals. The main idea is that deviations from usual
message patterns are considered abnormal. The proposed
algorithm is optimized and selects the best parameters for the
anomaly detection model. The model consists of training and
testing phases. During the training phase of one-class SVM,
a meta-heuristic optimization approach is used to identify the
appropriate kernel type and function that provides the optimal
hyperplane and the ideal support vectors.

Hanselmann et al. proposed an unsupervised machine
learning algorithm using long short-term memory (LSTM)
networks [14]. The authors proposed a CANet architecture
that captures the temporal features of each individual CAN
ID with their corresponding LSTM input model. The output
of all input models was aggregated and passed into a
fully connected autoencoder subnetwork. This allowed the
network to consider the interdependence of signals from all
IDs. All potential input signals were reconstructed at each
point in time. The anomaly score could be calculated using
the reconstruction error between the correct signal levels and
their reconstruction.

Long Short-Term Memory (LSTM) has been proposed for
intrusion detection in CAN bus communications [6]. Various
attacks, such as Denial of Service (DoS), fuzzy attack, and
spoofing attacks for handle angle and vehicle speed, have
been examined on actual Toyota hybrid cars. The authors
generated real and synthetic datasets for experimentation
purposes. The dataset was preprocessed and fed to the
LSTM network, where suitable hyperparameter tuning was
performed. The experimental results revealed the high
accuracy of 99.995% and low false positive rates of the
proposed algorithm.

Seo et al. proposed a Generative Adversarial Network
(GAN)-based intrusion detection system that uses a deep
learning model to detect unknown attacks using only normal
data [17]. The proposed model consists of two discriminators
and one generator. The first discriminator is trained with
normal and abnormal CAN data images. In the second
stage of the training process, normal CAN images and fake
images produced by the generator are passed to the second
discriminator. This discriminator will discriminate whether
the received images are normal CAN or abnormal.

An evolutionary optimization algorithm using a deep
denoising autoencoder has been developed as an anomaly
detection framework [18]. The authors discuss the difficulties
of premature convergence and optimal network structure
selection in deep learning algorithms and propose an
ecogeography-based optimization strategy for dealing with
these concerns.

Deep convolutional neural networks have been studied for
intrusion detection in in-vehicle networks [19]. The authors
developed deep learning architecture using the Inception-
ResNet model, and experimentation was performed by
injecting attack messages in a real vehicle. The modi-
fied inception resnet model was designed to categorize

VOLUME 11, 2023 120965



N. Khatri et al.: TL-Based IDS for a CAN

TABLE 1. List of abbreviations.

29× 29× 1 input data into two classes, whereas the original
inception resnet will classify 299 × 299 × 3 input images
into 1000 classes. Their work was the first to use a CNN-
based deep learning algorithm for intrusion detection in
CAN networks. They also pioneere in building a labeled
in-vehicle network attack dataset that includes normal and
attack patterns. DoS, fuzzy, and impersonation injection
attacks were carried out in a real vehicle using custom-built
Raspberry Pi devices connected to the in-vehicle network via
the OBD-II connection in the vehicle. Extensive simulations
were carried out to evaluate the proposed deep learning
algorithm on the dataset they produced. Their method
reduced the false negative and error rates and improved the
precision, recall, and f1 scores.

Mehedi et al. suggested a transfer learning-based intrusion
detection system for electric vehicles [9]. Their research
focused on anomaly detection using a deep learning-based
transfer learning approach with the optimal feature selection
methodology. The deep learning model used was the LeCun
Network (LeNet) model, which was evaluated on a real-
world dataset consisting of flooding, spoofing, replay, and
fuzzing attack patterns. The experimentation consisted of two
phases: training and validation. The LeNet model was trained
with a vast data during the training process, and the optimal
model parameters that can improve learning were chosen.
The model was evaluated with an unknown dataset to forecast
the occurrence of an intrusion. The results showed that the
LeNet model could achieve 98.10% accuracy, which is higher
than inception and resnet networks.

Tariq et al. [20] proposed transfer learning based IDS using
one-shot learning. In one-shot learning, they need to train
only one instance of an intrusion type. This training can be
used to detect all the instances related to a particular intrusion
category. Using transfer learning, the authors showed that
their method could detect unknown attack types with a few
new training datasets.

The feasibility study of the multi-task transfer learning
for the case of the lack of labeled datasets or the case of
a small number of training datasets has been performed
by Otoum et al. [21]. The common features from two sets
of different datasets were mapped during the preprocessing
stage and passed to the deep learning algorithms. They
proposed the inductive multi-task transfer learning algorithm
for transferring knowledge gained from one set of datasets to
the other with the same feature space.

A previous study [16] reported the disadvantages of
an IDS system due to the lack of labeled datasets. The
authors demonstrated with experimentation the importance
of transfer learning for developing a network IDS system
with fewer new labeled datasets. In contrast to tradi-
tional machine learning and deep learning algorithms, the
transfer-learning approach can work with fewer labeled
datasets, reducing the complexity and training time of the
algorithm.

