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ABSTRACT Cost aggregation is a key step in stereo matching algorithms. Despite more than a decade
of development, most algorithms still encounter challenges such as high error rates in low-texture regions
and blurred edges. To improve matching accuracy, we propose a novel cost aggregation method based on
multi-path minimum spanning tree (mPMST) and superpixel in this paper. The mPMST offers more optional
paths for cost aggregation than the originalMST by treating the reference image as an eight-connected graph.
To improve both accuracy and computational efficiency, we innovatively run themPMST for cost aggregation
at the inside-superpixel level and superpixel level, which can obtain high accuracy in high-texture regions
and low-texture regions respectively. In order to effectively fuse the two-level aggregated costs, we propose
a novel adaptive weight based on calculating image entropy for each superpixel. This method can distinguish
between regions with high and low texture and quantify texture complexity. Additionally, a novel disparity
map refinement method is proposed to improve the quality of disparity maps using the novel cost aggregation
structure proposed. In the experimental studies, we test our method on Middlebury and KITTI benchmarks.
Average error rates of 5.94% forMiddlebury 2006 and 24.51% forKITTI 2015 are achieved. Our experiments
show improvement in accuracy compared with other state-of-the-art approaches.

INDEX TERMS Stereo matching, minimum spanning tree, disparity map refinement, cost aggregation,
simple linear iterative clustering superpixel segmentation.

I. INTRODUCTION
Dense two-frame stereo matching has been one of the most
widely studied fundamental problems in computer vision.
The input for stereo matching is a pair of images from the
same scene acquired by a stereo camera system, and their
epipolar lines are be rectified. Image pairs comprise the left
and right views. Because their rectified epipolar lines are
horizontal, the search of pixel correspondences between the
image pair can be performed along horizontal lines as shown
in Figure 1 by the two red matching points. The disparity is
the difference between the horizontal coordinates of a pair of
corresponding pixels. The aim of stereo matching is to com-
pute a disparitymap between the input stereo image pairs, and
the disparity map can be used to reckon the depth information
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via the triangulation principle. Solak and Bolat [36] proposed
a hybrid stereovision-based distance-estimation approach.
They achieve high accuracy in calculating distance in mobile
robot platforms. Thanks to excellent research in the past
decades, stereo matching has been applied to many high-level
computer vision tasks such as mobile robot navigation [1],
obstacle detection and autonomous driving [2], pose esti-
mation and recognition [3], target detection and 3D scene
reconstruction [4], UAV localization and navigation [5], and
other areas [6], [7], [8]. Due to the ambiguity of the matching
problem and the presence of noise, occlusion, or low-texture
regions in images, accurate stereo matching is very chal-
lenging. Consequently, the pursuit of accurate disparity maps
remains an ongoing endeavor.

According to the analysis and classification scheme pro-
posed in [9], stereo matching algorithms can be divided
into two categories: local algorithms and global algorithms.
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FIGURE 1. The Teddy in Middlebury [38]. From left to right: the left view
(the reference image), the right view, the disparity map.

Stereo matching algorithms usually follow a subset of these
four steps or all of them to implement:

1. Calculation of the cost volume.
2. Cost aggregation.
3. Disparity computation or optimization.
4. Disparity refinement.
In the calculation of the cost volume phase, an initial 3D

cost volume is generated by calculating matching costs for
each pixel at all possible disparity levels. In cost aggregation,
all matching costs of each pixel are aggregated within a sup-
port window. Subsequently, the aggregated cost of each pixel
is calculated by global or local optimization methods. In this
paper, we employwinner-take-all (WTA) algorithm, selecting
the disparity with the lowest aggregated cost for each pixel as
the final disparity. Finally, the initial disparity map is refined
via various post-processingmethods to yield a better disparity
map. Among the four steps of stereomatching algorithms, the
step of cost aggregation is a pivotal determinant of dispar-
ity map quality, particularly within the realms of local and
non-local algorithms. The global algorithms usually don’t
need cost aggregation. Popular global methods are dynamic
programming [10], [11], belief propagation [12], [15], [16]
and graph cuts [13], [30]. For local algorithms, the disparity
calculation at a given image pixel only relies on intensity or
color values within a specific window. They usually make
implicit smoothing assumptions through aggregation support.
On the other hand, global algorithmsmake explicit smoothing
assumptions and then solve the optimization problem. Such
algorithms usually omit the cost aggregation step and instead
seek a disparity solution that minimizes the global cost func-
tion. This paper mainly focuses on cost aggregation.

Cost aggregation entails the local summation or averaging
of matching costs for nearby pixels with similar dispar-
ity values. An efficient local cost aggregation method is a
non-normalized box filter, which runs in linear time (relative
to the number of pixels) using integral images [14]. Nonethe-
less, this method suffers from blurring depth edges. Yoon
and Kweon [37] demonstrated that edge-aware filters such
as bilateral filter [17] are useful for preserving depth edges,
and Yang used the bilateral filter for depth super-resolution.
However, the full kernel implementation of the bilateral filter
is very slow. Reducing computational complexity, several
approximation methods [19], [20], [21] for accelerating
the bilateral filter have been proposed. Hosni et al. [22]
utilized the guided image filter (GF) [23] for cost aggre-
gation, a linear-time method outperforming most local cost
aggregation algorithms in terms of both speed and accuracy.

