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ABSTRACT This study presents a new natural-based algorithm called the Humboldt Squid Optimization
Algorithm (HSOA). HSOA is inspired by Humboldt squids hunting, moving, and mating behavior. The
HSOA search procedure involves an attack on fish schools, a fish’s escape, a successful attack, an attack
of bigger squids on smaller ones, and mating, which is the inspiration for creating an algorithm to address
existing issues. In HSOA, half of the best populations are Humboldt squid, and the rest are school fish.
Individuals connect with each other and cooperate to achieve the optimal response. HSOA is versatile and
applicable to mathematical and engineering problems. Solving eighty-four benchmark function problems
(twenty-three classic functions, twenty-nine CEC-BC-2017 with 10, 30, 50, and 100 dimensions, ten CEC-
C06 2019, ten CEC2020with 5, 10, 15, and 20 dimensions, and twelve CEC2022with 10 and 20 dimensions)
and twenty-four engineering problems (six CEC2006 and eighteen CEC2011) shows that our proposed
algorithm provides proper and acceptable answers to nine algorithms, including well-known (PSO, DE,
and WOA), recent (AVOA, RW_GWO, HHO, and GBO), and state-of-the-art algorithms (LSHADE and
EBOwithCMAR). Friedman’s rank from HSOA for one hundred and eight problems was 16.45% and 7.45%
lower than LSHADE and EBOwithCMAR. Thus, HSOA has the potential to solve various complex problems
in the sciences and engineering fields.

INDEX TERMS Optimization, nature-inspired, Humboldt squid, swarm intelligence, mathematical
functions, engineering problems.

Abbreviation list
XS Humboldt squid’s current position.
XF Current position of school fish.
XSnew Updated position of Humboldt squid.
XFnew Updated position of school fish.
Xb The best global position.
Vjet Velocity parameter.
Vjet2 The second velocity parameter.
PopAll The memory to save the position of

Humboldt squid and fish school.
Pbest The memory to save the top best

individuals (10%).

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

ArchiveX The archive to save unique positions
during the search process.

Fb The best fitness function.
Ffi Fitness function of the ith fish.
N Population size.
Eggs Humboldt squid eggs mass.
ω Adaptive weight.
γ Adaptive weight.
W Adaptive weight.
µω Average value for ω, which has been

updated over. increasing generations.
µγ Average value for γ , which has been

updated over. increasing generations.
c1 Constant parameters.
c2 Constant parameters.
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Mcycle Maximum number of mating repetitions.
a1, a2, a3, a4 Parameters to control the shape of Vjet1

and Vjet2.
DiffF Difference between fitness of Humboldt

squids and their Eggs
I The index that determines whether

Humboldt squids have more fitness
than their eggs.

nfes Current generation counter.
Maxnfes Maximum number of generations.
X The ratio between nfes andMaxnfes.

I. INTRODUCTION
Natural phenomena can inspire new optimizationmethods for
solving scientific and engineering problems. These problems
are complex because of various factors such as nonlinearity,
high variable dispersion, multiple decision variables, and
many constraints. As problems become more complex, tradi-
tional optimization methods become inefficient. AI methods
are important in these situations because they can handle
problems with many constraints and variables. By studying
natural phenomena like animal life, we can create more
advanced methods than standard intelligent methods. If we
address this issue, we can find faster and accurate engineering
solutions as well as practical ways to solve global challenges.
Intelligent methods compared to mathematical, physical, and
numerical methods have high popularity and acceptance [1],
[2], [3], because of advantages such as not requiring boundary
conditions, requiring fewer data, not searching the entire
problem space, the ability to solve any type of problems,
even non-derivative problems, the ability to work with many
dimensions and any number limitation [2]. Therefore, these
methods can be ideal for solving scientific and engineering
problems. Nature-based algorithms is category of these
methods that are inspired by nature or physical phenomena.
These algorithms are divided into four classes: evolutionary,
population-based, physical and chemical-based, sport-based
and human-based algorithms.

So far, various algorithms have been presented; however,
efforts to provide newer algorithms are still ongoing. The
reason is the theory that ‘‘there is no free lunch in search and
optimization’’ [4]. According to this theory, there is currently
no universally applicable optimization technique that can
solve all optimization problems. Instead, each technique can
provide an optimal solution within a specific problem range.
This theory indicates that the excellent accuracy of one
algorithm in solving a particular problem does not guarantee
that it can solve other classes of problems efficiently. This
theory encourages researchers to develop new algorithms for
solving problems in different classes [5], [6].
Therefore, the aim of this research is to propose a new

and powerful global optimization algorithm for complex
problems. The proposed algorithm called Humboldt Squid
Optimization Algorithm (HSOA) is inspired by the hunting,
moving, and mating behavior of Humboldt squids. Unlike
most similar algorithms, the HSOA uses two interacting

populations (artificial squids and fish schools) instead of just
one. This enhances the diversity of the search. The HSOA uti-
lizes swarm-oriented operators, evolution-oriented operators,
and adaptive parameter control mechanisms, resulting in a
smooth transition from exploration to exploitation. The main
contributions of this study can be summarized as follows:

1) This study introduces a new natural algorithm called
the Humboldt squid optimization algorithm (HSOA)
that is based on the hunting, moving, and mating
behavior of Humboldt squids.

2) In contrast to other optimization algorithms that solely
consider one type of population, HSOA is made up of
two populations of squids and schools of fish, and both
populations interact with each other.

3) HSOA takes into account the cannibalistic behavior of
squid to distinguish it from other similar algorithms and
enhance optimization accuracy.

The rest of the paper is arranged in the following way:
Section II presents the literature review of nature-inspired
algorithms, Section III describes the hunting and matting
behaviors of the Humboldt squids, Section IV presents the
HSOA, which consists of an introduced algorithm theory
and its formulation and flowchart, and real-world problems,
and discussion, Section V deals with testing the HSOA’s
performance using standard classic and new benchmark
functions and engineering problems, Section VI provides
conclusions and future scopes.

II. RELATED WORK
In recent decades, nature-based algorithms have been widely
welcomed by researchers. These algorithms are divided
into evolutionary, physics or chemistry-based, sport-based,
human-based, and population-based. The Genetic Algorithm
(GA) [7] is one of the most famous evolutionary algo-
rithms developed in 1975. The Evolution Strategy (ES)
[8] (Developed in 1978), Differential Evolution (DE) [9]
(Developed in 1997), Harmony Search (HS) [10] (Devel-
oped in 1997), triple distinct search dynamics (TDSD)
[11] (Developed in 2020), and Black Widow Optimization
Algorithm (BWO) [12] (Developed in 2020), are other
famous evolutionary algorithms. Evolutionary algorithms use
the laws of natural evolution, such as selection, mating,
mutation, and reproduction, to find the optimal solution
to problems. The Simulated Annealing Algorithm [13]
(Developed in 1983), Gravitational Search (GSA) Algorithm
[14] (Developed in 2009), Ion Motion Algorithm [15]
(Developed in 2015), Heat Transfer Search (HTS) [16]
(Developed in 2015), Henry Gas Solubility Optimization
(HGSO) [17] (Developed in 2019), FlowDirectionAlgorithm
(FDA) [1] (Developed in 2021), Transit Search (TS) [18]
(Developed in 2022), and Young’s Double-Slit Experiment
(YDSE) optimizer [19] (Developed in 2023) are the most
well known physical and chemical-based algorithms. Some
of well-known sport-inspired algorithms include Tug of War
Optimization (TWO) [20] (Developed in 2017), Volleyball
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Premier League Algorithm (VPL) [21] (Developed in 2018),
Football Game Based Optimization (FGBO) [22] (Devel-
oped in 2020), Puzzle Optimization Algorithm (POA) [23]
(Developed in 2022). Human-based algorithms are another
group of nature-based algorithms. The Tabu Search (TS)
[24] (Developed in 1989), Human Mental Search (HMS)
[25] (Developed in 2017), Poor and Rich Optimization
Algorithm (PRO) [26] (Developed in 2019), Doctor and
Patient Optimization Algorithm (DPO) [27] (Developed in
2020) and Incomprehensible But Intelligible-In-Time Logics
Optimization Algorithm (ILA) [28] (Developed in 2023) are
popular human-based algorithms.

Swarm-based algorithms are a crucial category of nature-
based algorithms. PSO is a swarm-based algorithm developed
in 1995 that mimics the behavior of particles, birds, or fish
[29]. In the following, some well-known swarm-based algo-
rithms are reviewed. In 1996, the Ant Colony Optimization
(ACO) algorithm was inspired by the foraging behavior of
ants [30]. In 2007, the Artificial Bee Colony (ABC) algorithm
was developed from honey bee foraging [31]. In 2007, the
Firefly Algorithm (FA) is inspired by the firefly light emitting
behaviour [31]. In 2007, the Bat Algorithm (BA) was inspired
by the method of sound generation and echo reception by
fruit bats [31]. In 2012, the Flowers Pollination Algorithm
(FPA) was developed based on plant reproduction through
pollination [32]. In 2014, the Ggray Wolf Optimizer (GWO)
was designed inspired by gray wolves hunting method [2].
In 2021, the Aquila Optimizer (AO) was proposed by [33]
and draws inspiration from the natural hunting behaviours of
Aquila. In 2021, [33] developed the Vultures Optimization
Algorithm (AVOA) that was worked based on the African
vultures’ food-seeking and navigational behaviors. In 2021,
the Golden Eagle Optimizer (GEO) is proposed by [34] and
inspired by the Golden Eagles’ method of tuning at different
stages of their spiral trajectory for hunting. In 2023, the
Termite Life Cycle Optimizer (TLCO), which was worked
based on both the life cycle of a termite colony and the
modulation of movement strategies employed by animals in
nature [6]. Figure 1 illustrates the mind map plot for the
classification of nature-based optimization algorithms.