Khademi, Ebrahimi, and Kordy investigated the use of a
transfer learning-based CNN and LSTM hybrid system for
EEG signal classification [22]. The hybrid neural network
models were created utilizing customized CNN, ResNet-50,
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and Inception-v3 networks. The spatial and sequential
properties of the EEG data were extracted using thesemodels.
The pre-trained network was created with ResNet-50 and
Inception-v3 and the weights were frozen in order to perform
transfer learning. In our paper, we use transfer learning to
develop an intrusion detection system for CAN networks.
To the best of our knowledge, this work is the first attempt
to utilize a transfer learning-based CNN and LSTM hybrid
system in this IDS field.

Sun et al. [23] developed an attention model (i.e., CLAM)
for anomaly detection for CAN networks using hybrid CNN-
LSTM algorithm. For each collection of messages with the
identical IDs, the authors built a distinct CLAM model.
The raw CAN bus sensor signals are input to the attention
model consisting of one-dimensional convolution (Conv1D)
layer and the bidirectional LSTM layer. These layers will
extract suitable features for the CAN sensory signals and any
deviations from these signals is treated as an anomaly. This
model have several drawbacks. The attacker can investigate
the CAN message IDs and its functionality in the control of
a specific functions of a vehicle. Then, he/she can launch
an attack with the injection of combined CAN messages
with heterogeneous IDs. Since the CLAM model is built for
each ID separately, it will fail to classify this type of attacks
including several IDs. Secondly, the model is built on only
15 different IDs with suppression of several IDs due to lack
of data payload. Thus, their IDS system might fail to classify
attacks on the IDs, where the model has not been established.
In our paper, we build an intrusion detection system using
transfer learning model which works in a supervised manner.
The pre-trained model for transfer learning is developed
using the hybrid CNN-LSTM algorithm. The features learned
through the algorithm can be utilized to detect new attacks
with a high detection accuracy.

Lo et al. proposed a hybrid intrusion detection system
using the combination of CNN and LSTM deep learning
algorithms [24]. Their proposed HyDL-IDS model is based
on supervised learning and have high detection accuracy
for attack patterns in CAN networks. The authors showed
that the combination of features related to space and time
can be a valuable insight for sophisticated attack detection
purposes. The authors claim that the detection accuracy of
their approach is approximately 100% through the exper-
imentation performed on several attacks like DoS, fuzzy,
spoofing gear, and RPM attacks. Despite the performance of
the model, the authors do not provide any analysis on the
computational overhead of the algorithm. The training time
of the algorithm is high and it may not be suitable for CAN
networks with limited computational ability. Thus, our paper
proposes a transfer learning based approach for IDS in CAN
networks. With the use of transfer learning, we can minimize
the computational time for training a deep learning algorithm
and increase the efficiency of IDS system. This approach
further has the ability to dynamically detect new intrusion
attacks that can be generated in the future and does not require
us to train the algorithm from scratch.

Table 2 lists the classification of related works based on
several metrics.

III. PROPOSED ANOMALY DETECTION SYSTEM
This section contains a problem statement and a solution
formulation for developing CAN bus IDS. The proposed
IDS system is illustrated with explanations and diagrams as
required.

A. PRELIMINARIES
This section provides the background knowledge on neural
networks for developing an intrusion detection system using
the hybrid cnn-lstm model and transfer learning approach.
The theoretical and mathematical formulations for the CNN
and LSTM models are explained.

1) CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN is a deep learning algorithm that can take an input
image, give value (in the form of learnable weights and
bias) to numerous objects in the image, and distinguish
one from another. CNNs are typically designed for image
analysis tasks, such as image and video recognition, medical
image analysis, and image classification. This neural network
architecture transforms large input images into smaller
subsets called filters. The matrix operation between the filters
and the input image section will help extract meaningful
features. Fig. 2 shows the CNN network architecture of
LeNet. A CNN network consists of various layers, such as
convolution, pooling, and fully connected layers. Multiple
convolution and pooling operations can be repeated, followed
by one or more fully connected layers. Convolution is a linear
operation that produces the feature map by multiplying a set
of weights with the input image (n-dimensional matrices).
It extracts high-level features, such as edges, from an input
image. The feature map is generated through the sum of
the dot product between each element of the filter and the
input tensor matrix to produce a convoluted feature map. This
convoluted feature is then passed as input to the next layer of
the CNN model. Fig. 3 presents the process for producing a
convoluted feature map.

The ReLU activation function is applied after each
convolution layer to provide non-linearity to the network.
The activation function performs an elementwise nonlinear
transformation and sets all the negative pixels to 0. This
function attempts to solve the vanishing gradient problem
encountered when other activations, such as sigmoid or tanh,
are used. The equation for the ReLU activation function is
expressed as equation (1):

f (x) =

{
0, for x < 0,
x, for x ≥ 0

(1)

The pooling procedure, also known as downsampling,
reduces the dimensionality of each feature map. Downsam-
pling subsamples larger size feature maps to produce smaller
feature maps, keeping the most dominating features. Pooling
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FIGURE 2. Convolutional neural network.