This filter output is a linear transformation of pixels within
local support windows. Liu and Li et al. proposed a
shape-adaptive bootstrap filter and stereo matching of win-
dows based on texture properties [32], [33], which enhance
results in regions with repeating texture. However, the size
of local windows used in this algorithm determines the
computational complexity as well as the matching accuracy.
Now it is still difficult to determine the best window size in
practical applications.

In the field of non-local algorithms, Yang [24], [25] pro-
posed a non-local cost aggregation method for the first
time by constructing a minimum spanning tree (MST) on
a reference image, enabling each pixel to gather support
information in the entire image along the tree’s shortest path.
Unlike previous local methods that rely on local support
windows, non-local methods perform cost aggregation for
each pixel in the entire image. Considering that the tree
structure of MST is not unique because there are many
edges with the same weights in an image. By enforcing
tight connections for the pixels inside the same segment,
Mei et al. [26] proposed a segment tree (ST) structure to
perform non-local cost aggregation instead of MST. ST can
build a unique tree structure in an image. However, the run-
ning speed of ST is very slow. Tung et al. [38] proposed an
effective hybrid tree structure that can improve the match-
ing accuracy in low texture regions, but it is still limited
by the paths of the tree structure, which makes it difficult
to further improve the matching accuracy. Cheng et al. [27]
introduced a cross tree structure comprising a horizontal tree
and a vertical tree for cost aggregation. Two non-local cost
aggregations are accomplished by traversing two cross trees
consecutively. However, because [28], [29] are cross tree
structures, the connectivity between two neighboring pixels
in the diagonal direction cannot be maintained. Subsequently,
Chai et al. [40] combined semi-global and MST for stereo
matching. Zhang et al. [18] proposed an edge-preserving
minimum spanning tree (EMST). This method can preserve
edges by changing the weight of edges that cross Canny
edges. However, this method has little improvement in accu-
racy for low-texture regions. Jin et al. [39] proposed a spatial
MSTfilter. This filter increases paths for cost aggregation and
uses recursive algorithms to speed up operation. Therefore,
it can achieve all pixels in an entire image and provide infor-
mation for a single pixel. However, not all pixels can provide
effective and useful support information. The similar pixels
usually provide more effective information to each other.
Although this filter can improve accuracy and preserve edges,
a pixel often receives a lot of noise and useless information
from other pixels. It is difficult to further improve accuracy.

In summary, for all non-local cost aggregation methods,
low accuracy in low-texture regions and blurring of depth
boundaries are challenging issues.

In this paper, we propose a cost aggregation method
based on multi-path minimum spanning tree and superpixel.
This method not only maintains high matching accuracy
in low-texture regions but also can effectively solve the
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problems of difficult matching in low-texture regions and
blurry object edges. In a reference image, each pixel is
regarded as a node in an undirected eight-connected graph.
Consequently, it provides more paths to select for cost
aggregation compared to Yang’sMST. However, constructing
an mPMST in the entire image is challenging due to the
substantial time investment, and the accuracy improvement
in low-texture regions is not significant. We run the mPMST
inside each superpixel, which can notably reduce running
time and improve accuracy in high-texture regions owing
to more optional paths. Through observation of Figure 7,
it becomes evident that cost aggregation among superpix-
els can obtain accurate support information in low-texture
regions. Hence, we run the mPMST at superpixel level to
improve accuracy in low-texture regions. In order to fuse the
two aggregated costs, we propose a novel adaptive weight
based on image entropy, serving to quantify texture complex-
ity. Lastly, the proposed novel cost aggregation structure is
employed to refine initial disparity maps. The aggregated
costs of unstable pixels can be recalculated based on sta-
ble pixels, subsequently rectifying the erroneous aggregated
costs. The main contributions of this paper are as follows:

1. A novel tree structure mPMST is proposed for cost
aggregation. The mPMST can allow each pixel to receive
information from more paths because it is built in an eight-
connected graph. Tominimize the error rate and running time,
we creatively execute mPMST at both the inside-superpixel
and superpixel levels.

2. Through the novel tree structure, we propose a novel
disparity refinement method to further improve the quality
of disparity maps. The unstable pixels can be supported by
stable pixels along tree paths. The aggregated value of each
unstable pixel can be recalculated.

3. In order to assess the texture complexity of each super-
pixel, a novel adaptive weight fusion by calculating image
entropy is proposed. This weight guarantees the effective
fusion of two-level aggregated costs.

The remainder of this paper is organized as follows: we
reviewed previous related works in Section II. We describe
the proposed stereo matching method in Section III.
The experimental results and discussions are presented in
Section IV. We draw our research conclusions in Section V.

II. RELATED WORKS
Over the past decades, stereo matching has been inten-
sively researched, and a lot of methods have been proposed
to improve the quality of disparity maps. In this section,
we mainly review non-local cost aggregation methods.