In addition, recently, different swarm-based algorithms
have been introduced based on the behavior of marine
animals. The Whale Optimization Algorithm (WOA) was
created in 2016 by imitating the hunting strategy of humpback
whales [35]. In 2016, the Salp Swarm Algorithm (SSA) is
inspired by the swarming behavior of salps when navigating
and foraging in oceans [35]. In 2019, the Harris Hawks
Optimization (HHO) was suggested. It was inspired by
the hunting technique of Harris’ Hawks known as surprise
pounce [36]. In 2020, the Manta Ray Foraging Optimization
(MRFO) is proposed based on the foraging strategies of
manta rays [37]. The Marine Predators Algorithm (MPA)
was created in 2020 using the foraging strategy of ocean
predators and the optimal encounter rate policy they use when
hunting prey [38]. The Tunicate Swarm Algorithm (TSA)

was made in 2020. It was inspired by how tunicates move
and find food [39]. The Jellyfish Search (JS) optimizer in
2021 was inspired by how real jellyfish move and swarm
in the ocean, including their active and passive motions
and how they come together in a ‘‘jellyfish bloom.’’ It also
included a way to switch between these movements over
time [40]. In 2021, the Northern Goshawks Optimization
(NGO) algorithm was developed, taking inspiration from the
hunting behavior of northern goshawks [41]. The parasitic
behavior of remoras inspired the creation of the ROA
algorithm [42]. The Golden Jackal Optimization (GJO) was
created in 2022, inspired by the hunting behavior of the
golden jackal [43]. In 2022, the Snake Optimizer (SO)
was proposed by mimicking the unique mating behavior of
snakes [44]. The White Shark Optimizer (WSO) was created
in 2022 based on the exceptional senses of hearing and
smell that great white sharks use to navigate and forage
[45]. The Orca Predation Algorithm (OPA) was proposed in
2022. It simulates the hunting behavior of orcas and turns
it into mathematical models [46]. In 2022, the Artificial
Hummingbird Algorithm (AHH) was created based on the
simulation of the unique flight skills and intelligent foraging
strategies of hummingbirds in nature [47]. The Reptile Search
Algorithm (RSA) was developed in 2022, inspired by the
hunting behavior of crocodiles [48]. The Cheetah Optimizer
(CO) was developed in 2022, inspired by the hunting
strategies of cheetahs [49]. The social life and hierarchy of
wild mountain gazelles were the basis for the design of the
Gazelle Optimizer (MGO) in 2022 [50]. By mimicking the
behaviors of the Fennec Fox animal, researchers developed
the Fennec Fox Algorithm (FFA) in 2022 [51]. The Coati
Optimization Algorithm (COA) was created in 2023. It was
based on the coati’s behavior of hunting iguanas and escaping
from predators [52]. In 2023, the Leopard Seal Optimization
(LSO) was introduced by inspiration from hunting strategy
of the leopard seals including searching, encircling, and
attacking [53]. In 2023, the Termite Life Cycle Optimizer
(TLCO) was proposed by [6] and operates based on the
life cycle of a termite colony in nature. Furthermore, efforts
are being made to improve the existing algorithms, and
RandomWalk GrayWolf Optimizer (In 2019) [54], Improved
Harris Hawks Optimization (In 2020) [55], an Improved
Firefly Algorithm with Dynamic Self-Adaptive Adjustment
(In 2021) [56], a Hybrid of Opposition Learning and Spiral
Modelling based Arithmetic Optimization Algorithm (AOA),
called OSAOA (In 2022) [57], a Modified version of the
Seahorse Optimization Algorithm integrated with Chaotic
Maps (CSHO) (In 2023) [58], and a Quasi-Opposition
based Learning and Q-Learning Based Marine Predators
Algorithm (QQLMPA) (In 2023) [59], can be mentioned in
this field. These efforts show the importance of designing and
developing optimizers to solve optimization problems.

According to the authors’ best knowledge, well-known
algorithms like GA, PSO, and ACO can only perform
well in either global or local searches. The performance
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FIGURE 1. Classification of nature-based optimization algorithms.

of these algorithms is poor in balancing global and local
search. Recent algorithms such as HHO and WSO also
mainly benefit from the ability of one type of operator, such
as evolution, physics-based or population-based operators.
While using a combination of different operators can increase
their accuracy. By utilizing adaptive weights that are updated
when approaching the better fitness function, a better balance
can be achieved between global and local search ability. FDA
algorithms employ adaptive weights, but the weights are only
updated based on the number of iterations and not on the
fitness function. Such algorithms are incapable of balancing
global and local search in some conditions. In addition, the
reviewed algorithms such as FA, BA, GWO, WOA, and AO
are designed based on the creation of one type of population.
While in nature, the predator and the prey can each have their
own behavior.

The mentioned gaps can be addressed by designing
an optimization algorithm that is based on the various
aspects of aquatic animal life, due to the unique surprises
of these animals. Moreover, previous studies have been
inspired by marine animal research and prey behavior in
the wild. However, there is still no research to mimic the
lifestyles of Humboldt squid to design and develop a nature-
based algorithm. The problem prompted us to create a
mathematical model of the life behavior of Humboldt squid
and to present the Humboldt Squid Optimization Algorithm
(HSOA). It should be noted that inmost previous studies, only
one type of population is taken into account for optimization.
However, HSOA is designed in relation to two populations
of squids and schools of fish, and both populations interact
with each other. Furthermore, there is a kind of cannibalistic
behavior in the squid, which taking into account in HSOA,
leads to distinguishing HSOA from other similar algorithms
and increase the accuracy of optimization.We first investigate
the unique aspect of the Humboldt squid and then present the
proposed HSOA.

III. HUMBOLDT SQUID OPTIMIZATION ALGORITHM
(HSOA)
A. HUMBOLDT SQUID CHARACTERISTICS
Humboldt squid are large squid found east of the Pacific
Ocean. They have substantial economic and ecological

FIGURE 2. Scheme of the squid anatomy [64].

importance in the eastern Pacific Ocean [60]. These fish
are 1.5m long and are the largest members of their family.
They swim at a velocity of 24 km/h. Humboldt’s squid
is a fast-growing species, ranging from 1 mm at birth
to more than 1 m at the age of 1 to 2 years [61]. The
common prey species are copepods, hyperiid amphipods,
euphausiids, pelagic shrimps, red crabs (Pleuroncodes pla-
nipes), heteropod molluscs, squid, pelagic octopus, and
various fish [61]. Moreover, Humboldt squid east heir fellows
[62]. The larger the Humboldt Squid, the more it eats
other Humboldts. All squid can move at an incredible
speed [63]. Figure 2 shows the schematic anatomy of
a squid.

It is worth mentioning that Humboldt squid are on flying
squids. In general, the motion of the multi-modal flying squid
includes roaming, accelerating, launching, jetting, gliding
and diving, which is clearly illustrated in Figure 3. The other
aspect of Humboldt squid life is mating. Humboldt squid
grow fast and probably only live for one year. During this
time, they reach their maximum size, reproduce several times,
and die. Humboldt squid mate via internal fertilization and
lay large egg masses of at least one million eggs. Over their
short lifespan, females can lay 20 million eggs [65]. Figure 4
depicts a swimming Humboldt squid, a swarm of Humboldt
squid and a mass of squid eggs.

The way in which a squid feeds (hunting fish and
other squid), swims, locomotion and mating can inspire an
optimization algorithm. All of these behaviors of Humboldt
squids differ from those of other animals. The behaviors of
this animal make it a unique predator. Also, the method of
movement, hunting, and mating of this animal is very similar
to finding the optimal solution to an optimization problem.
The ocean environment is like the search domain of the
problem, and the school fishes and weaker squids are like
the optimal solution. Hence, in the present research, a new
optimizer named HSOA inspired by the hunting, locomotion
and reproduction behaviors of squid is designed to solve
optimization problems, whichwill be discussed inmore detail
in the next sections.
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FIGURE 3. Illustration of Humboldt squid locomotion [66].

B. BASIC STEPS OF THE ALGORITHM
Key steps in HSOA included hunting, moving and mating.
To mathematically model this process, five mechanisms
are defined for the search operation. These mechanisms
are composed of attack of fish schools, escape of fish,
successful attack, attack of stronger squid on smaller squids,
and mating of Humboldt squid. In HSOA, in increasing
iterations, the searching process by the attack of fish schools,
attack of stronger squids on smallest squids, and mating is
converted from exploration to exploitation. However, fish
escape handles exploration through every iteration. Figure 5
demonstrates the different mechanisms of Humboldt squid.

C. GENERATING INITIAL POPULATION
The population of HSOA comprises Humboldt squid and fish
swarms. HSOA uses the following pseudocode (Algorithm 1)
to generate the initial population. As seen, the best individuals
in the population are considered being Humboldt squid, and
the rest are fish. This issue is consistent with nature because
Hublot squid has a larger body and greater fitness than school
fish.

D. ATTACK OF FISH SCHOOLS
In HSOA, equation 1 is used to simulate the attack of fish
schools.

XSdnew, i = Xb + Vjet .(−XFdnew, r1 − PopAll
d
r2 ). (1)

In Eq. (1),XSdnew, i is the new position of ith Humboldt squid
in d th dimension, Vjet is the locomotion velocity parameter,
XFdnew, r1 is the position of r th1 fish in d th dimension, and
PopAlldr2 , is the saved r th2 position in the HSOA memory.
Furthermore, r1 is a random integer number between 1 and
population size of fish, and r2 is a random integer number
between 1 and size of PopAll. Responsibility for Vjet will be
set out in section 4.7.

E. SUCCESSFUL ATTACK
After updating the new position for Humboldt squid and fish,
the current position for Humboldt squid is replaced with the
new position for Humboldt squid (XSi).

XSdi =

{
XSi = XSnew, i ifFS,new i < FS, i

Successful escape, otherwise.
(2)

In Eq. (2), FS,new i and FS, i are new fitness functions and
current fitness functions of the ith Humboldt squid.

