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ABSTRACT In this paper, we propose a data augmentation technique based on Convolutional Neural
Networks (CNN or ConvNet) training to efficiently obtain a dataset of images containing concrete cracks.
Concrete cracks usually do not have a standardized shape and have complex patterns, making it difficult to
obtain images of them, and there is a risk of exposure to dangerous situations when securing data. Therefore,
in this paper, we efficiently address the difficulty of dataset collection by using a data augmentation technique
based on learning the direction and thickness of cracks, which is cost-effective and time-efficient. Moreover,
to improve efficiency, we introduce a method of adaptively handling crack data by constructing a quadtree
based on the presence of cracks. To confirm the extent of the improvement in accuracy, we conducted
experiments applying the crack detection algorithm to various scenes, and the accuracy was improved in
all scenes when measured by IoU (Intersection over union) accuracy. When the algorithm was performed
without augmenting the crack data, the false detection rate was about 25%. However, when we augmented
the data using our method, the false detection rate significantly decreased to 3%.

INDEX TERMS Spatial-adaptive augmentation, concrete crack, data augmentation, convolutional neural
networks, crack direction, crack thickness.

I. INTRODUCTION
In this paper, we aim to provide means from a computer
science perspective to prevent building collapse incidents that
often occur worldwide. When workers search for concrete
cracks on site, there is a risk of exposure to dangerous
situations, and it takes a lot of time and cost. Moreover,
the accuracy of finding cracks is limited by conditions such
as line of sight and weather during work [1]. In this paper,
we propose a method for efficiently augmenting concrete
crack data based on direction and thickness using neural
networks, with the aim of improving the accuracy of crack
detection.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Wei .

One of the most common problems that occur when
using concrete, the most widely used material in building
construction, is cracking. As buildings age, the number and
size of cracks increase, which adversely affects the safety and
durability of the structure. Therefore, it is crucial to regularly
detect cracks in concrete structures and take corresponding
maintenance measures for the safety and durability of the
structures [2], [3], [4]. Typically, cracks in structures are
detected by experts equippedwith specialized equipment who
physically inspect the site. However, this method requires a
lot of labor and time, and in sites with large apartments, the
accuracy of crack detection can decrease, eventually posing
a danger to people’s safety.

To efficiently and reliably detect cracks and overcome the
drawbacks of manual detection, many studies have utilized
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image processing techniques [5]. In the field of computer
vision, various research has been conducted for automatic
detection of cracks in images : image thresholding [6],
[7], edge detection [8], wavelet transformation [9], [10],
and machine learning [11]. The image thresholding method
classifies cracks at the pixel level based on various pixel
values, making it easy to simplify the image and perform
post-processing. Edge detection method efficiently detects
cracks in images by applying differential operators to the
image [12]. The basic concept of wavelet transformation is
a function, such as an image signal, and it uses wavelet
functions or basis function sets to find cracks based on
this signal [13]. Machine learning extracts feature vectors
of cracks from training data and infers results through
learning. Although these methods can efficiently detect
cracks, research is actively being conducted to improve the
non-uniformity of cracks, the diversity of surface textures,
and the complexity of backgrounds.

Deep learning techniques can learn deep nonlinear
network structures and model abstract representations.
Zhang et al. proposed a crack detection technique based on
deep learning [14], which is one of the early studies that
applied CNN to road crack detection. The pavement road
photos used in this study were captured by a smartphone,
and the network model was designed based on the Caffe
deep learning framework. Furthermore, the effectiveness
of the deep learning technique was demonstrated by com-
paring it with existing machine learning classifiers such
as Support Vector Machine (SVM) and Boost methods.
Pauly et al. studied the effect of the depth of the CNN and the
positional variation between the training and testing data on
the accuracy of the pavement crack detection technique [15].
The results showed that increasing the depth of the network
improves accuracy, while significant decrease in detection
accuracy occurs when the position of the image is changed.
Maeda et al. generated a large-scale road damage dataset
and marked the location and type of road damage in each
image [16]. They then trained a damage detection model
using an end-to-end object detection method based on deep
learning. They applied this method to a mobile app to enable
easy detection of road damage even in areas with a shortage
of experts and labor.