FIGURE 3. Process of convolution.

can control overfitting by reducing the number of parameters
and calculations in the network. Pooling can be implemented
using a variety of nonlinear functions. The most common
form of pooling used in CNN is called max pooling, which
divides the input image into rectangles and outputs the
maximum for each sub-region.

After a series of convolution and pooling operations, there
is a fully connected (FC) layer that produces the classification
output of the CNN algorithm. The working mechanism of
FC layers is the same as the traditional ANN, such as multi-
layer perceptron. The high-level features extracted after the
convolution and pooling operations are flattened to a one-
dimensional vector form and are fed as input to the FC layer.
The final layer of the FC layer is a classifier that classifies
the input images into several classes, as in a classification
problem.

2) LONG SHORT TERM MEMORY (LSTM) NETWORK
LSTM is a particular type of recurrent neural network (RNN)
different from the standard feedforward neural networks.
The difference is due to the feedback connection in the
LSTM network, which works well for sequential and time
series data [6]. Hochreiter and Schmidhuber proposed the
LSTM in 1997, which can handle long-term dependencies
(i.e., memorize information for more extended periods)
[25]. A traditional RNN suffers from the vanishing gradient
problem. LSTM was developed to solve this problem. Fig. 4
shows the architecture of the LSTM cell. A LSTM unit
comprises a cell, an input gate, an output gate, and a forget
gate. The cell functions as a memory, with the three gates
updating and controlling the cell states. The input to the

LSTM network is the input vector it and the hidden input
vector ht−1. The output is a vector ht , as shown in Fig. 4.
The forget gate decides what information to store and which
information to forget from the cell state Ct−1 based on the
current input it and the previous cell output ht−1. The sigmoid
activation function is used for this purpose, which generates
an output with values ranging between 0 and 1. The output 1
means to store that information, and 0 means to forget the
information from the cell. The output of the forget gate ft is
computed as equation (2).

ft = σ (Wf × [ht−1, it ] + bf ) (2)

where Wf and bf denote the weights and bias for the forget
gate.

The input gate decides on the new information that needs
to be updated in the new cell state Ct . It can be calculated as
nt in (3).

nt = σ (Wn × [ht−1, it ] + bn) (3)

where Wn and bn denote the weights and bias for the input
gate.

The vector of the cell state is calculated using the
hyperbolic tangent (tanh) function of the current input and
the last hidden state, as expressed in equation (4).

C̃t = tanh(WC × [ht−1, it ] + bC ) (4)

where WC and bC denote the weights and bias for the input
gate.

The updated new cell state can be calculated as
equation (5).

Ct = ft × Ct−1 + nt × C̃t (5)

The output gate activation is computed by a sigmoid
function as expressed in equation (6).

ot = σ (Wo × [ht−1, it ] + bo) (6)

where Wo and bo denote the weights and bias for the output
gate.

Finally, the output vector is calculated by multiplying
equations (6) and (7).

ht = ot × tanh(Ct ) (7)
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FIGURE 4. Long short-term memory (LSTM) network architecture.

B. PROBLEM STATEMENT
The vehicular network environment is unsafe and exposed
to security vulnerabilities that must be appropriately
addressed. Attackers can launch several attacks, such as
flooding, spoofing, replay, and fuzzing attacks on CAN
networks [9], [26].

• Flooding/DoS attack: In this attack, the hacker injects
a large number of high-priority messages into the bus
in a short period of time. This attack floods the bus
with bogusmessages, leading to the suppression of other
valid message requests. This attack results from the
ID-based priority scheme of the CAN network.

• Spoofing attack: In this form of attack, the hacker injects
fake CAN IDs that appear similar to authentic CAN bus
message IDs. It is launched to control specific vehicle
system capabilities, such as brake control.

• Replay attack: Hackers gather CAN messages over a set
time and replay them into the bus protocol.

• Fuzzing attack: Hackers inject bogus messages with
faked IDs and random data values to disrupt the vehicle’s
normal operation.

Traditional machine learning algorithms and deep learning
algorithms require a large number of training datasets for
anomaly detection in CAN networks. On the other hand, the
unavailability of large training datasets and computational
complexity hinders the development of deep learning-based
IDS systems for vehicular security. Furthermore, the IDS
system should be dynamic and capable of detecting new
attack types in a timely manner. The vulnerabilities in the
CAN bus protocol can have serious consequences on the
operation of fully autonomous vehicles governed by the V2X
(vehicle-to-everything) technology in the near future. Thus,
a different approach is needed to solve these issues. The
following subsection provides a detailed explanation of the
solution approach for mitigating the above-mentioned issues.
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C. PROBLEM FORMULATION
Let us first define a domain and task. A domain D is
comprised of a feature space x and a marginal probability
distribution P(X ), where X = {x1, x2, x3, . . . . . . , xn} ∈ x are
the ith vectors in the feature space [27].