Algorithm 1 Initial Population Generation
Input: Population size (N), upper bound (ub) and lower

bound (lb) of decision variables
Output: Initial population for both Humboldt squid and

school fish
Initialization :

1: for i = 1 to 2.N do
2: Xinit ← lb+ (ub− lb).

−→
rnd;

3: Evaluate fitness function;
4: end for
5: Save merged population in PopAll;
6: Sort the population according to the fitness function;
7: Select the first NS members of the population to be
Humboldt squids (XS); and the other NF members to
be fish(XF);

8: XSnew← XS;
9: XFnew← XF;
10: Select the best individual as the global best (Xb);
11: Save the N top best individuals;

F. SUCCESSFUL ESCAPE
After the squid attacks the fish school, the fish escape to
a randomly located location. In this escape, the velocity
and position of the fish are updated based on the following
equation:

XFnew,i =


XFi +

−→rn .

(pbest − XFi).wf , ifnfes < 0.1.maxnfes,
XSi +

−→rn .(ArchiveXr1
−PopAllr2).wf , otherwise.

(3)

In Eq. (3), nfes is the current number of function
evaluations, maxnfes is the maximum number of function
evaluations, XFnew,i is a new position of ith fish, XFi is the
current position of ith fish, pbest is N top of the best positions,
ArchiveXr1 is r th1 position in archive of the best results, XSi
is ith position of Humboldt squid, −→rn is the normal random
vector, wf = Fb

Ffi
, Fb is the best fitness function, and Ffi

is the fitness function of ith fish. In this equation, if the
counter of function evaluations is in the initial generations,
the fishmoves towards one of theN best solutions. Otherwise,
it moves to a random position.

G. ATTACK OF STRONGER SQUIDS TO SMALLEST SQUIDS
If fish and Humboldt squid do not find a better position in
the previous steps, it is assumed that there are no longer any
fish to hunt. Consequently, the larger Humboldt squid eats the
smaller ones. In this stage, the position of the Humboldt squid
is derived from the following equation:

XSdnew,i = XSdnew,i + Vjet2.(XS
d
new,i − X

d
b ) (4)

In Eq. (4), Vjet2 is the second velocity parameter.
To find the best solutions, it is assumed that the smaller
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FIGURE 4. Photographs of squid a) one Humboldt squid in swimming, b) swarm of Humboldt squid, c) Squid in hunting a fish
[67] d) Humboldt squid in eating other Humboldts, and e) squid species’ egg mass [68].

FIGURE 5. Different mechanisms of HSOA.

Humboldt squid is in a better position and the larger
one moves toward it based on this relationship. Therefore,

it is assumed that smaller Humboldt squid is in the best
position (Xb).

H. HUMBOLDT SQUID MATING
Equation 4 is utilized in HSOA to generate the egg position.
It was previously employed by [69] for enhancing the
deferential evolutionary (DE) algorithm.

Eggs = (ω.XS + (1− ω.pbest)).γ + (1− γ )

.pop(r1, :)+W .(pop(r3, :)− popAll(r2, :)) (5)

In Eq. (5), Eggs is position of Humboldt squid eggs mass,
ω, γ and W are adaptive weights which control search
process. ω and γ are between 0 and 1. W can be estimated
using the following equation:

W = max{ω.γ, (1− ω).γ, 1− γ } (6)
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In the present work, for estimating ω and γ following
equations are defined:

ω = µω + c1.x (7)

γ = µγ + c2.
−→rn (8)

where c1 and c2 are constant parameters which are deter-
mined by the user. Moreover, µω and µγ in the first
generation are vectors with a value of 0.5, and updated in
other generations as follows:

µω =
[DiffF (I )].[ω(I )2]
[DiffF (I )].[ω(I )]

(9)

µγ =
[DiffF (I )].[γ (I )2]
[DiffF (I )].[γ (I )]

(10)

In Eq. (9) and Eq. (10), I is the index of which Humboldt
squids that have more fitness than their Eggs, DiffF is the
difference between the fitness of Humboldt squids and their
Eggs. Since each Humboldt squid mate several times in its
lifetime, at each generation, the mating action in the HSOA
is repeated several times.

It should be noted that the γ must be greater than zero.
Thus, if the γ value becomes less than zero, it is corrected
using the following equation:

γ = µγ + 0.1.tan(π.rnd) (11)

In Eq. (11), rnd is a normal random number which is
between [0, 1]. The x in equation 6 is computed as follows:

x =
nfes

maxnfes
.
−→
rnd r .10 (12)

In Eq. (12), overrightarrowrnd and r are a normal random
vector and a normal random number, which are between 0 and
1,respectively.

The mating process in HSOA is presented in Algorithm 2.

I. CONTROL SEARCH PROCESS
The HSOA search process is controlled by various param-
eters, including Vjet , Vjet2, x, wf , W , ω, and γ . Vjet and
Vjet2 are employed to simulate the shape of locomotion of
Humboldt squids. For this purpose, a polynomial function is
used. The power of this polynomial function for Vjet and Vjet2
is considered being 3rd and 4th degree, respectively. Vjet and
Vjet2 are calculated using the following equations:

Vjet = (X − a1).(X − a2).(X − a3) (13)

Vjet2 = (X − a1).(X − a2).(X − a3).(X − a4) (14)

In Eq. (13) and Eq. (14), a1, a2, a3, and a4 are parameters
of polynomial function which define its shape, and X can be
calculated using the following equation:

X =
nfes

maxnfes
(15)

wf modifies the fish’s escape radius as a function of the
ratio between the value of the best objective function and the
current value of the fish’s objective function. At the beginning

Algorithm 2Mating Process in HSOA
Define initial parameters: N , Mcycle, memorysize,Pbestrate,

Archivesize
Output: Updated Humboldt squid’s position

Main loop :
1: while M < Mcycle do
2: M ← M + 1;
3: Sort the population according to the fitness function;
4: MemoryIndex,rand ← ⌊dim.

−→
rnd⌋

5: µω = Memoryω(MemoryIndex,rand )
6: µγ = Memoryγ (MemoryIndex,rand )
7: Calculate x using equation 11;
8: Calculate ω and γ using equation 6 and 7;
9: Generate three random integer number (r1, r2, r3);

10: Choose Pbestrate% of best solutions and save them on
Pbest;

11: ComputeW using equation 5;
12: Generate the Position of eggs using equation 4;
13: Evaluate eggs position;
14: if fitnesseggs < fitnessPop then
15: Pop = eggs%If the eggs had a better position

than the parent, the position of the egg should be
considered as the position of the parent;

16: end if
17: Update Archive (Add new solution to archive and

remove duplicate or randomly remove some solutions
to maintain the archive size);

18: Update µω and µγ

19: if γ < 0 then
20: γ updated using equation 10;
21: end if
22: ω← min(ω, 1); γ ← min(γ, 1);
23: Merge Pop and Archive and save on PopAll;
24: XSi← lb+ (ub− lb).

−→
rnd

25: Evaluate fitness function;
26: end while
27: return Humboldt squid’s position

of the search, when there is a wide range of solutions, this
parameter limits the extent of fish escapement. However, with
the increase in the number of generations, this parameter
becomes close to one and its effect is neutralized.

In equation 8, by increasing the generations, the value of x
is increased, and therefore in equation 4, the impacts ofXS are
increased comparedwith pbest. These parameters helpHSOA
overcome the local optima trap. wf ,W , /omega and /gamma
are responsible for avoiding premature convergence of the
resulting responses in the mating section. These parameters
change according to the value of the objective function and
increasing the number of generations, thereby changing the
search range and balancing exploration and exploitation. For
example, using equations 10 and 11, more changes apply to
the position of eggs that did not result in better responses.
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This increases the chances of getting out of the local optima
trap.

J. FLOWCHART OF HSOA
HSOA follows the following principles when it comes to
problem solving:

1) The HSOA algorithm’s search space contains three
types of solutions, including the current position of
Humboldt squids (XSnew), the current position of fish
(XFnew), the best positions in memory of Humboldt
squids (XS) and fish (XF), the best position of
Humboldt squids and fishes in the current generation
(Xb).

2) TheHumboldt squids have a better position (less fitness
function in minimizing) than fishes.

3) Humboldt squid with a smaller fitness function are
larger than other Humboldt squid.

4) Humboldt squid attack schools of fish and smaller
Humboldt squid.

5) The location of Humboldt squid and fish is updated if
a better solution is found.

6) In each generation, mating is performedmultiple times.
7) Adaptive weights control HSOA’s exploration and

exploitation ability so that as generations increase, the
exploration phase becomes exploitation.

For a better understanding, every stage of HSOA is fully
illustrated in Figure 6. HSOA uses a variety of operators for
optimization, as described in the flowchart.

K. TIME COMPLEXITY AND SPACE COMPLEXITY
In the section, the operating efficiency of the algorithm is
evaluated by analyzing the computational complexity of the
HSOA. Time and space complexity are the two components
of the algorithm’s computational complexity. The amount of
storage space required by the algorithm is space complexity.
In HSOA, the complexity of the algorithm is dependent only
on the population number, the dimensions of the optimization
problem, and the required memory for PopAll, Pbest, and
ArchiveX. Therefore, the HSOA complexity can be given by:

Space complexity = O((N + PopAllsize + Pbestsize
+ Archivesize).D) (16)

The time complexity in HSOA depends on theMaxnfes, and
the time taken to calculate the fitness value (f). As a result, the
time complexity is calculated as follows:

Time complexity = O(Maxnfes.D+ f ) (17)

The first term in Eq. (17) is for initialization, the second
is for updating solutions, and the third is for fitness function
evaluation.