Yang et al. [24], [25] proposed a non-local cost aggrega-
tion method by constructing a minimum spanning tree. They
depict an image as an undirected four-connected graph as
shown in subgraph (a) in Figure 2, where each pixel is treated
as a node, the edges connect adjacent pixels in four directions.
The weight of each edge is calculated by the color differences
between the connected pixels. The similarity between any
two pixels is determined by their edge weight. The MST is

constructed by iteratively selecting the lowest edge weight
in a graph. An edge with low weight is generally unlikely
to cross the depth boundary because of the high similarity
between its two endpoints. Cost aggregation can be efficiently
executed by traversing the tree structure in two steps: from the
leaf node to the root node and from the root node to the leaf
node. Therefore, each pixel can receive support information
from other pixels along the shortest path. The structure of
the minimum spanning tree is shown in subgraph (b) of
Figure 2. However, this approach is sensitive to noise and
there may have many edges with the same weight leading
to an unstable tree structure. Furthermore, since the graph is
four-connected, it is impossible to select diagonal edges so
that some spatial information between neighboring pixels is
ignored. This method does not consider the edge features in
an image. The prevalent issues for existing MST-based stereo
matching methods are that the construction ofMSTmay have
inaccurate disparity estimation in low-texture regions and
depth discontinuity regions.

Chang et al. [27] proposed a cross tree structure as shown in
Figure 2 (c). It can achieve cost aggregation in both horizontal
and vertical directions for the central pixel. This method
incorporates edge information in calculating edge weights
and changed tree structure, yet still tends to blur the edges.
This structure is sensitive to noise, and edges can cross depth
discontinuity boundaries because the tree structure is fixed,
although adding prior information such as edge extraction to
prevent blurring in depth discontinuous boundaries.

FIGURE 2. Different tree structures of cost aggregation methods.
(a) A four-connected graph. (b)The structure of MST. (c)The structure of
the cross tree.

Zhang et al. [18] proposed an EMST by using the image
edges and brightness information. This method needs to
utilize the Canny algorithm to extract edges at first. They
designed a self-adaptive function to increase the weights of
edges crossing the Canny edges. Therefore, it is more difficult
for paths on an EMST to cross depth boundaries than Yang’s
MST. The EMST addresses the issue of blurry edges to some
extent and makes each pixel receive more useful informa-
tion from other pixels. However, in low-texture regions, the
accuracy improvement remains modest and heavily reliant on
post-processing algorithms.

Inspired by these methods, we can find that introducing
edge information and changing aggregation paths are effec-
tive ways to improve accuracy. Therefore, we propose a novel
tree structure to address these challenging problems such
as edge blurring and low accuracy in low-texture regions.
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We involve superpixels to limit the scope of cost aggrega-
tion and increase the optional paths to ensure each pixel
receives more appropriate support information. Our method
can adaptively fuse the two-level aggregated costs to improve
accuracy in low-texture regions. Our method differs from
related methods in terms of utilizing edge information and
processing in regions with low texture.

III. OUR METHOD
Motivated by the advantages and disadvantages of some pre-
vious research achievements such as MST, cross tree, and so
on. we propose a novel cost aggregation method for stereo
matching. This section first describes the proposedmulti-path
minimum spanning tree, and then describes how it operates
inside and among superpixels. Finally, a new disparity refine-
ment method is introduced in this section. The fundamental
procedure of our method is shown in Figure 3.

FIGURE 3. Flow chart of the proposed stereo matching method.

We calculate the matching cost for each pixel in the
image L, and then use SLIC to achieve superpixel segmen-
tation. The edges extracted by SLIC can be well attached
to the image object boundaries. The number of superpixels
depends on the image size. The SLIC also can segment
images with linear time complexity. Subsequently, the novel
tree structure proposed for cost aggregation is constructed
and executed inside each superpixel. Simultaneously, the
superpixel-level tree is also established and executed among
all superpixels. Finally, the two aggregated costs of each pixel
are fused according to its adaptive weight. Each pixel can
obtain an accurate aggregated cost. An initial disparity map
is generated using the WTA algorithm. Nevertheless, there
are often many black holes like the subgraph (d) of Figure 8
and inaccurate disparity values. We utilize a novel disparity
refinement method proposed in this paper to optimize the
initial disparity map.

A. MATCHING COST CALCULATION AND MPMST
For cost aggregation, a 3D cost volume is essential, so we
need to calculate the matching cost of each pixel at all possi-
ble disparity levels to establish a 3D cost volume.

We assume that the left view of a stereo image pair is L, the
right view is R, andD is a set containing all optional disparity
values, with |D| representing the total number of elements in
this set. Generally, the left view serves as a reference image.
The matching cost of pixel p in the image L with a certain
disparity d can be donated by Cd (p), and the pixel p can be
represented by their coordinates (x, y) in the L. Currently,
there are various algorithms to calculate initial matching
costs. Here, we employ AD-Gradient to calculate matching
costs, which is the absolute difference of color intensity and
gradient. The AD-Gradient can be defined by Eq. (1). The
larger matching cost, the lower the similarity between the two
pixels.

Cd (p) = β · min
(

1
M

∥L (p) − R (pd )∥1 , τ1

)
+ (1 − β) · min (∇xL (p) − ∇xR (pd ) , τ2) , (1)

whereM represents the number of image channels, e. g.M is
3 for RGB images and 1 for gray images. L (P) represents the
color vector of pixel p in the L. ∇x represents the gradient in
the x-direction. pd represents the pixel in the R corresponding
to the p with disparity d . Its coordinates can be expressed
as pd = (x − d, y). R (pd ) represents the color vector of
the pd in the R. β is used to control the weight of color
density and gradient. Here we set β to 0.11 according to the
optimal values in Yang’s paper. τ1 and τ2 are the thresholds
for color intensity and gradient respectively in order to reduce
the effect of noise and occluded pixels. They are set to 7 and
2 respectively. Calculating the matching cost of each pixel in
the left view with each possible disparity value can obtain a
3D cost volume, and the points in this volume are matching
costs of each pixel at each disparity level.