Consider there is a domain D, which is given in
equation (8).

D = {x,P(X )} (8)

Given a D, a task is comprised of a label space y and
an objective prediction function f (·), which is given in
equation (9).

T = {y, f (·)} (9)

The task T is learned by the labeled training datasets. The
training dataset consists of features and labels as {xi, yi},
where xi ∈ x and yi ∈ y. The prediction function f (x) can
be used to predict the label for some feature vector x. Let
Ds and Dt be the source and target domain, respectively. The
features and labels in the source domain are represented as
equation (10).

Ds = {(xs, ys)} = {(xs1 , ys1 ), (xs2 , ys2 ), . . . .., (xsn , ysm )}

(10)

where xsi ∈ xs are the features and ysi ∈ ys are
the corresponding labels of those features. The labels can
be either 0 (i.e., normal) or 1 (i.e., attack) for a binary
classification problem.

Similarly, the features and labels in the target domain are
represented as (11).

Dt = {(xt , yt )} = {(xt1 , yt1 ), (xt2 , yt2 ), . . . .., (xtn , ytm )} (11)

where xti ∈ xt is a feature and yti ∈ yt is the corresponding
label.

Consider a source dataset with a source domain Ds and
learning task Ts, and a target dataset with a target domain
Dt and learning task Tt . The goal of transfer learning is to
maximize the objective function ft (·) learning in the target
domainDt using the pre-trained features learned fromDs and
Ts as expressed in equation (12) [27].

Tt = {yt , ft (Dt |(Ds,Ts))} (12)

where Ds ̸= Dt , or Ts ̸= Tt .
The uniformity in the source and the target data samples

is maintained by the Maximum Mean Discrepancy (MMD)
equation, as expressed in (13) [9]. The equation calculates the
difference between the source domain and the target domain.
This strategy eliminates the need to train themachine learning
model each time an attacker launches a new attack. The
features learned from the source domain can be used to detect
novel attacks in future IDS system development projects.

Dist(F, xs, xt ) := sup
f ∈F

(
1
n

n∑
i=1

f (xsi ) −
1
m

m∑
i=1

f (xti ))
2 (13)

where xs and xt represent the features, and notation n and m
represent the number of features in the source dataset and the
target dataset, respectively.

D. PROPOSED MODEL
This section proposes a deep hybrid transfer learning model
for intrusion detection in CAN networks. Fig. 5 shows
the proposed model. The figure shows that the proposed
model consists of several stages: dataset preprocessing and
feature extraction, machine learning model development and
training, and anomaly detection. This paper further examines
these stages in the following sections.

1) DATASET PREPROCESSING AND FEATURE EXTRACTION
Dataset preprocessing is the process of transforming raw
data into a format that a computer can easily parse. This
step is important for developing a machine-learning model
and making accurate predictions. The unstructured real-
world data comprises noises, null values, and redundant
data. Using this data as direct input to an algorithm for
feature interpretation is inappropriate. The use of noisy
data for a prediction can lead to incorrect outcomes. Thus,
dataset preparation is a crucial in maintaining data quality
for data analysis. Various preprocessing techniques, such as
standardization, handling of categorical variables, and one-
hot encoding, have been used. The dataset used for this
work was borrowed from the hacking and countermeasure
laboratory research work and consists of the car hacking
dataset [19] and car hacking: attack and defense challenge
2020 dataset [26]. The dataset samples were collected from
a vehicle during stationary and driving mode for capturing
patterns of CAN messages. The source and target datasets
were produced for developing a transfer learning model.
The source dataset consists of a large amount of data
(approx. 70%), and the remaining 30% are used as the target
dataset. The features used were Timestamp, Arbitration_ID,
Data_Field, and Class (i.e., label) fields. First, one column
data_field of eight bytes was split into eight-column data
ranging from D[0] to D[7] with eight bits each. Duplicates
were removed from the data, and the rows consisting of
null values were dropped with the Python dropna() function.
The hexadecimal values in the data were converted to base
16 integer form using the Python int() function.