IV. EXPERIMENTAL STUDY SETTINGS
HSOA is examined using 23 classic benchmark functions, 29
CEC-BC-2017 benchmarks with 10, 30, 50, and 100 dimen-
sions [70], 10 CEC-C06 2019 benchmark functions [71],

Algorithm 3 HSOA Algorithm
Define initial parameters: N , c1, c2, a1, a2, a3, a4,M , and

Maxnfes
Output: Best solution
1: Generate initial population (Algorithm 1);s
%%Main loop :

2: while nfes < Maxnfes do
3: Update x using equation 11;
4: for i = 1 to N do
5: for d = 1 to dim do
6: Calculate Vjet using equation 12;

Attack of fish schools
7: Update the new position of Humboldt squid using

equation 1 (XSnew);
8: Check the feasibility of the solution;
9: end for
10: Evaluate new position of Humboldt squid; Update

nfes;
11: if fSnew < fS then
12: Update XS
13: end if
14: Update Xb, Pbest , Archive;
15: end for

%%Escape
16: Update new position of school fish using equation 2;

%%Successful escape
17: for i = 1 to N do
18: Check the feasibility of the solution XFnew;
19: Evaluate new position of the fish; Update nfes
20: if fFnew < fS then
21: Update XF ;
22: end if
23: Update Xb, Pbest ;

%%Larger Humboldt squid attack on smaller
Humboldt squid

24: if fFnew > fF || fSnew > fS then
25: for d = 1 to dim do
26: Update Vjet2 using equation 13;
27: Update new position of Humboldt squid using

equation 3 (XSnew);
28: Evaluate new position of Humboldt squid;

Update nfes
29: if fSnew < fS then
30: Update XS
31: end if
32: end for
33: end if
34: end for
35: Run mating Algorithm (Algorithm 2); Update nfes
36: Merge Humboldt squids and fish population;
37: Sort the population according to the fitness function
38: Select the first N members of the population to be

Humboldt squids and the other N members to be fish
39: end while
40: return Best solution
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FIGURE 6. Flowchart of HSOA.

10 CEC2020 benchmarks with 5, 10, 15, and 20 dimensions
[72], 12 CEC2022 benchmarks with 10 and 20 dimensions
[73], six cec2006 and eighteen cec2011 engineering design
problems [74]. HSOA is compared to various competitors
in benchmark functions and engineering problems. All
algorithms and problems were implemented using MAT-
LAB R2020b; they were run on Windows 10, Intel Xeon
2.2GHz CPU, 40G RAM. The following assumptions are
considered in comparing HSOA with other optimization
algorithms:

1) To ensure a fair evaluation of optimization algorithms,
the maximum number of fitness evaluations (Maxnfes)
is set to be the same. For this purpose, the Maxnfes
for classic benchmark, CEC2017, CEC2006 engi-
neering design problem, and CEC2011 engineering
design problem is set to 150000, 10000.Dim [70],
15000, and 150000 [74], respectively. The Maxnfes
for the first to the tenth CEC2019 are set to
90000, 320000, 1800000, 1000000, 100000, 100000,
1000000, 1000000, 1000000, and 600000, respectively.
The Maxnfes for CEC2020 in 5, 10 15 and 20 dimen-
sions is equal to 50000, 1000000, 3000000 and
10000000 [72]. For CEC2022 in 10 and 20 dimensions,
the Maxnfes is considered by value of 200000 and
1000000, respectively [73].

2) The algorithm runs 51 times for CEC2017, CEC2019,
and CEC2006 benchmarks. For CEC2020 and
CEC2022, it runs 30 times, and for CEC2011, it runs

25 times. These values are determined according to the
studies of [70], [72], [73], and [74].

3) The application of optimization algorithms is evaluated
in different benchmark and engineering problems.

4) More details about the experimental study setting are
presented in the following sub-section.

A. BENCHMARK FUNCTIONS
Fifty-two benchmark functions are employed to evaluate
HSOA and its competitors. Details on benchmark functions
are presented in Table 1. Eighty-three benchmark functions
are employed to evaluate HSOA and its competitors. Details
on benchmark functions are presented in Table 1.
The classic benchmark functions include seven unimodal

(1 to 7), six multimodal (8-13) and ten multimodal-based
fixed-dimension (14 to 23). CEC2017 set comprises two
unimodal functions (1 and 3), seven multimodal functions
(4-10), ten hybrid functions (11-20), and ten composite func-
tions (21-30). The second benchmark function of CEC2017
is removed for unstable behavior. CEC2020 set includes
one unimodal function (1), three multimodal functions (2-4),
three hybrid functions (5-7), and three composite functions
(8-10). The CEC2022 set consists of one unimodal function
(1), four multimodal functions (2-5), three hybrid functions
(6-8), and four composite functions (9-12). Better results
in unimodal, multimodal benchmark functions show a more
remarkable ability for exploitation and exploration. The
excellent performance in solving hybrid and composite
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functions shows a good ability to escape from the local
optimum. The CEC2019 characteristics are also tabulated in
Table 2.

The global optimal values forCEC2020 inCEC−20/01−
CEC−20/010 are equal to 100, 1100, 700, 1900, 1700, 1600,
2100, 2200, 2400 and 2500, respectively. Additionally, the
global optimal values forCEC2022 inCEC−22/01−CEC−
22/12 are 300, 400, 600, 800, 900, 1800, 2000, 2200, 2300,
2400 2600 and 2700.

B. REAL-WORLD PROBLEMS
In addition, the accuracy of the HSOA is evaluated in terms
of the six CEC2006 real-world problems and the eighteen
CEC2011 real-world problems. The CEC2006 problems
include tension/compression spring [75], speed reducer [37],
and three models of 25-bar truss [35], [76]. Details of
CEC2011 functions can be found in [74]. These problems
have several linear and nonlinear constraints that increase
their complexity. As a result, the use of these problems can
demonstrate the capability of HSOA in the real-world. The
CEC2011 problems which employed in this study consist of
Parameter Estimation for Frequency-Modulated (FM) Sound
Waves (F1), Lennard-Jones Potential Problem (F2), Optimal
Control of a Non-Linear Stirred Tank Reactor (F3), Spread
SpectrumRadar Polly phase Code Design (F4), Transmission
Network Expansion Planning (TNEP) Problem (F5), Large
Scale Transmission Pricing Problem (F6), Circular Antenna
Array Design Problem (F7), Static Economic Load Dispatch
(ELD) Problem (F8), different models of Dynamic Economic
Dispatch (DED) Problem (F9 to F13), different models of
Hydrothermal Scheduling Problem (F14 to F16), Messenger:
Spacecraft Trajectory Optimization Problem (F17), Cassini
2: Spacecraft Trajectory Optimization Problem (F18). The
results of 51 random HSOA implementations in designing
real-world problems are compared with other metaheuristic
optimization algorithms. In CEC2011 real-world problems,
HSOA results are presented over 150,000 generations [74].
Thus, the Lagrangian method applies to violate the fitness
function to solve constraint problems.

C. HSOA COMPETITORS
The performance of HSOA was compared with nine (9)
different optimization algorithms, namely, AVOA, PSO,
DE, RW_GWO, WOA, HHO, DE variants with linear
population size reduction (LSHADE) [77], Gradient based
optimizer (GBO) [78] and Effective Butterfly Optimizer with
CovarianceMatrix Adapted Retreat Phase (EBOwithCMAR)
[79]. PSO, DE and WOA are regarded as well-known
optimizing algorithms. AVOA, RW_GWO, GBO and HHO
are considered as new optimizing algorithms. LSHADE and
EBOwithCMAR are employed as state-of-the-art algorithms.

D. PARAMETER SETTINGS OF HSOA COMPETITORS
The parameter settings for the investigated algorithms are
given in Table 3. These parameters were chosen based on

earlier studies, trials, and experience. The population size and
the maximum number of iterations for all algorithms were
chosen so that theMaxnfes is the same for them.

E. STATISTICAL ANALYSIS
This research uses two nonparametric tests to compare
HSOA with other competitors. These tests include the
Friedman and Wilcoxon signed-rank. To determine each
algorithm’s mean rank, many studies use Friedman tests
[81], [82]. The Wilcoxon signed-rank test is commonly
used for pairwise comparisons in studies like [83] based on
[84] recommendation. Wilcoxon determines the number of
victories and defeats of one algorithm compared to the other
competitors.

V. RESULTS AND DISCUSSION
The robustness and convergence efficiency of the proposed
Humboldt squid optimization algorithm (HSOA) was tested
on 84 benchmark functions and 21 real-world problems.
The 84 benchmark functions include 23 classical benchmark
functions, 29 CEC2017 on dimensions 10, 30, 50 and 100,
10 CEC2019, 10 CEC2020 on dimensions 5, 10, 15 and 20,
12 CEC2022 on dimensions 10 and 20. The 21 real-world
problems consist of 18 CEC2011 and 6 CEC2006.

A. SENSITIVITY ANALYSIS
The HSOA parameters are determined using the sensitivity
analysis. In this regard, HSOA is executed multiple times by
changing the values of the setting parameters. In the next step,
the mean fitness functions related to each setting parameter
are evaluated. The parameter setting with a minimum mean
fitness function is considered being a desired value. In other
studies, such as [85] and [86], this technique is employed.
Figures 7 to 13 show the HSOA sensitivity analysis results
for classic, CEC2017, CEC2019, CEC2020, CEC2022,
CEC2006 and CEC2011. In this study, the normalized fitness
function is used for sensitivity analysis to show the results
more clearly. In this method, the evaluation results for each
function are scaled between 0 and 1. This purpose is achieved
by using the min-max normalization method. Values closer
to zero (white color) represent the minimum value of the
objective function, whereas values closer to one (blue color)
indicate the maximum value. The sensitivity analysis of
HSOA parameters has assigned the values 0.001, 0.1, 0.5,
0.6, 0.8, and 0.9 to c1 and c2. The values of 50, 24, 20,
14, 10, and 4 are used for sensitivity analysis of N. The
sensitivity analysis of M_cycle considers the values of 5, 10,
50, 100, 150, and 300. Sensitivity analysis of [a1, a2, a3, a4]
is performed using four sets: [1, -0.8, -1, -0.1], [0.9, -0.9, -1.1,
-0.2], [0.8, -0.95, -1.2, -0.3], and [0.5, -1, -1.4, -0.4].