Xu et al. built an end-to-end detection model to auto-
matically detect cracks in bridges [17]. They demonstrated
that using depth-wise separable convolutions can effectively
reduce the number of parameters [26]. Li et al. proposed
the YOLOv3-Lite method to improve speed without com-
promising detection accuracy [18]. Tong et al. proposed
a method for efficiently detecting damages in low-cost by
automatically detecting and measuring surface-penetrating
images using CNN and reconstructing hidden cracks in
3D [19]. Yang et al. proposed a technique based on FCN
(Fully Convolutional Network) to detect cracks at the pixel
level [20]. FCN consists of upsampling and downsampling
layers that can detect objects of various scales, and the

accuracy of crack detection was measured to be 97.96%.
Zhu and Song improved VGG16 using transfer learning
and modeled accurate classification of surface defects in
concrete bridges [21]. Deng et al. added an area-based
deformation module to Faster R-CNN [22], R-FCN [23], and
FPN-based Faster R-CNN [24] to improve the accuracy of
crack detection [25]. As mentioned earlier, most studies have
modeled surface crack detection in concrete using various
transfer learning techniques to improve the accuracy of
crack detection. Using transfer learningmakesmodel training
easier and faster, but this is a characteristic of the network
architecture. There are no advantages to preprocessing or
data augmentation methods for crack data. In this paper,
we propose a new network training model for crack data
augmentation, taking into account the limitations of using
transfer learning. We demonstrate through experiments that
our proposed model can have a positive impact on crack
detection.

II. RELATED WORK
In this section, we will examine the crack detection network
method, data augmentation techniques for it, and image data
augmentation techniques related to my research.

A. NETWORKS FOR CRACK DETECTION
Handling issues such as uneven lighting, stained areas,
blurriness, noise, etc. is crucial in image-based crack
detection research. One way to detect cracks is to define a
feature that clearly distinguishes between noise and cracks,
such as the iterative clipping method that assumes cracks
are generally darker than their surroundings [26]. Li et al.
proposed the NDHM (Neighboring Difference Histogram)
method to segment crack images [27]. However, this method
can malfunction when there are many dark areas, such
as shadows, in the test image. A wavelet transform-based
method was proposed to enhance the contrast of crack
regions in order to improve the accuracy and completeness
of crack detection [28], [29]. However, due to the anisotropic
nature of wavelets, they often fail to handle cracks with
high curvature or poor continuity. The FoSA (F* seed-
growing approach) method was proposed to extend the
NDHMwith more powerful noise reduction capabilities [30].
The CrackTree method was designed to remove the shadow
cast on cracks, but it takes a long time to compute [31].
Approaches that measure the anisotropy of images, such as
CTA (Conditional Texture Anisotropy) [32] and FFA (Free-
Form Anisotropy) [33], which consider both brightness and
connectivity, have shown good results in crack detection.
However, they are often sensitive to edge areas and can result
in noise. Methods have been proposed to address these issues
using saliency [34].
Hu et al. used LBP(Local binary pattern) method to

obtain good crack detection results through local fea-
tures [35], but parameter adjustment is required for each
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image. Zhang et al. proposed a BTH (Black Top-Hat)
transformation and threshold segmentation method to detect
cracks on concrete tunnel surfaces [36], but this method
does not work well when the lighting is uneven. Recently,
Zhang et al. modeled the Region of Aggregation (ROA)
for considering multiple data such as spatial distribu-
tion, intensity, and geometric features of cracks, and
the Region of Belief (ROB) for expanding the crack
area [7]. This method produces good results for thin-shaped
cracks.

B. IMAGE DATA AUGMENTATION
Generally, data augmentation is a technique of applying
various transformations to original data to increase the
amount of data used for learning-based research. Data
augmentation is typically used during the training phase but
it can also be used during the test phase, which is known
as Test-time augmentation (TTA). This method augments a
single test image into multiple images and performs inference
on them. The outputs generated from this process are then
ensembled. This technique is commonly used in competitions
such as Kaggle.