The obtained CAN network dataset is in a CSV (Comma-
Separated Values) format. On the other hand, the CNNmodel
works better for the input of image data. Thus, we need
to convert the low dimensional dataset into image form
[28]. The CAN bus data is normalized to a scale of 0-255
because most image data pixel values are integers ranging
between 0 and 255. There are various feature scaling methods
in machine learning such as min-max normalization, stan-
dard scaler, robust scaler, L2 standardization, and quantile
normalization. Lokman et al. investigated on the impact of
different scaling methods on CAN network data [29]. Their
analysis showed that quantile normalization is appropriate for
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FIGURE 5. Proposed deep hybrid transfer learning model.

handling outliers compared to min-max and standardization
techniques. Quantile normalization was used to scale the
features in the proposed scheme. The quantile normalization
is expressed in equation (14) [29].

inf {x ∈ R : p ≥ F(x)} (14)

Images were generated for each class of normal and
intrusion patterns, including replay, flooding, DoS fuzzing,
and spoofing attacks. The target dataset was divided into train
and test datasets in the ratio of 80: 20 (i.e., 80% of the dataset
is used for training, and the remainder is used for testing the
TL model). The following subsections provide more details
on the hybrid CNN-LSTM model development procedures.

2) HYBRID DEEP LEARNING MODEL DEVELOPMENT
A hybrid deep learning model based on CNN-LSTM was
used to construct a pre-trained model. Fig. 5 depicts the use
of a hybrid model in developing a transfer learning-based
IDS system. Fig. 5 shows the complete procedure of the
training and testing phases. The hybrid CNN-LSTM model
is trained using the source dataset, which contains a large
amount of CAN intrusion datasets. A hybrid model based
on CNN-LSTM is used for this purpose. The hybrid model
can learn CAN bus message features based on spatial and
temporal feature extraction using the inbuilt capabilities of
the CNN and LSTM models. The CAN bus message exhibits
distinct patterns, and anomalous behaviors can be detected
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by examining these properties. This study employed a source
dataset that included DoS, flooding, replay, spoofing, and
normal CANmessage instances. Fuzzy attack datasets consist
of IDs and message patterns that resemble the normal CAN
message patterns. This confuses the IDS system and reduces
the detection ability of the machine-learning models. Fuzzy
attacks are difficult to detect because of this randomness in
data patterns. Thus, the system aims to detect complex fuzzy
attack types more accurately.

The hybrid model consists of convolution, pooling, LSTM,
and fully connected dense layers connected with each
other in sequence. The output from the first layer is
passed as input to the next subsequent layer in the series
until the output is generated. Fig. 6 shows the layerwise
architecture of the proposed hybrid model. The total number
of trainable parameters for the proposed model is 52,676.
The input layer consists of pixel values with the shape of
224 × 224 × 3. The input image has three color channels:
red, green, and blue. The first ConvNet (convolutional neural
network) calculates a two dimensional convolution given
an input and four dimensional filter to produce an output
shape of volume 222 × 222 × 32 (width, height, and depth,
respectively). The first convolutional layer (Conv2D) consists
of 32 feature maps with a convolution filter size of 3 × 3.
After the convolution operation, there is a pooling layer. The
maxpooling operation is performed on the nonlinear feature
maps obtained through the RELU activation function. The
size of the maxpooling layer is 2 × 2 filters with a stride
of two pixels. This operation will downsample each depth
slice in the input by two pixels along the spatial domain (i.e.,
width and height), resulting in a volume of 111 × 111 × 32.
Adding the pooling layer, another convolution layer, produces
a volume of 109 × 109 × 64. The layers were downsampled
to produce a volume of 64. The LSTM layer is added with
the number of units as 64 and the activation function as
RELU. Finally, the dense layer on top with four outputs is
added for both CAN intrusion detection datasets. Table 3 lists
the hyperparameters for the proposed hybrid CNN-LSTM
model.

3) TRANSFER LEARNING AND FINE-TUNING
The TL IDS model is trained on a sufficiently large source
dataset and can be used as the basic model for intrusion
detection in target datasets containing unique attack types
with a small number of training instances. With this method,
the target model can use the learned feature maps from the
source model instead of training from scratch. This strategy
can also save training time and improve the performance of
the IDS system. The general working of the TL-based IDS
system is as follows.

• Utilize the layers from the pretrained model of the
source dataset and freeze them to save the features
learned for future training.

• Add new layers on top of the frozen layers that can be
trained for the target dataset and learn the old features.

FIGURE 6. Architecture of the hybrid CNN-LSTM model.

• Fine tuning: unfreeze the top layers of the pre-trained
model and train alongside the new classifier.

Freezing a model sets the weight of the model layer
to non-trainable from trainable. This will prevent weights
in the specified layer from being updated during training.
This can be achieved with pretrained_model.trainable =

False function in keras Dense layers. The approach to
developing a TLmodel is a feature extraction and fine-tuning.
In feature extraction, relevant features from the new samples
are extracted using the images learned from the pre-trained
network. A new classifier on top of the pretrained model was
trained to reuse the feature mappings learned before for the
dataset.

Fine-tuning is a part of the transfer learning process in
which the pre-trained network weight (i.e., hybrid CNN-
LSTM model) are used to train the new dataset. In this case,
only the top layers of the hybrid CNN-LSTMmodel are used
to train alongside the newly added classifier. In the event of
fine-tuning, some top layers of the frozen base model are
unfrozen, and train the newly added classifier layers. The
top layers of the pre-trained model on the target dataset are
trained simultaneously. Theweight parameter is tuned in such
a way that the proposed TL model will learn quality features
for the new dataset. Fig. 7 shows the process of fine-tuning
mechanism.