Figures 7 to 13 show the best parameters for each function
based on sensitivity analysis. The optimal values for c1 and
c2 were 0.001 and 0.5, respectively. For N, the best values
were 4 or 10. The results for M_cycle indicated that 50 was a
desirable value for low dimensions problems, while 300 was
a better value for high dimensions problems. According to
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TABLE 1. Description of classic benchmark functions.
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TABLE 2. Characteristic of CEC2019 benchmark functions.

TABLE 3. Parameter setting of investigated algorithms.

the got results, using the first set [a1, a2, a3, a4] led to
better performance. For the running HSOA, the mentioned
parameters can be considered as the default.

B. COMPARISON WITH POPULAR METAHEURISTICS
ALGORITHMS
Table 4 lists the results of HSOA algorithms and other opti-
mization algorithms for solving classic benchmark functions
over 150000 function evaluations. In this table, the min,
mean, median, max, and std results from 51 independent runs
are displayed. The min, mean, and median results indicate
the accuracy of the proposed algorithm and the std results
and the difference between the max and min indicate the
quality of the results. The lower the mentioned criteria,
the higher the accuracy and quality of the algorithm under
review. As seen, HSOA had a reasonable accuracy in finding
the global optimum of classic benchmark functions. The
proposed algorithm got better results than other selected
algorithms in F6, F11, F14, F16, F17, F19, F20 and F21.
Although sometimes the precision of other algorithms was
superior to that of HSOA, most times the HSOA was more
accurate than other algorithms. Additionally, HSOA had
competitive performance with popular algorithms (PSO, DE,
WOA), new optimization algorithms (AVOA, RW_GWO,
HHO, GBO), and stat-of-the-art algorithms (LSHADE and
EBOwithCMAR). Although in the fifth and eighth functions,
the value of the std and the difference between min and max

were not very small. However, in others, the value of std and
the difference between min and max were close to zero.

As there are many results and evaluation criteria for their
verification, the use of statistical tests can help tomore clearly
analyze and compare HSOA results with other algorithms.
Hence, the Wilcoxon test and the Friedman test were used
as a post huc test to analyze optimization results. Table 5
shows the results of the Wilcoxon post huc test with a
significant level of 0.01. HSOA won 9 out of 23 benchmark
functions compared to AVOA, PSO, DE, RW_GWO, WOA,
HHO, LSHADE, GBO, and EBOwithCMAR. HSOA won in
functions 13, 19, 18, 20, 17, 14, 7, 12, and 6. HSOA’s equality
with AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR was equal to 2, 4, 5, 2, 4, 3, 11,
6 and 12, respectively. Friedman’s ranking (Figure 14) for the
solving of classic benchmark functions shows that HSOAwas
in 1st place and EBOwithCMAR and LSHADE in 2nd and
3rd place.

Tables 6 to 9 present the min, mean, median, max,
and std results of solving CEC2017 benchmark functions
using HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO,
LSHADE, GBO, and EBOwithCMAR. Based on the findings
of these tables, the proposed algorithm was superior to
AVOA, PSO, DE, RW_GWO, WOA, HHO and GBO.
In dimensions 10, HSOA has found the global optimum
of CEC − 17/01 (Min = 100.00), CEC − 17/03 (Min =
300.00), CEC − 17/04 (Min = 400.000), CEC − 17/05
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TABLE 4. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the classic benchmark functions over 51 runs and 150000 number function evaluations.
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TABLE 4. (Continued.) Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO,
LSHADE, GBO, and EBOwithCMAR metaheuristic algorithms using the classic benchmark functions over 51 runs and 150000 number function evaluations.

FIGURE 7. Sensitivity analysis of HSOA using classic benchmark functions.
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FIGURE 8. Sensitivity analysis of HSOA using 2017 benchmark functions over different dimensions.

(Min= 500.00), CEC−17/06 (Min= 600.00), CEC−17/8
(Min = 800.00), CEC − 17/09 (Min = 900.00), CEC −
17/11 (Min = 1100.00), CEC − 17/13 (Min = 1300.00),
CEC − 17/14 (Min = 1400.00), CEC − 17/19 (Min =
1900.00), CEC − 17/20 (Min = 2000.00). For the other
CECs with dimension 10, the HSOA results are close to
the global optimum. For the higher dimensions (Dim = 30,
50 and 100), HSOA got competitive results with CEC2017
winners (LSHADE and EBOwith CMAR). In dimensions
10 for CEC − 17/01, CEC − 17/03, CEC − 17/04, CEC −
17/06 and CEC − 17/09, HSOA results were equal with
those of LSHADE and EBOwithCMAR and were better than
them in CEC − 17/22, CEC − 17/25 and CEC − 17/27.

In dimension 30 for CEC − 17/01, CEC − 17/03, CEC −
17/18 and CEC − 17/20, HSOA demonstrated a very close
performance compared to LSHADE and EBOwithCMAR.
In contrast, the HSOA results were better than LSHADE
in CEC − 17/04, CEC − 17/05, CEC − 17/06, CEC −
17/08, CEC − 17/10, CEC − 17/11, CEC − 17/12,
CEC − 17/16, CEC − 17/17, CEC − 17/21 to CEC −
17/27, CEC − 17/29 and CEC − 17/30. Moreover, HSOA
was more accurate than EBOwithCMAR in CEC − 17/04,
CEC − 17/05, CEC − 17/08, CEC − 17/12, CEC − 17/27,
CEC − 17/29 and CEC − 17/30. Regarding dimensions 50,
HSOA achieved competitive results compared to LSHADE
and EBOwithCMAR inCEC−17/01,CEC−17/07,CEC−
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FIGURE 9. Sensitivity analysis of HSOA using CEC2019 benchmark functions.

TABLE 5. Comparison of victory(+), equality(=) and defeat(−) for HSOA
in compression with AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO,
and EBOwithCMAR metaheuristic algorithms using the classic benchmark
functions over 51 runs and 150000 number function evaluations.

17/08, CEC − 17/12, CEC − 17/20, CEC − 17/22 to
CEC−17/24,CEC−17/26 andCEC−17/29. The accuracy
of HSOA was greater than LSHADE in CEC − 17/01,
CEC − 17/06, CEC − 17/09 through CEC − 17/11, CEC −
17/13 through CEC − 17/19, CEC − 17/21, CEC − 17/27,
CEC − 17/28 and CEC − 17/30. HSOA in comparison with
EBOwithCMARperformed accurate inCEC−17/04,CEC−
17/05,CEC−17/09,CEC−17/11,CEC−17/14 toCEC−
17/16, CEC − 17/18, CEC − 17/19, CEC − 17/21, CEC −
17/27,CEC−17/28 andCEC−17/30. Based on dimensions
100, HSOA competed for LSHADE and EBOwithCMAR in
CEC − 17/01, CEC − 17/04, CEC − 17/05, CEC − 17/08,
CEC − 17/10, CEC − 17/12, CEC − 17/13, CEC − 17/15,
CEC−17/17, CEC−17/20 to CEC−17/21, CEC−17/23,
CEC − 17/24, CEC − 17/28 and CEC − 17/30. HSOA

was superior to LSHADE in CEC − 17/06, CEC − 17/07,
CEC − 17/11, CEC − 17/14, CEC − 17/16, CEC − 17/18,
CEC − 17/22, CEC − 17/25 to CEC − 17/27 and CEC −
17/29. Based on other results, HSOA demonstrated a better
performance than EBOwithCMAR in CEC − 17/06, CEC −
17/09, CEC − 17/14 and CEC − 17/27.

It is worth’s noting that HSOA in all dimensions and
CEC2017 had superiority over AVOA, PSO, DE, RW_GWO,
WO, HHO, and GBO. In terms of the quality of the HSOA
results, it can be concluded that the HSOA results were
comparable to those of other investigated algorithms.

The Wilcoxon test significant level of 0.01 (Tables 10
to 13), determined that HSOA had 28, 26, 25, 28, 29, 29,
5, 27 and 1 victories on 29 CEC2017 in 10 dimensions
compared to AVOA, PSO, DE, RW_GWO, WOA, HHO,
LSHADE, GBO, and EBOwithCMAR, respectively. In
30 dimensions, Wilcoxon recorded 29, 27, 29, 28, 29,
29, 12, 28 and 4 victories for HSOA in competition with
AVOA, PSO, DE, RW_GWO,WOA, HHO, LSHADE, GBO,
and EBOwithCMAR, respectively. HSOA in 50 dimen-
sions was wine in 29, 27, 26, 28, 29, 29, 10, 2 and 8
CEC2017 of 29 CEC2017 in comparison with AVOA,
PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and
EBOwithCMAR, respectively. According to other reported
results of the Wilcoxon test, in 100 dimensions, HSOA
had 29, 26, 28, 27, 29, 29, 6, 28 and 4 victories of
29 CEC2017 compared to AVOA, PSO, DE, RW_GWO,
WOA, HHO, LSHADE, GBO, and EBOwithCMAR, respec-
tively. The number of equalities between HSOA and
LSHADE and EBOwithCMAR, in dimensions 10, were 12,
in dimensions 30 were 8 and 10, in dimension 50 were
14 and 11, and in dimensions 100 were 12 and 2,
respectively.

The ranking of HSOA and competitors in the CEC −
17 optimization is conducted using the Friedman test (Figures
15 through 18). As shown, in dimensions 10 and 100, the
proposed algorithm ranked first after EBOwithCMAR and
LSHADE. In dimensions 30 and 50, HSOA was ranked
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FIGURE 10. Sensitivity analysis of HSOA using CEC2020 benchmark functions over different dimensions.

first after EBOwithCMAR. The ranking results for the
proposed algorithm and the CEC − 17 winners are close.
The competitive results of HSOA were for using two swarms
in this algorithm (artificial Humboldt squids and school fish)
and adaptive parameters that led to a good balance between
exploration and exploitation.