1) IMAGE MANIPULATION-BASED APPROACH
There are approaches that utilize pixel-level transform and
spatial-level transform techniques. Pixel-level transform is a
technique that applies blur, jitter, noise, and other effects to
an image to transform it at the pixel level. Various techniques
such as Gaussian blur, motion blur, brightness jitter, contrast
jitter, saturation jitter, ISO noise, JPEG compression, and
so on are used for pixel-level transforms. Spatial-level
transform refers to techniques that transform the image
space. Representative methods include flip and rotation, and
cropping, which involves cutting out a portion of the image,
is also frequently used.

Kang et al. proposed a technique that randomly shuffles the
feature values within a non-overlapping sliding window [46].
Applying this method improves performance, but the perfor-
mance is significantly influenced by the size of the window.
Hiroshi Inoue proposed a method that randomly selects two
images from the training set, randomly crops them to a
size of 224 × 224, and applies random horizontal flip to
them [47]. The obtained two patches are averaged to create
a mixed patch. Since two images are mixed but only one
label is used, the accuracy may be compromised. Summers
and Dinneen proposed an improved method for mixing
two images, departing from the simple average blending
approach. Instead, they introduced eight newmixingmethods
to enhance the process [48]. Zhang et al. proposed a technique
where two images are interpolated using weighted linear
interpolation with lambda values ranging from 0 to 1 [49].
This method is simple but it can improve the generalization
performance of the model, prevent memorization of corrupt

labels, and make the model more sensitive to adversarial
examples.

Takahashi et al. proposed the RICAP (Random image
cropping patching) technique, which combines randomly
cropped patches from four images to create a single
image [50]. Additionally, similar to the mixup technique,
Takahashi et al. mixed the labels of the four images based on
the area ratio of the patches, creating soft labels for training.
However, in the cropping process, if the background rather
than the main region of the image is cropped, it can lead
to incorrect labels being assigned. Verma et al. proposed
a method of handling mixup at the hidden representation
or feature map level instead of the input image level [51].
By using this method, not only can the decision boundary
be smoothed, but also the advantages of mixup can be
preserved. Unlike the previously mentioned methods that
involve mixing images, Zhong et al. chose an approach that
involves erasing image regions [52]. This method involves
creating a random-sized boundary box on the input image and
filling it with random noise, ImageNet mean value, 0, 255,
or other values before using it for training.

Singh et al. proposed a method where the image is divided
into a grid, and patches are randomly erased at each iteration
during training [53]. This approach allows the network to
consider various parts of the image rather than focusing only
on specific parts of the object, leading tomore comprehensive
predictions. Yun et al. proposed a method called CutMix,
which combines Mixup and Cutout techniques [54]. This
technique involves selecting a box area on an image and
erasing it, then filling the empty region with a patch extracted
from another image. The labels are mixed in proportion to the
area of the patch. Hendrycks et al. proposed a method called
Augmix, wheremultiple augmentation techniques are applied
to an image either in series or in parallel, and then mixed
with the original image [55]. This method was proposed not
primarily to improve general test accuracy, but to enhance
performance on datasets such as ImageNet-C and ImageNet-
P, which are designed to measure robustness. To alleviate the
issue of strong edges resulting from the process of cutting
and pasting patches in CutMix, Lee et al. proposed a method
called SmoothMix, which smooths the boundary regions to
create a more gradual transition [56]. Kim et al. proposed
a method called PuzzleMix, which blends images while
preserving their saliency. This approach aims to maintain the
salient regions of the original images while creating a blended
output [57]. This enables the preservation of local statistics
in each image and exhibits better generalization performance
compared to existing mixing techniques. It also enhances
robustness against adversarial attacks.

C. DATASETS AND DATA AUGMENTATION
FOR CRACK DETECTION
The dataset collected by Li and Zhao is widely used in
crack detection research [37]. The dataset consists of images
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FIGURE 1. Images after data augmentation : (a) original image,
(b) horizontal flip, (c) rotation, (d) horizontal shift.

captured using a smartphone on the surface of the main
tower and anchor room of a bridge in Dalian, Liaoning
Province, China. The original images have a resolution
of 4160 × 3120, but they were manually divided into
smaller images of 256 × 256 resolution, classifying them
into images with cracks and images without cracks. The
SDNET2018 dataset provides images of concrete bridges,
including both images with cracks and images without
cracks [40]. The performance of artificial neural network
models is related to the size of the training dataset.
However, obtaining a large and diverse dataset of real crack
images can be challenging. In domains where collecting
a sufficient amount of real data is difficult, researchers
often employ techniques such as data augmentation to
compensate for the limited availability of real crack images.
Data augmentation techniques can effectively address the
limitations of a small training dataset such as overfitting
by artificially expanding it with synthetically generated
data [41].