IV. EXPERIMENT SETUP AND PERFORMANCE
EVALUATION
This section examines the experimental parameters and
settings. The performance of the proposed TL-based IDS
system is evaluated based on various machine-learning
metrics. We used Python programming language and Keras
deep learning API for machine learning model development.
The experiment was performed on a Windows 11 Pro
machine with an Intel Core i7-9750H CPU @ 2.60GHz
processor, 16 GB RAM, and 1 TB hard drive.
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TABLE 3. Hyperparameters used for the hybrid CNN-LSTM model development.

FIGURE 7. Procedure for transfer learning and fine-tuning.

A. EXPERIMENTAL DATASET
The intrusion detection system using a deep learning
algorithm requires datasets containing the normal and
intrusive behaviors of the CAN in-vehicle systems. Very few
datasets are available online and are not usually public due
to security concerns [15]. The hacking and countermeasure
laboratory provides a car-hacking dataset that is open source
and can be used for this purpose. This study used two
sets of datasets provided by this community: i) the car-
hacking dataset and ii) the car-hacking attack and defense
challenge 2020 dataset for experimentation as listed in
Table 4. Table 5 and 6 list the description of the dataset.

TABLE 4. Two datasets for our experiment.

The attack types simulated in a car-hacking dataset are
DoS, fuzzy, RPM spoofing, and gear spoofing attacks. In the
DoS attack, high-priority message ID ’0000’ is injected in
0.3-millisecond intervals. In a fuzzy attack, random CAN ID

TABLE 5. The car-hacking dataset description.

and data values are injected every 0.5 milliseconds. Every
1-millisecond, spoofed CAN IDs and messages are injected
in the spoofing attack dataset. These datasets constitute
30-40 minutes of CAN messages. The attack types simulated
in a car hacking attack and defense challenge 2020 dataset
are flooding, spoofing, replay, and fuzzing attacks. This
study used the preliminary round training dataset containing
normal and four types of attacks consisting of 3,672,151
instances, among which 299,408 instances were the attack
types for car hacking: attack and defense challenge 2020.
The authors launched these attacks on a real vehicle (Hyundai
Avante CN7 for the car hacking: attack & defense challenge
2020 dataset) by connecting Raspberry Pi devices to the
CAN networks to inject fabricated messages via the OBD-
II port. Each dataset is in CSV format and consists of
attributes such as timestamp, arbitration ID, data length
code (DLC), data (D[0] - D[7], each with eight bytes), and
class.

The efficacy of the proposed transfer learning model was
evaluated by training the proposed model on a source dataset
with only normal data and three attack types: flooding,
spoofing, and replay attacks for car hacking attack and
defense challenge 2020 dataset. The source model in the case
of the car hacking dataset was developed based on a normal
dataset and three attack types: DoS, spoofing RPM, and
spoofing gear attack dataset. The fuzzy attack was kept silent
in sourcemodel training and is used to assess the performance
of transfer learning models. The fuzzy attack dataset contains
arbitrary IDs and data that a machine learning algorithm
would struggle to learn. The main goal of this paper is to
develop a transfer learning-based IDS system, which can
learn the features from the pre-trained hybrid CNN-LSTM
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TABLE 6. The car-hacking: attack and defense challenge 2020 dataset description.

model and use it to detect new attack types with higher
detection accuracy.

FIGURE 8. Confusion matrix.

B. EVALUATION METRICS
The evaluation metrics for the proposed IDS system are
derived from the confusion matrix or an error matrix. This
matrix structure will allow visualization of the performance
of the classification algorithm. The classification matrix
output can be binary and multiclass based on the dataset
and the algorithm used for prediction. The confusion matrix
provides various indicators such as true positive (TP), true
negative (TN), false positive (FP), and false negative (FN), for
measuring the performance, as shown in Fig. 8. TP is the test
results of the model predictions where it correctly predicts
the positive class. Similarly, TN is defined as the correct
prediction for the negative class. FP represents incorrect
predictions for the positive class. FN comprises the model

FIGURE 9. Confusion matrix of the proposed hybrid TL model for fuzzy
attack detection (Type A dataset).