Table 14 tabulates the results of solving CEC2019 bench-
mark functions by HSOA, AVOA, PSO, DE, RW_GWO,
WOA,HHO, LSHADE, GBO, and EBOwithCMAR. Consid-
ering the results, HSOA, in terms of min, mean, median, max,
and std, had a competitive accuracy than other investigated
algorithms. It is clear that HSOA performed well for CEC −
19 problems, achieving the global optimum for CEC −

19/01 to CEC − 19/06 and finding optimal solutions for
others with reasonable accuracy.

Using the Wilcoxon test of Table 15 revealed that HSOA
had 10 wins out of 10 CEC2019 over PSO, DE, RW_GWO,
WOA and GBO. According to the Wilcoxon test, HSOA
won 9 out of 10 CEC2019 against AVOA and HHO, and
also won 7 and 3 out of 10 CEC2019 against LSHADE
and EBOwithCMAR, respectively. The number of HSOA
equalities with HHO, LSHADE and EBOwithCMAR was
estimated at 1, 2 and 2, respectively. In Figure 19, the
Friedman test results indicate that HSOA ranked first with
2.06, followed by EBOwithCMAR and LSHADE with
2.49 and 2.78, respectively. The Friedman ranks of AVOA,
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TABLE 6. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2017 benchmark functions over 10 dimensions, 51 runs and 100000 number function
evaluations.
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TABLE 6. (Continued.) Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO,
LSHADE, GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2017 benchmark functions over 10 dimensions, 51 runs and 100000 number
function evaluations.
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FIGURE 11. Sensitivity analysis of HSOA using CEC2022 benchmark functions over different dimensions.

FIGURE 12. Sensitivity analysis of HSOA using CEC2006 benchmark functions.

PSO, DE, RW_GWO, WOA, HHO and, GBO were equal to
6.20, 7.59, 5.73, 6.30, 8.55, 7.53 and 5.77, respectively.

The statistical results of the HSOA of the benchmarks
with 5, 10, 15, and 20 dimensions are summarized in
Table 16 to Table 19. It includes the got min, mean,
median, max and the std values over 30 random runs for
all 10 CEC2020 benchmark functions. The HSOA could
consistently get the optimal solution for all dimensions over
30 runs for unimodal functions, CEC − 20/01. HSOA
performs well in all dimensions for multimodal functions
(CEC − 20/02-CEC − 20/04), except for CEC − 20/03.

Despite the many local optimal for CEC − 20/03, HSOA
could approximate the global optimal with low error. The
difference between the best obtained solutions of HSOA
and the global optimal for CEC − 20/02 in 5,10, 15 and
20 dimensions was low and equal to 0.12, 0.12, 0.21, and
0.09, respectively. About CEC − 20/03, HSOA gets trapped
in local optima in dimensions 10, 15 and 20, because CEC −
20/03 was a challenging problem. In terms of CEC − 20/04,
the HSOA results were very close to the optimal. Regarding
hybrid functions, CEC − 20/05 to CEC − 20/07, HSOA
can consistently find the global optimal solution for the
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FIGURE 13. Sensitivity analysis of HSOA using CEC2011 benchmark functions.

FIGURE 14. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the classic benchmark functions over 51 runs and
150000 number function evaluations.

three problems over 30 runs in 5 dimensions. In addition,
HSOA got very close to the optimum in all functions for
all the remaining three dimensionality except for CEC −
20/05. As the size of the problem increased, performing
the mentioned problem slightly deteriorated. Considering the
composition functions, CEC − 20/08 to CEC − 20/10, in
5 dimensions, HSOA could find the global optimal solution
consistently in CEC − 20/08 over 30 runs. HSOA could also

FIGURE 15. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2017 benchmark functions over 10 dimensions,
51 runs and 100000 number function evaluations.

find the reasonable optimal solution in CEC − 20/08 for
remaining dimensions. In addition, for CEC − 20/09 and
in CEC − 20/10, the results were competitive. These test
functions are challenging because of the presence of many
sub-functions and local optimal in each problem. In these
functions, HSOA had competitive results with new and state-
of-the algorithms. The accuracy of the HSOA algorithm is
competitive through its comparison with other algorithms
based on min, mean, median, max, and std results. According
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TABLE 7. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2017 benchmark functions over 30 dimensions, 51 runs and 300000 number function
evaluations.

122090 VOLUME 11, 2023



M. V. Anaraki, S. Farzin: HSOA: A Novel Nature-Inspired Technique

TABLE 7. (Continued.) Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO,
LSHADE, GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2017 benchmark functions over 30 dimensions, 51 runs and 300000 number
function evaluations.
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TABLE 8. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2017 benchmark functions over 50 dimensions, 51 runs and 500000 number function
evaluations.
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TABLE 8. (Continued.) Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO,
LSHADE, GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2017 benchmark functions over 50 dimensions, 51 runs and 500000 number
function evaluations.
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TABLE 9. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2017 benchmark functions over 100 dimensions, 51 runs and 1000000 number function
evaluations.
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TABLE 9. (Continued.) Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO,
LSHADE, GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2017 benchmark functions over 100 dimensions, 51 runs and 1000000 number
function evaluations.

to theWilcoxon results in Table 20 to Table 23, HSOAwas the
winner under almost conditions compared to well-known and

new algorithms. In comparison with EBOwithCMAR as the
state-of-the-art algorithm,HSOAhad 1, 3, and 5wins in 5, 10,
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TABLE 10. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2017 benchmark functions over
10 dimensions, 51 runs and 100000 number function evaluations.

TABLE 11. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2017 benchmark functions over
30 dimensions, 51 runs and 300000 number function evaluations.

15, and 20 dimensions, respectively. The Friedman ranking of
HSOA and competitors was shown in Figure 20 to Figure 23.
As seen, HSOA had a second rank in 5 dimensions and a
first rank in the remaining dimensions. These results show

TABLE 12. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2017 benchmark functions over
50 dimensions, 51 runs and 500000 number function evaluations.

TABLE 13. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2017 benchmark functions over
100 dimensions, 51 runs and 1000000 number function evaluations.

that the stability of HSOA is even more than state-of-the-art
algorithms such as LSHADE and EBOwithCMAR.

Table 24 and Table 25 show the results of optimizing
CEC2022 byHSOA and competitors. According to CEC2022

122096 VOLUME 11, 2023



M. V. Anaraki, S. Farzin: HSOA: A Novel Nature-Inspired Technique

TABLE 14. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2019 benchmark functions over 51 runs.

results in 10 dimensions (Table 24), the HSOA achieved
the global optimal solution for the min, mean, median,
and max results in the unimodal function (CEC-22/01).
The global optimal solutions for all multimodal functions
(CEC-22/02- CEC-22/05) were obtained by HSOA. For the
hybrid functions (CEC-22/06- CEC-22/08), HSOA got very
close results to the global optimal value. Evaluation of the
composition functions (CEC-22/09- CEC-22/12) revealed
that HSOA could achieve the global optimal value for CEC-
22/11. However, its performance suffered for CEC-22/09,
CEC-22/10 and CEC-22/12, as it remained stuck in the local
optimum. The comparison of the results of HSOA with
other well-known algorithms, new algorithms, and state-of-

the-art algorithms showed that the proposed algorithm is
competitively accurate.

According to the optimizing results of CEC2022 in
20 dimensions (Table 25), the proposed HSOA could obtain
the global optimal for CEC-22/01 of a unimodal function.
In the case of multimodal functions, HSOA could attain
the global optimal solution for CEC-22/03 and CEC-22/05,
however, it encountered difficulty in achieving the global
optimal for CEC-22/02 and produced a result that was
in proximity. Additionally, HSOA was able to compute a
solution very close to the global optimal for CEC-22/04.
For the hybrid functions (CEC-22/06- CEC-22/08), HSOA
estimated a good approximation of the optimal solution.
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FIGURE 16. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2017 benchmark functions over 30 dimensions,
51 runs and 300000 number function evaluations.

FIGURE 17. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2017 benchmark functions over 50 dimensions,
51 runs and 500000 number function evaluations.

By utilizing composition functions (CEC-22/06-CEC-22/08),
HSOA was successful in obtaining the global optimal for

FIGURE 18. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2017 benchmark functions over 100 dimensions,
51 runs and 1000000 number function evaluations.

TABLE 15. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2019 benchmark functions over
51 runs.

CEC-22/11, however, it faced challenges with the remaining
CEC2022 as it was limited to the local optimum. HSOA’s
solving ability for CEC2022 benchmark functions were
comparable to AVOA, PSO, DE, RW_GWO, WOA, HHO,
LSHADE, GBO, and EBOwithCMAR.

The Wilcoxon results for CEC2022 in 10 and 20 dimen-
sions are shown in Table 26 and Table 27, respectively.
It is evident that HSOA was the winner compared to
well-known and new algorithms. In 10 dimensions, the
number of wines and equality of HSOA compared to
LSHADE were equal to 2 and 7, respectively. While those
values compared to EBOwithCMAR were equal to 2 and
5. In 20 dimensions, HSOA had 2 wines and 9 equalities
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TABLE 16. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2020 benchmark functions over 5 dimensions, 30 runs and 50000 number function
evaluations.

in comparison with LSHADE, and 1 wine and 7 equalities
compared to EBOwithCMAR.

The Friedman ranking for CEC2022 results (Figure 24 and
Figure 25) shows that EBOwithCMAR had first rank and
HSOA was placed in the second rank. However, there was
little difference between the Friedman’s ranking for HSOA
and EBOwithCMAR.

Table 28 shows the optimal results for six CEC2006 real-
world problems using HSOA, AVOA, PSO, DE, RW_GWO,
WOA, HHO, LSHADE and EBOwithCMAR over 51 random
runs. As seen, HSOA worked with greater precision than
other algorithms in CEC − 06/02 to CEC − 06/06

real-world problems, although in CEC − 06/01 LSHADE
and EBOwithCMAR was better. The Wilcoxon test results
in Table 29 indicated that HSOA had 6 wins over AVOA,
PSO, DE, RW_GWO, WOA, HHO and GBO. The number
of victories and defeats of HSOA, in contrast LSHADE
and EBOwithCMAR, were 5 and 1, respectively. Based
on the Figure 26, Friedman ranks for HSOA, AVOA,
PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and
EBOwithCMARwere 1.59, 6.92, 5.33, 6.75, 6.68, 9.21, 8.60,
3.13, 4.42 and 2.37, respectively.