One simple data augmentation technique is to use the
ImageDataGenerator interface provided in TensorFlow 2.0,
which is modeled based on spatial-level transform. By apply-
ing operations such as image flipping, rotation, shifting, and
other transformations, we can effectively increase the number
of data samples [42]. However, since most of them are simple
linear transforms, they may not be sufficient to represent the
diversity of crack patterns (see Figure 1).

III. PROPOSED FRAMEWORK
In the proposed method, we utilize 1) a CNN for extracting
crack patterns and 2) elastic distortion for transforming the
shape of cracks. Since cracks do not have a standardized
shape and can vary depending on the surrounding environ-
ment, it is necessary to train and learn their characteristics
in order to create metadata that considers the features of real
crack data. In this section, we will discuss a learning-based
data augmentation method that utilizes the direction and
thickness of cracks.

A. EXTRACTING SKELETONS FROM CRACK DATA
Upon examining real crack data, it is observed that the areas
where cracks exist are very small in size. Therefore, when
applying data transformations to the crack line segments,
the cracks tend to be irregularly fragmented (see Figure 2).
To preserve the connectivity information of crack line

FIGURE 2. Extracted skeleton from crack image.

segments, our research first extracts a skeleton from the
crack images. To achieve this, we apply a skeletonization
process [43] to convert the crack line segments from a
pixel-based representation to a thin, vector-based represen-
tation.

B. EXTRACTING CORNERS FROM SKELETON DATA
In this section, we describe a method for detecting corners,
which are the intersection points of two edges with significant
gradient changes, in crack data. In this paper, we utilize
the Shi-Tomasi corner detection technique, which is an
improvement of the Harris corner detection method [44].
This technique calculates the rate of change between edges
and considers locations with significant bidirectional gradient
changes as corners. It calculates the squared sum of pixel
value differences within a mask window by moving one pixel
at the center and shifting u pixels in the X -axis and v pixels
in the Y -axis within the window. In Equation 1, W (x, y)
represents the weight at position (x, y), I (x, y) represents
the pixel value at the original location, and I (x + u, y+ v)
represents the pixel value at the shifted location.

E (u, v) =

∑
x,y

W (x, y) [I (x + u, y+ v) − I (x, y)]2 (1)

Applying Taylor expansion to the above equation yields
Equation 2.

E (u, v) ∼=

∑
x,y

[
I (x, y) + uIx + vIy − I (x, y)

]2 (2)

Equation 3 is the final equation obtained by rearranging
Equation 2 into a matrix form. If the eigenvalue of the
matrix is higher than a certain threshold, it is considered as
a corner. This process is calculated using the Singular Value
Decomposition (SVD) technique.

E (u, v) ∼= [u, v]

∑
x,y

W (x, y)
[
I2x IxIy
IxIy I2y

] [
u
v

]
(3)

If the user specifies the maximum number of corners, the
threshold for gradient change, and the minimum distance
between corners, N corners will be extracted. Figure 3d
shows the result of connecting the detected corners with
line segments. This data will be utilized in direction-based
augmentation techniques. The Figure demonstrates the stable
extraction of crack skeletons without any disconnected
segments, which is evident when compared to Figure 2.
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FIGURE 3. Crack vector with skeleton and corner set : (a) input data,
(b) skeleton extraction, (c) corner extraction, (d) edge direction created by
connecting corners.

FIGURE 4. Direction-based elastic distortion in crack direction.