FIGURE 10. Confusion matrix of the proposed hybrid TL model for varying
attack detection (Type A dataset).

predictions that provide incorrect predictions for the negative
class. The confusion matrix indicators provide the evaluation
metrics for the IDS interms of accuracy, precision, recall,
and f1-score. The ratio of accurately anticipated observations
to the total observations is defined as accuracy. The ratio
is calculated as (15). Precision is the ratio of true positives
over the total number of positive predictions by the machine
learning model, calculated using equation (16). Recall or
sensitivity measures true predictions over the number of
actual positive outcomes. These measures are computed
using equation (17). The F1-score is the harmonic mean
between precision and recall, which can be calculated using
equation (18).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(15)

Precision =
TP

TP+ FP
(16)

Recall/Sensitivity =
TP

TP+ FN
(17)

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

=
2 ∗ TP

2 ∗ TP+ FP+ FN
(18)

C. RESULTS AND DISCUSSION
This subsection reports the results and explanation of the
suggested TL-based IDS model. The accuracy, precision,
recall, f1-score, false positive rate (FPR), and ROC curves
are used to assess the model efficacy. The proposed model
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FIGURE 11. Training and validation accuracy/loss vs. epochs of the proposed hybrid TL model (Type A dataset).

FIGURE 12. Detection rate of the proposed hybrid TL model for fuzzy attack dataset (Type A dataset).

was compared to cutting-edge IDS systems for in-vehicle
network intrusion detection. The proposed hybrid TL model
was compared with the state-of-the-art algorithms [9], [17],
and [19]. Song et al. developed an IDS system based
on a CNN deep learning algorithm [19]. They used the

inception-ResNet model for intrusion detection for varying
datasets simulating normal and attack scenarios. Seo et al.
developed the IDS system using generative adversarial
networks [17]. In contrast, Mehdi et al. employed the
LeNet model for intrusion detection [9]. The results of the
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FIGURE 13. Detection rate vs. Epochs of the proposed hybrid TL model for varying attack types (Type A dataset).

FIGURE 14. False alarm rate vs Epochs of the proposed hybrid TL model for varying attack types (Type A dataset).

proposed work are also compared to the performance of CNN
and LSTM-based IDS systems. The following subsections
present the experimental findings of the proposed model on
two benchmark datasets: car-hacking and car-hacking: attack
& defense challenge 2020.

1) RESULTS FOR CAR HACKING DATASET
This subsection provides the results of the proposed TL
model for the car hacking dataset (i.e., Type A dataset).
Fig. 9 shows the confusion matrix of the proposed model
for fuzzy attack detection. The normal and fuzzy attack
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FIGURE 15. ROC curve of the proposed hybrid TL model for fuzzy attack detection (Type A dataset).

FIGURE 16. Confusion matrix of the proposed hybrid TL model on fuzzy
attack detection (Type B dataset).

types have been labeled as 0 and 1, respectively, in Fig. 9.
Results shows that the detection accuracy of the model for
fuzzy attack is 100%. The confusion matrix for varying
types of attacks detection is shown in Fig. 10. The labels 0,
1, 2, and 3 in the confusion matrix of Fig. 10 refers
to rpm, gear, DoS and fuzzy attack patterns, respec-
tively. The confusion matrix plot shows that the proposed
model can achieve better performance of 99.9% accuracy
for varying attack types. Fig. 11 shows the training and
validation accuracy/loss for diverse epochs for the proposed
hybrid TL model on the car hacking dataset. The accuracy

FIGURE 17. Confusion matrix of the proposed hybrid TL model for varying
attack detection (Type B dataset).

loss plot shows that the model can achieve convergence
for the accuracy and validation accuracy plots and the
loss and validation loss plots at approximately 10 epochs.
Figs. 12 and 13 show the detection rate of the proposed
hybrid TL model for single-attack detection and multiple-
attack detection. The false alarm rate vs. the number of
epochs is given in Fig. 14. Fig. 15 shows the ROC curve
of the proposed model. The ROC AUC curve value is
1.0. The results showed that the false positive rate of the
proposed model is significantly lower for all sets of the
datasets.
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FIGURE 18. False alarm rate of the proposed hybrid TL model for the fuzzy attack detection (Type B dataset).

FIGURE 19. ROC curve of the proposed hybrid TL model for the fuzzy attack detection (Type B dataset).

2) RESULTS FOR CAR HACKING: ATTACK AND DEFENSE
CHALLENGE 2020 DATASET
This subsection provides the experimentation results of the
proposed model performed on the car hacking: attack &
defense challenge 2020 dataset (i.e., Type B dataset). Fig. 16

provides the confusion matrix for fuzzy attack detection.
Fig. 17 shows the confusion matrix of the proposed model
on the presence of varying attack patterns. The labels 0, 1,
2, and 3 in the confusion matrix of Fig. 17 refer to replay,
flooding, spoofing, and fuzzing attack patterns, respectively.
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FIGURE 20. Training time comparison results (Type A dataset).

FIGURE 21. Testing time comparison results (Type A dataset).

The confusion matrix result shows that the model have 99.9%
accuracy, precision, recall, and f1-scores. Fig. 18 shows the
false alarm rate of the proposed model is in the range of
0.00 on Type B dataset. Finally, the ROC AUC curve is
shown in Fig. 19. The ROC AUC value is 0.99 which shows
the model has higher prediction scores. These experimental
results show that the proposed model has high detection
accuracy and low false alarm rates based on the comparative

analysis with the related works in the corresponding
domain.