In the following, the results of HSOA in CEC2011
optimization real-world problems are compared with
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TABLE 17. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2020 benchmark functions over 10 dimensions, 30 runs and 1000000 number function
evaluations.

other optimization algorithms. Table 30 compares HSOA’s
CEC2011 results with AVOA, PSO, DE, RW_GWO, WOA,
HHO, LSHADE, GBO, and EBOwithCMAR. It is apparent
that HSOA, in terms of min, mean, median, max and std,
performed better in CEC − 06/03, CEC − 06/08, CEC −
11/12 and CEC − 11/16 than all other selected algorithms.
Compared to other investigated algorithms, HSOA had
reasonable accuracy in CEC − 11/1, CEC − 11/2, CEC −
11/4 to CEC − 11/7, CEC − 11/10, CEC − 11/11, CEC −
11/12, CEC − 11/13 to CEC − 11/15, CEC − 11/16,
CEC − 11/17 and CEC − 11/18.

The overall results show that HSOA comparatively
performs than other algorithms. Based on the results in
Table 31, the HSOA won in 14, 16, 17, 17, 18, 18,
4 and 14 of the 18 CEC2011 compared to the AVOA and
PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and
EBOwithCMAR. Moreover, HSOA was tied with AVOA
in 2 of the 18 CEC2011, was equal with PSO, DE and
RW_GWO in 1 of the 18 CEC2011, and had equality
with LSHADE, GBO and EBOwithCMAR in 6, 2 and 4,
respectively. The Friedman ranks (Figure 27) of HSOA,
AVOA, PSO, DE, RW_GWO,WOA, HHO, LSHADE, GBO,
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TABLE 18. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2020 benchmark functions over 15 dimensions, 30 runs and 3000000 number function
evaluations.

and EBOwithCMAR were computed equal to 2.66, 5.83, 6.1,
6.79, 7.00, 6.03, 8.28, 8.16, 2.66, 5.18 and 3.13.

Figure 28 shows the violin plots of 51 runs of HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
and EBOwithCMAR. Violin plot is a combination of
boxplot and kernel density plot. This graph displays
the distribution of the results got for each optimization
algorithm. A broader chart suggests greater uncertainty.
In addition, the blank points in this chart represent the
mean results. As seen, HSOA most times has less uncer-
tainty and more accurate results than other considered
algorithms.

Figure 29 demonstrates the convergence curve plots
for HSOA, RW_GWO, PSO, DE, GWO, WOA, HHO,
LSHADE, and EBOwithCMAR. As illustrated in Figure 29,
the convergence curves were very smooth and dropped
quickly for AVOA, PSO, DE, RW_GWO, WOA, and HHO.
This means that exploitation was dominant in comparison
with exploration. Moreover, the convergence curves of
AVOA, PSO, DE, RW_GWO,WOA, and HHOwere stagnant
and could not approach the global optimum at the end of
the optimization process. However, the convergence curve
of HSOA, LSHADE, GBO, and EBOwithCMAR was quite
rough and slowly declining. This means that the balance
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TABLE 19. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2020 benchmark functions over 20 dimensions, 30 runs and 10000000 number function
evaluations.

between exploitation and the exploration operators was
well established. In addition, HSOA in almost conditions
had a better approximation of the global optimum than
LSHADE, GBO, and EBOwithCMAR. As a result, HSOA’s
performance and accuracy towards the global optimum were
better than other investigated algorithms.

Based on the results obtained in the previous stages, the
proposed algorithm had better performance than both popular
(PSO, DE, RW_GWO, WOA), new (AVOA, HHO, GBO)
and LSHADE as a state-of-the-art algorithm. In addition,
except for the CEC2017 and CEC2022 sets, the introduced
algorithm outperformed EBOwithCMAR. Therefore, the

HSOA can be a competitor to the stat-of-the-art algorithms.
This is because HSOA examines the search space more
accurately by using two population groups. Additionally,
the HSOA reproduction algorithm improves the solutions
obtained in every generation and mitigates the risk of falling
into the trap of local optima. The utilization of self-adaptive
parameters allows HSOA operators to transform the explo-
ration phase of the search process into an exploitation
phase.

Figure 30 shows how algorithms performed on 108 opti-
mization problems, according to the Friedman ranking.
As this figure shows, HSOA with a value of 2.50 for
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FIGURE 19. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2019 benchmark functions over 51 runs.

TABLE 20. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2020 benchmark functions over
5 dimensions, 30 runs and 50000 number function evaluations.

the Friedman ranking was ranked first in relation to other
comparison algorithms. The Friedman’s ranking for AVOA,
PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and
EBOwithCMAR were equal to 7.30, 5.95, 5.81, 6.41,
8.44, 7.72, 2.99, 5.18 and 2.70, respectively. As observed,
Friedman’s ranking for HSOAwas 65.79%, 58.05%, 57.00%,
61.00%, 70.40%, 67.63%, 16.45%, 51.78% and 7.45% less
than AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO and EBOwithCMAR, respectively.

Another issue with the results is that the HSOA results
are not the same as the other studied algorithms. This means
that the HSOA is unique and distinct from other revised
algorithms. The utilization of two distinct populations,

TABLE 21. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2020 benchmark functions over
10 dimensions, 30 runs and 1000000 number function evaluations.

TABLE 22. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2020 benchmark functions over
15 dimensions, 30 runs and 3000000 number function evaluations.

TABLE 23. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2020 benchmark functions over
20 dimensions, 30 runs and 10000000 number function evaluations.

integrating both swarm-oriented (updating the position of
Humboldt squids and school fish) and evolution-oriented
operators (Humboldt squid mating), and incorporating
self-adaptive parameters to facilitate a shift from exploration
to exploitation are among the defining features of HSOA that
set it apart from other algorithms.

Nevertheless, the HSOA may have excellent and poor
accuracy in some problems. One optimization algorithm can
perform reasonably in a range of optimization problems,
but not all because of the No Free Lunch Theorem (NFL).
Hence, HSOA performed better in some problems than
others [4].HSOA’s superiority over other algorithms in certain
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TABLE 24. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2022 benchmark functions over 10 dimensions, 30 runs and 200000 number function
evaluations.

problems can be attributed to its access to stored answers in
its memory during the search process.While other algorithms
only use previous iteration answers, HSOA saves all unique
past generation answers in its memory. The probability of
HSOA falling into the local optimal trap is reduced by this
method. The domain of the problem is searched by HSOA

using two populations, and the interaction of these two
populations leads to more diverse answers. One additional
rationale behind the superiority of HSOA is attributed to
the utilization of multiple mating and self-adaptive weights,
leading to the creation of a good between global and local
search.
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TABLE 25. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2022 benchmark functions over 20 dimensions, 30 runs and 1000000 number function
evaluations.

C. MATHEMATICAL FRAMEWORK FOR
STABILITY ANALYSIS
In this study, the mathematical stability analysis of HSOA is
performed based on the presented approach by study of [87].
In this approach, the actual solution of problem x_m(n, t) can

be considered as a Fourier series solution. After replacing the
solutions and components of HSOA equations with Fourier
series and simplifying the resulting equations, it is possible
to determine the range of parameters for stability of HSOA
results. In this approach, the solution of the algorithm is
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FIGURE 20. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2020 benchmark functions over 5 dimensions,
30 runs and 50000 number function evaluations.

FIGURE 21. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2020 benchmark functions over 10 dimensions,
30 runs and 1000000 number function evaluations.

FIGURE 22. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2020 benchmark functions over 15 dimensions,
30 runs and 3000000 number function evaluations.

FIGURE 23. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2020 benchmark functions over 20 dimensions,
30 runs and 10000000 number function evaluations.
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TABLE 26. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2022 benchmark functions over
10 dimensions, 30 runs and 200000 number function evaluations.

TABLE 27. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2022 benchmark functions over
10 dimensions, 30 runs and 200000 number function evaluations.

given by:

xm(n, t) = Am.er .(σm.n−βm.t) (18)

In Eq. (18), n − t is computation domain, r =
√
−1, Am

refer tomth component, βm known as the angular frequency of
mth component and σm is the wave number ofmth component.
In HSOA, without loss of generality, the Xb and pbest can be
taken as xi±a,j.XSi,j and Eggs can be considered as xi,j.XFi,j,
PopAllr2, ArchiveX , popr1 and popr3 can take as xi+N ,j,
xi±b, j, xi±c,j, xi±d,j and xi±e,j, respectively. In term of grid
points, Equation 1 (Attack of fish schools) can be rewritten
as follows:

xi,j+1 = θ.xi±a + Vjet .(−xi+N ,j − xi±b,j) (19)

In Eq. (18), a is an integer number between 1 and N , N
is Humboldt squids swarm’s size, b is an integer number
between 1 and archive size. The mth component of Eq. (18)
at point (n, t) is given by:

xmi,j = Am.e−r .βm.j.1t .er .σm.i.1n (20)

By substituting Eq. (20) in Eq. (19), the amplification
factor is obtained in Eq. (21).

e−βm.j.1t
= θ.e±σm.a.1n

+

FIGURE 24. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2022 benchmark functions over 10 dimensions,
30 runs and 200000 number function evaluations.

FIGURE 25. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2022 benchmark functions over 20 dimensions,
30 runs and 1000000 number function evaluations.

Vjet .(−eσm.N .1n
− e±σm.b.1n) (21)

VOLUME 11, 2023 122107



M. V. Anaraki, S. Farzin: HSOA: A Novel Nature-Inspired Technique

TABLE 28. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2006 real-world problems over 51 runs.

FIGURE 26. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2006 benchmark functions over 25 runs.