Below, we describe the proposed mPMST. This method in
calculating aggregated costs maintains a linear computational
complexity. It enables pixels to receive support from similar
pixels in more directions than original method based onMST.
We treat the reference image as an eight-connected undirected
graph G = (V ,E) as shown in the Figure 4 (a). Here, E and
V denotes all connected edges between neighboring pixels
and all image pixels respectively. The edge weight between
a pair of neighboring pixels can be defined as w (p, q). It can
be expressed as follows:

w (p, q) = w (q, p) = maxm∈[1,M ] |Rm (p) − Rm (q)| , (2)

Here, m represents a color vector among M image channels.
Using the max color difference can ensure that two similar
adjacent pixels transmit information with a high weight to
each other. There is a basic assumption in the research field of
stereo matching: similar pixels in neighboring pixels usually
have similar disparity. Using the maximum value instead of
other possibilities (such as the average value) is an empirical
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choice and has better robustness. If two neighboring pixels
are in a smooth region, the color difference between them is
small, and vice versa. This can explain why the edges of the
minimum spanning tree should not cross depth discontinuous
regions as much as possible.

Finally, the Kruskal algorithm is used to establish a
mPMST shown in Figure 4 (b). The distance between two
arbitrary nodes on the tree is the sum of the minimum edge
weights connecting the two nodes. Assume that any two pix-
els are denoted by s and t respectively, the distance between
them can be expressed as S (s, t) = S (t, s). Its calculation
equation can be expressed as follows:

S (s, t) = S (t, s) = exp
(

−
w (t, s)

σ

)
, (3)

where σ is a parameter used to control the support strength.

FIGURE 4. The tree structure of our method. (a) Eight-connected
undirected graph of a reference image. (b)The structure of mPMST.

MST can ensure that the matching cost of each pixel is only
aggregated on similar neighboring pixels. This characteristic
derives from the definition of edgeweights, as the total weight
of MST is less than or equal to the total weight of all other
possible spanning trees. Our mPMST increases the paths to
select for cost aggregation, resulting in overall smaller total
weights than MST and each pixel can more accurately obtain
support information from other pixels.

After the tree structure is established, the aggregated cost
can be calculated. We set Cd (p) as the matching cost of
pixel p in the image R with disparity d . CA

d (p) denotes the
final aggregated cost, which can be expressed by the formula
as follows:

CA
d (p) =

∑
q∈S

S (p, q) · Cd (q) (4)

Here, S denotes all pixels in the superpixel S. In the process
of cost aggregation, each pixel can receive weighted support
information from adjacent pixels within the same superpixel.
However, directly using this definition formula to calculate
aggregated costs is quite time-consuming. In order to reduce
the time complexity of cost aggregation, we calculate the
aggregated cost in two steps: cost aggregation from the root
node to the leaf node and cost aggregation from the leaf node
to the root node. These two steps are shown in Figure 5.
The first step is aggregating the matching cost from the

leaf node to root node. If the temporal aggregated cost of the
node v in this step is denoted as CA↑

d , its calculation formula

FIGURE 5. Two steps of cost aggregation. (a) From the leaf node to the
root node. (b) From the tree root node to the leaf node.

can be expressed as follows:

CA↑

d (v) = Cd (v) +

∑
P(vi)=v

w (v, vi) · CA↑

d (vi) , (5)

Here vi represents the number of tree nodes, and P (vi) = v
represents the parent nodes of vi. Especially, the aggregated
costs of leaf nodes are still equal to their initial matching costs
in this step.

The second step is cost aggregation from the root node
to leaf node. The final aggregated cost of each pixel can be
calculated using the temporal results in the first step, and the
final aggregated cost CA

d (vi) can be represented as follows:

CA
d (vi) = w (P (vi) , vi)CA

d (P (vi))

+

[
1 − w2 (vi,P (vi))

]
CA↑

d (vi) , (6)

By using this computation approach, cost aggregation has
a linear time complexity in computation, because the distance
between pixels can be accumulated by tracking from the leaf
node to the root node. They only need to perform two addition
or subtraction and three multiplication calculations. Because
the mPMST in this section is run inside each superpixel,
we can name it inside-superpixel-level mPMST. The aggre-
gated costs at this level can be named inside-superpixel-level
aggregated costs.

B. SUPERPIXEL-LEVEL MPMST
In order to improve the matching accuracy of low-texture
regions, it is essential to construct a mPMST among all
superpixels. Each superpixel is treated as a tree node, and
the edge weights are determined by the similarity between
adjacent superpixels. Let the matching cost of superpixel S
with disparity d be denoted as Cd (S), where S corresponds
to a set of pixels in the reference image, and |S| represents the
number of pixels contained in the superpixel S, Cd (S) can be
expressed as follows:

Cd (S) =

∑
p∈S

Cd (p)

/
|S|, (7)

Following the superpixel segmentation, the resulting
superpixel image does not form a regular grid. We establish
edges between each pair of neighboring superpixels. Each
edge weight between two superpixels is computed via the
color distribution differences between them. Finally, a graph
GR = (VR,ER) with uncertain connectivity numbers was
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formed as shown in Figure 6. VR represents the set of all
superpixels and ER donates all edges.