Tables 7 and 8 provide the comparison results of the
proposed work with related works [9], [17], [19], [24] in
CAN in-vehicle security. The results show that the proposed
model achieved higher accuracy (100%), precision(100%),
recall(100%), f1-score(100%), ROC AUC(1.0), and lower
FPR(0.0) for fuzzy attack detection (Type A dataset),
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TABLE 7. Results comparison with the state-of-the-art algorithms for fuzzy attack detection for car hacking dataset.

TABLE 8. Results comparison with the state-of-the-art algorithms for fuzzy attack detection for car hacking: attack & defense challenge 2020 dataset.

TABLE 9. Comparative results of the proposed hybrid TL model with various deep learning algorithms for car hacking dataset.

TABLE 10. Comparative results of the proposed hybrid TL model with various deep learning algorithms for car hacking: attack & defense challenge
2020 dataset.

compared to state-of-the-art algorithms. These results con-
firmed the efficacy of the transfer learning approach and
its ability to learn the features from the previously trained
model. This transfer of knowledge from one set of datasets
to another datasets with new instances of attack patterns
can be an evolutionary approach for vehicular network
intrusion detection systems. Tables 9 and 10 compare the
proposed algorithm with CNN, LSTM, and HyDL IDS [24]
algorithms based on multiclass classification using both
datasets. Good results were achieved by our model using
transfer learning and tuning the appropriate weight during
the fine-tuning procedure. In addition, suitable temporal and
space-related characteristics were retrieved and learned from
the pre-trained hybrid CNN-LSTMmodel, which aided better
classification. The overall accuracy of the proposed model
for attack detection is 99.9% according to experimentation.
Whereas the use of individual CNN, LSTM, and hybrid
HyDL IDS resulted in lower accuracy results.Thus, the results
show that the proposed algorithm has advantages over the

other algorithms. Results prove that the proposed work is
efficient for fuzzy attack detection and other sets of attack-
type detection, such as DoS, spoofing, replay, rpm, and gear.
These results show that the proposed TL model is dynamic
and can detect various attack types with higher accuracy.

The intrusion detection system should be dynamic and
be able to detect new attack types with a higher detection
accuracy and lower false positive rates. The proposed hybrid
TL model-based IDS system can attain these characteristics.
The experiment results show that the proposed system can
detect more than one attack type with higher accuracy.
Furthermore, the false positive rate of the proposed model is
significantly lower than the previous works. Thus, this system
is considered as a robust IDS system. This has been proved
through experimentation and the generated results.

3) ANALYSIS OF TRAINING AND TEST TIME
This section compares the training and testing times for the
hybrid model utilizing the proposed transfer-learning (TL)
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approach to those for the hybrid CNN-LSTM and the HyDL
IDS [24]. Fig. 20 and Fig. 21 compare the transfer learning
strategy’s training and testing time to the hybrid CNN-
LSTM approach based on batch size. The results suggest that
by deploying a hybrid transfer learning-based IDS system,
training and testing costs can be reduced. Training time for
the hybrid CNN-LSTM model and HyDL IDS increased
significantly as batch size increased. However, as batch size
grows, the training and testing time of the Hybrid TL model
is lowered by more than 30%. As demonstrated in Fig. 21, the
hybrid TL model has the shortest testing duration compared
to other approaches. As a result, the suggested IDS system
is effective and can reduce training and testing time when
compared to simple CNN-LSTM-based IDS systems. The
analysis of training and testing time have been performed
based on Type A dataset.

V. CONCLUSION AND FUTURE WORKS
The vehicle network environment is not safe in today’s
connected world. With the developments in communication
technologies and the need to provide convenient services to
passengers, there is an enormous rise in the security risk to a
vehicle. On the other hand,manufacturers do not prioritize the
security of vehicles. There is an obvious trend of an increase
in the number of smart and autonomous vehicles. Although
manufacturers are developing smart and autonomous vehicles
that can perform multiple functions efficiently, the security
risks associated with these technologies have not been
thoroughly investigated. This paper offers a unique intrusion
detection approach based on transfer learning. The proposed
model has higher accuracy, precision, recall, and f1-score
(nearly 99.9% for each dataset), according to the results.
Furthermore, the TL technique reduces training and testing
time by more than 30% when compared to state-of-the-
art algorithms. The hybrid TL model can overcome the
weaknesses of present IDS systems and be a candidate
for future IDS systems because of its potential to detect
novel attack types with improved detection capabilities. The
experimental findings on two sets of datasets revealed the
superiority of the proposed methodology over state-of-the-art
methods. The results have been evaluated based on various
machine learning metrics, such as accuracy, precision,
recall, f1-score, false positive rate, and area under the
curve (AUC).

In the future, we will study the feasibility of transfer
learning approach in CAN networks under the influence of
malicious nodes launching sophisticated attack patterns.
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