To achieve marginal stability, the magnitude of ampli-
fication factor |e−r .βm.j.1t

| must be equal to one. Which

TABLE 29. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2006 benchmark functions over
51 runs.

leads to:

|e−r .βm.j.1t
| = |θ.e±r .σm.a.1n

+ Vjet .(−eσm.N .1n
− e±σm.b.1n)| (22)

|e−r .βm.j.1t
| ≤ |θ.e±r .σm.a.1n

|

+ |Vjet .(−eσm.N .1n
− e±σm.b.1n)| (23)

|e−r .βm.j.1t
| ≤ |θ | + |2.Vjet | (24)

The Eq. (1) is marginally stable if |e−r .βm.j.1t
| = |θ | +

|2.Vjet | = 1. Thus:

|θ | = 1− 2.|Vjet | (25)

Since |θ | ≥ 0, we have 1 − 2.|Vjet | ≥ 0 or |Vjet | ≤ 1
2 .

In other words, Eq. (1) is marginally stable when Vjet ∈
[−12 , 1

2 ]. In HSOA, with increasing generation, Vjet will be
close to zeros, which will therefore result in HSOA being
stable according to Eq. (1). The Eq. (3) (Successful escape)
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TABLE 30. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2011 real-world problems over 25 runs.
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TABLE 30. Comparison of minimum, mean, median, maximum and standard deviation values for HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE,
GBO, and EBOwithCMAR metaheuristic algorithms using the CEC2011 real-world problems over 25 runs.

TABLE 31. Comparison of victory(+), equality(=) and defeat(−) for HSOA,
AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR
metaheuristic algorithms using the CEC2011 benchmark functions over
25 runs.

can be rewritten as follows:

xi+N ,j+1 =


θ.xi+N ,j +

−→rn .

(xi±a,j − xi+N ,j).wf , ifnfes < 0.1.maxnfes,
θ.xi,j +

−→rn .(xi±a,j
−xi±b,j).wf , otherwise.

(26)

By putting Eq. (19) in Eq. (26), the amplification factor is
computed in Eq. (27).

e−r .βm.j.1t
=



θ +−→rn .

(e±r .σm.a.1n

−er .σm.N .1n).wf , ifnfes < 0.1.maxnfes,
θ +−→rn .(e±r .σm.a.1n

−e±r .σm.b.1n).wf , otherwise.

(27)

For marginal stability, the magnitude of amplification
factor |e−r .βm.j.1t

| must be equal to one. Simplifying the Eq.
(27) gives the following equation:

1 = |θ | + |2.−→rn .wf | (28)

|θ | is greater or equal to zero, thus 1 − 2.|−→rn .wf | ≥ 0 or
|
−→rn .wf | ≤ 1

2 . In following, the stability of Eq. (6) (Humboldt

FIGURE 27. Comparison of Friedman ranking for HSOA, AVOA, PSO, DE,
RW_GWO, WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic
algorithms using the CEC2011 benchmark functions over 25 runs.

squid mating) is analyzed as Eq. (1) and Eq. (3). Rewriting
Eq. (6) get following equation:

xi,j+1 = (ω.xi,j + (1− ω.xi±a,j)).γ

+ (1− γ ).xi±a,j +W .(xi±e,j − xi±b,j) (29)

By integrating Eq. (5) and Eq. (29), the amplification factor
is given by:

e−r .βm.j.1t
= (ω + (1− ω.e±r .σm.a.1n)).γ

+ (1− γ ).e±r .σm.d .1n

+W .(e±r .σm.e.1n
− e±r .σm.b.1n) (30)

As mentioned, for marginal stability, the magnitude of
amplification factor |e−r .βm.j.1t)

| must be equal to one.

1 = |(ω + (1− ω.e±r .σm.a.1n)).γ |

+ |(1− γ ).e±r .σm.d .1n
|

+ |W .(e±r .σm.e.1n
− e±r .σm.b.1n)| (31)
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FIGURE 28. Violin plot of CEC2019 estimated by HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and
EBOwithCMAR.

By simplifying the Eq. 31 the following equation is
obtained.

1 = |ω.γ | + |γ | + |(ω.e±r .σm.a.1n.γ |

+ |(1− γ ).e±r .σm.d .1n
|

+ |W .(e±r .σm.e.1n
− e±r .σm.b.1n)| (32)

Or simply:

1 = |ω.γ | + |γ | + |(1− γ )| + 2.|W | (33)

The Humboldt squid mating operator will be marginally
stable when:

1− |γ | − |(1− γ )| − 2.|W | = |ω.γ | (34)

Sine |ω.γ | ≥ 0, we have 1−|γ |−|(1−γ )|−2.|W | ≥ 0 or
1− γ − 1+ γ − 2.W ≥ 0. Which gives following equations:

2.|W | ≤ 0 (35)

Since 0 ≥ W , γ, ω ≤ 1, the HSOA mating operator is
stable whenW is equal to zero. In HSOA, γ and ω approach
to zero with increasing generations. Therefore, W is close to
zero in the last generations, which leads to the stability of the
HSOA mating operator.

D. CONVERGENCE ANALYSIS
The study uses a criterion called average convergence
rate, introduced by [88], to assess the performance of
the investigated algorithms. This criterion is computed
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FIGURE 29. Convergence curve plot of CEC2011 estimated by HSOA, AVOA, PSO, DE, RW_GWO, WOA, HHO, LSHADE, GBO, and
EBOwithCMAR.

as follows:

CR = |
fitopt −

−→
fit

fitopt − fit0
| (36)

In Eq. (36), fitopt ,
−→
fit and fit0 are known as the global

optimal, average fitness, and fitness at the beginning of the
search.

Table 32 displays the results of the convergence rate
analysis. According to the results, HSOA had a competi-
tive performance in terms of convergence rate with other
competitors. The convergence rate of HSOA was highest
when it comes to CEC2006, classic, and CEC2019 functions.
CEC2020 and CEC2022 functions also relate to the lowest
value of the convergence rate’s HSOA. The lower speed
of convergence of HSOA in these two sets of benchmark

functions was only related to some of their functions, and in
general HSOA had good accuracy and speed.

E. COMPLEXITY ANALYSIS
The algorithm’s complexity is determined by the computation
of T0, T1 and T2 values [89]. T0 is estimated by evaluating
mathematical functions. T1 is calculated by conducting
200000 evaluations of the 18th function in CEC2017, 1st
function in CEC2020 [90], and CEC2022 [91] for all
dimensions. T2 is obtained by averaging 5 algorithms exe-
cuted on CEC18 (in CEC2017) and CEC01 (CEC2020 and
CEC2022)with 200000 evaluations. The time complexity can
be calculated as follows:

Time comlexity =
T2 − T1
T0

(37)
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FIGURE 30. Average friedman ranking for on hundred and two
benchmark functions and real-world problems.

TABLE 32. Convergence rate for HSOA, AVOA, PSO, DE, RW_GWO, WOA,
HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic algorithms using
the classic, CEC2017, CEC2019, CEC2020, CEC2022, CEC2006, and CEC2011
benchmark functions.

TABLE 33. Algorithm complexity for HSOA, AVOA, PSO, DE, RW_GWO,
WOA, HHO, LSHADE, GBO, and EBOwithCMAR metaheuristic algorithms
using the classic, CEC2017, CEC2019, CEC2020, CEC2022, CEC2006, and
CEC2011 benchmark functions.

Table 33 presents the time complexity values for different
dimensions of CEC2017, CEC2020, and CEC2022. The
results of HSOA’s computation complexity were satisfactory
compared to other investigated algorithms, as observed. The
computational complexity analysis revealed that HSOA was
less complex than EBOwithCMAR and can compete with
LSHADE. Meanwhile, EBOwithCMAR and LSHADE had
the second and third rank in accuracy. Therefore, it can be
concluded that the proposed algorithm had a reasonable time
complexity and acceptable accuracy.

VI. CONCLUSION
This study introduces a new nature-based optimization
algorithm based on the Humboldt squid hunting behaviors
called the HSOA. HSOA employs different operators for
the attack of fish schools, escape of fish, successful attack,
attack of stronger squid on smaller squids, and mating
to update the population’s position in the search domain.
To change exploitation to exploration, adaptive weights
with nonlinear and oscillation natural were defined. Eighty-
two mathematical benchmark functions and twenty-four
real-world problems were employed to validate the HSOA
algorithm’s efficiency in exploitation, exploration, escaping
local optimum, and convergence speed. The results of

HSOA in benchmark functions were superior to those of
other well-known and recent natural-based optimization
algorithms, such as AVOA, PSO, DE, RW_GWO, WOA,
HHO, and GBO, and were competitors with state-of-the-
art algorithms. Moreover, in the real-world optimization
problem, HSOA had better results than well-known, recent
natural-based optimization algorithms and state-of-the-art
algorithms. HSOA’s stability, convergence, and robustness
were confirmed by the statistical analysis conducted. The
Friedman ranking of HSOA, AVOA, PSO, DE, RW_GWO,
WOA, HHO, LSHADE, GBO, and EBOwithCMAR for
optimization all investigated problems were equal to 7.30,
5.95, 5.81, 6.41, 8.44, 7.72, 2.99, 5.18 and 2.70, respectively.
Therefore, Friedman’s ranking for HSOA was 65.79%,
58.05%, 57.00%, 61.00%, 70.40%, 67.63%, 16.45%, 51.78%
and 7.45% less than AVOA, PSO, DE, RW_GWO, WOA,
HHO, LSHADE, GBO, and EBOwithCMAR, respectively.

Future studies should employ HSOA to address problems
such as data mining, structure design, water resource
management, and image processing. Despite the proposed
algorithm’s competitive performance, it requires sensitivity
analysis to determine the parameters. However, this issue
can be solved using self-tuning approaches, such as the
chaotic map or fuzzy method. Furthermore, to solve other
optimization problems, different improvements will be made
to HSOA, such as adding hybridization with other algorithms
to solve other optimization problems.
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