FIGURE 6. The process of building superpixel-level mPMST. (a) The result
of SLIC. (b) The tree structure build by superpixels.

There are various metrics that can be used to define the dis-
tance between two adjacent superpixels. We calculate color
histograms and utilize the difference between the primary
colors (also known as patterns) for each superpixel to define
the distance. This metric is computationally simple and more
robust than the average color difference, as SLIC sometimes
generates fragments that slightly cross different color regions.
For any two neighboring superpixels Vi and Vj, the edge
weight between them w

(
Vi,Vj

)
can be calculated by the

following formula:

w
(
Vi,Vj

)
=
∣∣RVi − RVj

∣∣ , (8)

Here, RVi and RVj represent the primary colors of the two
superpixels respectively. Similar to Eq. (3) in the previous
section, the distance between two superpixels is equal to the
sum of all minimum connected edge weights between them,
which can be represented by S

(
Vi,Vj

)
= S

(
Vj,Vi

)
.

S
(
Vi,Vj

)
= S

(
Vj,Vi

)
= exp

(
−
w
(
Vi,Vj

)
σ

)
(9)

Finally, we can establish a minimum spanning tree using
the Kruskal algorithm. Assuming the aggregated cost of
superpixel Vi to be CA

d (Vi), the calculation equation is as
follows:

CA
d (Vi) =

∑
Vj∈V

S
(
Vi,Vj

)
· Cd (Vi) (10)

This cost aggregation method is the same as described in
the previous section. After completing cost aggregation, each
pixel can obtain a superpixel-level aggregated cost and an
inside-superpixel-level aggregated cost. The next section will
solve how to fuse the two aggregated costs.

C. ADAPTIVE WEIGHT FUSION
In this section, we solve how to fuse the two aggregated costs
for each pixel. Figure 7 illustrates the weighted contribution
of all pixels in the superpixel to the red test point, where
the row 1 (a) and (b) are the original image and a close-up
region with the red test point respective, and the row 2 are
the weighted contribution of all superpixels to the test region
at superpixel-level mPMST and the weighted contribution of
pixels inside superpixel to the test point at inside-superpixel-
level mPMST respectively. For low-texture regions, the

superpixel-level mPMST has a better support effect, which
can preserve edges based on SLIC superpixel segmenta-
tion and propagate support information to other low-texture
regions. Thus, the superpixel-level mPMST should dominate
in low-texture regions. The mPMST inside each superpixel
has a good effect in high-texture regions, where each pixel
can accurately obtain support from other neighboring similar
pixels, leading to high matching accuracy.

Based on this characteristic, we introduce the concept of
image entropy to propose a novel adaptive weight fusion
method.

FIGURE 7. Support weights of two levels mPMST to the red test point and
test region. A larger grayscale value has a greater contribution.

Image entropy is a statistical representation of image fea-
tures, providing valuable information to describe an image.
If all pixels in an image have the same gray level or the
same color intensity, the entropy of the image is minimized.
Conversely, if each pixel in an image has a unique gray level
or color intensity, this image has maximum entropy. Because
complex textures tend to result in scattered distribution of
gray level or color intensity, the image entropy can be used
to quantify texture complexity. Define the one-dimensional
grayscale entropy of a grayscale image in superpixel S as
follows:

E (S) = −

255∑
i=0

PR (i) lnPR (i) −

255∑
i=0

PG (i) lnPG (i)

−

255∑
i=0

PB (i) lnPB (i) , (11)

Here, i represents the value of color intensity, which can vary
from 0 to 255. PR (i) represents the distribution probability
of color intensity in the superpixel S in the R color channel.
This distribution probability can be obtained by counting the
number of pixels with a given value i and then divided by
the total number of pixels. According to the Eq. (11), we can
see that the range of entropy values is from 0 to 16.6355.

VOLUME 11, 2023 121101



L. Sun: mPMST and Superpixel Based Cost Aggregation for Stereo Matching

FIGURE 8. The results of our method in Tsukuba. (a) The right view. (b) The left view (reference image). (c) The result of SLIC. (d) The initial disparity map.
(e) The disparity refined by our method. (f) The division of test regions.

In this way, we can compute the adaptive weight λS for
superpixels S.

λS =
16.6355 − E (S)

16.6355
, (12)

We denote the final aggregated cost of pixel p with dispar-
ity d as CA′

d (p). Since superpixel S includes pixel p, we have
p ∈ S. CA′

d (p) can be expressed as follows:

CA′
d (p) =

(
1 − λS

)
CA
d (p) + λSCA

d (S) , (13)

In this way, we obtain the final aggregated cost for each
pixel with all possible disparity values. Finally, the disparity
map is generated by using WTA algorithm. The final aggre-
gated cost usually does not require normalization processing,
as WTA algorithm directly selects the disparity value with
the minimum final aggregated cost for each pixel as the final
disparity value. WTA algorithm can be expressed as follows:

D (p) = argmin
d

(
CA′
d (p)

)
, (14)

where D (p) denotes the disparity value of pixel p.
Overall, the novel cost aggregationmethod proposed in this

paper still belongs to the framework of non-local cost aggre-
gation. It assimilates both local information and information
from other non-local pixels.

D. DISPARITY MAP REFINEMENT
In this section, we propose a novel disparity map refine-
ment method using the cost aggregation structure proposed
in this paper. Refining disparity maps is usually based on
Left-Right Consistency (LRC) test. Firstly, we distinguish
between stable and unstable points through LRC test. The
specific approach is: we use the stereo matching algorithm
proposed in this paper to generate two disparity maps for
the left and right views in a stereo image pair respectively.
Secondly, if the disparity value of pixel p in the left view is
D (p), the horizontal coordinate of the corresponding pixel p′

in the right view is p − D (p). The vertical coordinate
is the same as pixel p. Assuming that the disparity map
based on the right view has a disparity D

(
p′
)
in pixel p′,

if
∣∣D (p) − D

(
p′
)∣∣ ̸= 0, then this pixel is considered an unsta-

ble pixel, otherwise it is considered a stable point. Therefore,
we can set a new cost Cd

new (p) for each pixel as follows:

Cnew
d (p) =

{
|d − D (p)| p is stable and D (p) > 0,
0 else,

(15)

The aggregated cost of all unstable pixels at all disparity
levels is set to 0, so they completely dependent on information
from stable pixels. We respectively build mPMST inside each
superpixel to aggregate costs. The aggregated costs of stable
pixels can propagate to unstable pixels. For some superpixels
without stable points, we run superpixel-level mPMST to
aggregate cost. Finally, the WTA algorithm is used again
to calculate the disparity value of unstable pixels. However,
we found that there are often black holes near image bound-
aries. These regions typically are composed of the superpixels
without stable pixels and serve as tree leaves on superpixel-
level mPMST. In order to address this issue, we use the
accurate disparity with the highest frequency of occurrence
at the edge of each black hole to fill in.

This non-local disparity map refinement method can
be more convenient than local refinement algorithms and
achieve better refinement performance without specifying
support window size.

IV. EXPERIMENTS AND ANALYSIS
In this section, the method proposed in this paper is compared
with the state-of-the-art stereo matching methods includ-
ing GF [22], MST [24], [25], ST [26], CROSS-E [27] and
EMST [18]. We use Middlebury and KITTI 2015 datasets
to evaluate them. We compared the disparity maps obtained
by various methods with real disparity maps. The algorithm
accuracy is evaluated by the error rate in non-occluded
regions, where the error rate is the percentage of erroneous
pixels having disparity error larger than 1 and 3 pixels in
Middlebury and KITTI 2015 datasets respectively. For the
MST, GF, and ST, the author provided source codes using
C++ or MATLAB language, so we can use them directly.
For CROSS-E and EMST, we implement their codes by using
C++ language. Their parameters are all set to the optimal
parameters in their papers. For all the datasets, the parameter
of our method is constant: σ = 0.05. σ is set based on
previous research experience. The experiment environment
is my personal laptop, equipped with a CPU of Intel Core
i5 8400 and system of Windows 10. No any acceleration
approach is used in these experiments.

A. MIDDLEBURY BENCHMARK
The Middlebury [35] datasets provide a large number of
stereo image pairs for indoor scenes. We first use four classic
image pairs to test: Tsukuba, Venus, Teddy, and Cones, using
the disparity map refinement method proposed in this paper.
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Other algorithms for comparison use their own disparity map
refinement method. These four images provide a range of
discontinuous regions, so we evaluate the matching accu-
racy of methods in non-occluded regions (‘‘non’’), all pixels
(‘‘all’’), and discontinuous regions (‘‘disc’’). There are a total
of 26 stereo image pairs in Middlebury 2006, which have
more complex scenes than the four classic images mentioned
above, greatly improving the difficulty of matching. Among
these datasets, Midd1, Midd2, Monopoly, and Plastic have a
large number of low-texture regions and textureless regions,
which is unfair to local and non-local algorithms. Therefore,
these four datasets are removed. The number of superpixels
is set to 180.

As illustrated in Table 1, our method achieved an average
error rate of 5.21%, which is the lowest among thesemethods.
However, in Teddy and Cones, our method in discontinuous
regions is not better than others. Thanks to our disparity map
refinement, we can fill black hollow regions. Therefore, our
method has a highest average accuracy in all pixels (‘‘all’’).
Figure 9 visually presents the disparity result of various algo-
rithms, where erroneous pixels in non-occluded regions are
marked in red and erroneous pixels in discontinuous regions
are marked in green. From Figure 9, it can be seen that our
method has far fewer erroneous pixels than other methods and
can preserve edges to some extent, especially on the top of
teddy bear (highlighted in a yellow box). There are also no
black holes in our disparity maps.

Next, we use more complex image pairs from Middlebury
2006 to test the performance of cost aggregation without
using any post-processing techniques. This experiment does
not include Tsukuba, Venus, Teddy, and Cones which have
already been tested. We use the error rate of erroneous pixels
in non-occluded regions to evaluate the accuracy of vari-
ous methods. In order to accelerate the experiment speed
and accurately reflect the advantages and disadvantages of
these methods, we utilize half-size images on the Middlebury
datasets. The quantitative evaluation results are presented in
Table 2. The Figure 11 shows the disparity results of various
methods, where erroneous pixels in non-occluded regions are
marked in red.

From the Table 2, it can be seen that our method produces
the competitive results of the evaluated methods on these
datasets and gets the best performance on 18 datasets. Our
average error rate is 3.32% lower than MST and 0.63% lower
than EMST. As shown in Figure 11, our method not only
makes the edges of objects clearer than other algorithms, but
also improves accuracy of low-texture regions. On Baby1
and Baby2 image pairs, the baby’s hands and head are more
easily recognizable, which are highlighted in yellow boxes.
The object under the baby is a large low-texture region where
our approach still has the fewest erroneous pixels.

Finally, we test these methods on Middlebury 2014. As an
upgrade version of Middlebury 2006, it contains 20 high-
resolution image pairs with different scenes. We test our
method at quarter-resolution images for fair comparison with
other state-of-the-art methods.

For a quantitative comparison, Table 3 lists the error rates
of various methods in non-occluded regions. Our method
obtains the lowest average error rate compared with others
and 8.53% higher than testing on Middlebury 2006 datasets.
Additionally, our method outperforms the other five algo-
rithms in 11 image pairs. The error rate of our method is
1.14% lower than the second ranked algorithm. All the meth-
ods perform poorly on Shelves, Vint and Jade. This is because
these datasets have a wide range of disparity variations. For
visual comparison, the disparity maps obtained by using the
six methods are shown in Figure 12. From Figure 12, it is
obvious that our method can produce fewer erroneous pixels
in low-texture and duplicate-texture regions, especially in the
motor, garbage can and ground regions within black boxes.

Below, we analyze the reasons for the experimental results.
The GF algorithm performs best among local cost aggrega-
tion algorithms, but it is limited to cost aggregation within
a support window and does not perform well in low-texture
regions. Its effect is superior to MST according to Table 2
and Table 3. Other algorithms belong to non-local algorithms
and adopt different tree structures for cost aggregation. The
MST and ST establish a minimum spanning tree on the
entire graph and propagate the cost from only four direc-
tions, which makes the algorithm not only sensitive to noise.
The ST algorithm also relies heavily on the merging results
of several minimum spanning trees. However, it has lower
accuracy than MST in four Middlebury 2014 datasets, such
as Motor, Piano, Recycle and PlaytP. Because the colors
and graphics in these image pairs are more complex, it is
difficult to merge several trees appropriately. The CROSS-E
uses an improved cross tree structure for cost aggregation,
but it is prone to edge blurring and overly relies on edge
extraction. Its average error rate is lower thanMST and ST on
Middlebury 2006 andMiddlebury 2014, because utilizes edge
information fromCanny and SLIC. The EMST utilizes Canny
edges to change edge weights, which can preserve edges.
However, its accuracy improvement in low-texture regions is
small, such as Baby1 and Baby2 in Figure 10. Its average
error rate is 0.55% lower than CROSS-E in the Middlebury
2014 datasets. Our method utilizes SLIC to obtain accurate
edge information, which can make depth boundaries and
the shape of objects clearer. We use mPMST at superpixel
level to provide support information for low-texture regions.
The mPMST at the inside-superpixel level can effectively
resist noise and improve the accuracy in high-texture regions,
because similar pixels usually have similar disparity values.
Finally, we make use of adaptive weights to merge the two
aggregated costs. Our method overcomes the shortcomings
of currently existing algorithms and has good results in both
low-texture regions and high-texture regions.

B. KITTI 2015 BENCHMARK
The KITTI 2015 datasets are made up of real-world scenes
captured by mobile vehicles [34]. This dataset contains a lot
of stereo pairs with a large portion of textureless regions,
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such as roads and walls. In order to evaluate the robustness
and accuracy of the proposed method, we run our method
on some classical KITTI 2015 datasets to conduct a further
comparison with other state-of-the-art methods. For con-
venience, we only use 100 pairs of stereo image pairs in

the training set to evaluate the methods. Due to the large
image size of the KITTI 2015 datasets, we set the number of
superpixels to 400. The testing area is divided into all pixels
and non-occluded regions, represented by ‘‘all’’ and ‘‘non’’
respectively. We evaluate the accuracy of these methods by

FIGURE 9. The refined disparity results in four classical Middlebury datasets. From left to right: Left view (reference image), GF, MST, ST, CROSS-E, EMST,
Our method. From top to bottom: Tsukuba, Venus, Teddy, Cones.

TABLE 1. Comparison results of various methods in Tsukuba, Venus, Teddy and Cones.

FIGURE 10. The disparity results on KITTI 2015 datasets. From top to bottom: the left view (reference image), real disparity map, MST, our
method. From left to right: 000049_10, 000004_10, 000100_10.
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TABLE 2. Error percentages in non-occluded regions of various algorithms on Middlebury datasets.

TABLE 3. Error rates in non-occluded regions of methods on Middlebury 2014 datasets.

TABLE 4. Error rates of various methods in non-occluded and all pixels for ablation studies.

average error rate in test regions. The testing results of var-
ious methods is displayed in Table 3 and the representative
rendering is in Figure 10.

From the Table 5, it can be seen that our method performs
better than others. Because it incorporates SLIC superpixel
segmentation, resulting in better preservation of the car
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FIGURE 11. The disparity results without post-processing techniques on Middlebury 2006 datasets. From left to right: the left view, GF, MST, ST,
CROSS-E, EMST, Our method. From top to bottom: Flowerpots, Baby1, Cloth3, Baby2, Wood1.

FIGURE 12. The disparity results without post-processing techniques on Middlebury 2014 datasets. From left to right: the left view, GF, MST, ST, CROSS-E,
EMST, Our method. From top to bottom: Adirondack, Motorcycle, Recycle.

shape, such as regions within yellow boxes in Figure 10.
In background regions, due to the cost aggregation at super-
pixel level, there are fewer erroneous pixels. MST and ST
perform poorly on the KITTI 2015 datasets mainly due
to their sensitivity to noise and poor performance in low-
texture regions. Overall, the KITTI 2015 datasets present a
significant challenge for both local and non-local algorithms.

C. RUNNING TIME COMPARISON
We compare the average running time of our method with
the five state-of-the-art methods on four standardMiddlebury
datasets. The experiment is on a PC platformwith a 2.80 GHz

Intel CPU and 8G memory. All the methods are implemented
in C++.

The average running time of GF, MST, ST, CROSS-E,
EMST, and ours are GF-15.82 s, MST-5.31 s, ST-6.23 s,
CROSS-E-5.74 s, EMST-5.42 s and ours-5.81 s respectively.
Our method is faster than GF and ST, but slower than MST
and EMST. For GF, although it is independent of the kernel
size, it still needs to invert a 3 ∗ 3 symmetric matrix for each
pixel, which takes a lot of time. Therefore it is the slowest
method among these methods. For MST, this method spends
the most of time in constructing a minimum spanning tree.
Therefore, it is a computational burden to build a tree for
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TABLE 5. Average error percentages in non-occluded regions of different
methods on KITTI2015 datasets.

high-resolution images. Its cost aggression process has linear
complexity, so spend a little time in this process. The EMST
is similar with MST. It takes a portion of time to segment
images and extract edges. It is slightly slower than MST.
For ST, it requires a unique minimum tree structure and an
initial estimation of the disparity map, which makes it slower
than other tree methods. For CROSS-E, its tree structure
is fixed and does not require a lot of time to build trees.
However, it needs more time to finish computing aggregated
costs. In addition, The CROSS-E requires SLIC and Canny to
obtain edge information. Therefore, it spends more time than
MST and EMST. For our method, it spends the most of time
on building trees because needs to build trees by selecting
more paths. This method builds a tree inside each superpixel,
which is much faster than in an entire image. This feature can
save a lot of time to compensate for the time consumption
caused by more paths. Thus, the running time of our method
is between ST and CROSS-E. Besides, our method can be
greatly accelerated through programming techniques such as
multithreading, because building a tree inside each superpixel
is independent of other superpixels. This can serve as future
work.

D. ABLATION STUDIES
In this section, ablation studies are performed to verify
the effectiveness of mPMST, two-level cost aggregation,
entropy-based adaptive weight fusion and our refinement
method. We select 7 representative stereo image pairs from
Middlebury datasets to test the impact of each part on accu-
racy. The results are listed in Table 4.

mPMST: mPMST can optimize cost aggregation paths
based on MST, achieving more effective cost aggregation.
According to Table 4, the average error rate of mPMST
is 1.92% lower than MST in non-occluded regions, and
2.92% lower in all pixels. The mPMST has a significant
improvement in high-texture images such as Teddy, but has a
little improvement in images containing a lot of low-texture
regions such as Wood1.

Two-level cost aggregation: In order to further improve
accuracy, especially in low texture areas, we need two levels
of cost aggregation: inside-superpixel and superpixel lev-
els. Each similar low-texture superpixel can provide support
information to each other with high weights. According to
Table 4, the average error rate of two-level mPMST is 1.93%

lower than mPMST in non-occluded regions, and 0.6% lower
in all pixels. The improvement in accuracy is mainly in image
pairs with a lot of low-texture regions, such as Wood1 and
Baby1.

Refinement method: Our refinement method can refine
initial disparity maps. We apply this refinement method to
refine the initial disparity maps of MST, ST, mPMST, respec-
tively. The results are quantitatively presented in Table 4.
On the initial disparity maps generated by these methods, the
accuracy can be improved by 1% to 2% in all pixels. There
our refinement method is effective.

FIGURE 13. The relative size of entropy for each superpixel in Baby2 and
Widd1.

Entropy-based adaptive weight fusion: This weight can
control the proportion of aggregated values between two
levels. According to Eq. (11), entropy can measure texture
complexity. We show the relative size of entropy for each
superpixel in Figure 13, where the larger the grayscale value,
the more complex the texture is. From Figure 13, we can see
that entropy can effectively distinguish between low-texture
and high-texture regions and quantify them. Therefore, our
fusion method is suitable for fusing aggregated costs at two
levels.

V. CONCLUSION
In this paper, we propose a novel structure of multi-path
minimum spanning tree with two levels: inside-superpixel
level and superpixel level, where the two cost aggregation
values are combined using a novel adaptive weight based on
image entropy. The average error rate of 14.68% is obtained
on Middlebury 2014 datasets. Our method can achieve better
performance than other state-of-the-art methods and make
edges clearer. For our disparity map refinement method, the
accuracy in all pixels can be improved by between 1% and 2%
in an initial disparity map.

However, SLIC cannot maintain the boundary for long
and thin features and sometimes can cross object boundaries.
These issues limit further improvement in accuracy. We can
choose a more advanced superpixel segmentation algorithm
in the future. The running speed of our method can be greatly
improved by technologies such as multithreading and parallel
computing. We leave these work for future studies.
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