C. DIRECTION-BASED ELASTIC DISTORTION
In this section, we describe the direction-based elastic
distortion technique that we modeled from both micro and
macro perspectives. At the micro level, we calculate the
deformations for cracks by adjusting the weights of the
standard deviation σ and the deformation intensity α, similar
to previous studies [45]. Figure 4b is an enlarged view of
one of the line segments formed by connecting the extracted
corners, as mentioned earlier. As can be seen in the figure,
it allows us to easily observe the extent of deformation
based on the applied weights. Figure 4c shows the results of
applying direction-based elastic distortion to the line segment
representing cracks. From a macroscopic perspective, elastic
distortion involves adjusting the rotation angle and the
weights of affine transforms to deform the surface shape of
the crack.

Figure 5 shows the results of applying micro-macro
elastic distortion using direction-based segments. Unlike
traditional pixel-based data augmentation techniques, which
were difficult to control for such directionality, our approach
can capture the direction of cracks with more diverse
variations, rather than simple straight-line cracks. Certainly,
introducing randomness can temporarily mitigate this issue.
However, transformations based on randomization can lead
to the loss of original crack patterns and characteristics.

D. FEATURE-LEARNING WITH ARTIFICIAL NEURAL
NETWORKS
In this section, we introduce a CNN-based network that
can effectively model crack data in detail by training on
the proposed direction-based data augmentation technique.
For training, we utilized 500 skeletonized crack images and

FIGURE 5. Crack data augmentation with our method (inset image : input
data).

FIGURE 6. Crack generation with CNN based our method.

400 line segment images. In addition, we collected additional
training data using the direction-based data augmentation
technique. In this section, we describe the process of feature
learning based on the acquired crack images to obtain
patterns that resemble real cracks. When training the network
using the crack images obtained through the skeletonization
technique, the features were complex, leading to convergence
issues during the learning process. However, this problem
was addressed by extracting corners from the cracks and
utilizing the direction data obtained by connecting them with
line segments.

Figure 6a represents the skeleton data extracted from
the crack images, while Figure 6b displays the results
generated through CNN training, showing patterns that
closely resemble real cracks. When the weight of elastic
distortion is large, it can introduce noise that may not
fully preserve the characteristics of the original cracks.
However, the proposedmethod in this paper hasmitigated this
issue.

The architecture of the residual-based CNN used in the
experiment is shown in Figure 7. By utilizing direction-based
training images, a network with 26 layers, 3 upsampling
steps, and a residual image as input, we were able to achieve
optimal results during the network training process. As the
number of upsampling steps increased, the results improved,
and by using a residual image, we addressed the color-related
issues in the 3-channel training. Finally, to obtain results
that consider the details of crack patterns, we used direction-
augmented elastic distortion data as input and trained the
network using this data to obtain the results. However, this
approach only considers the direction of cracks and does
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FIGURE 7. Our network architecture.

FIGURE 8. Contour approximation : (a) input data, (b) contour image with
ε ≥0.005, (c) contour image with ε=0.005.

FIGURE 9. Advanced our network architecture.

not take into account the thickness of the cracks, so it may
not be sufficient to fully capture the variations in crack
thickness during training. Therefore, in this paper, we extend
the framework to incorporate a method for learning crack
thickness.

E. LEARNING THE THICKNESS OF CRACK
In this paper, we utilize contour approximation to analyze
the shape of cracks and measure their thickness. Contour
refers to the boundary that is formed by regions with
the same color or pixel values. It is commonly used to
identify the outline or shape of an object. In this paper,
the Douglas-Peucker algorithm, which is embedded in the
OpenCV library, was used. To achieve results of Figure 8,
the parameter ε for contour approximation was set to 0.005.
This value is empirically determined and commonly used
to obtain tight contours. A smaller ε value will yield
results that closely resemble the original contour, while a
larger ε value may result in differences from the original
contour.

The final data extracted in this study capturesmore detailed
features in terms of thickness compared to the previous exper-
iment results that only considered directionality. Figure 9
represents an artificial neural network trained using the
thickness of cracks extracted based on contour information.
The network model follows the approach described earlier,
and the input data consists of both the thickness and direction
information of cracks.

FIGURE 10. Quadtree construction.

FIGURE 11. Classification as full density(FD) and emptry density(ED)
according to the presence or absence of density : (a) input data, (b) patch
split, (c) classification of FD(red) and ED(others).

IV. SOLVER EXTENSION : ADAPTIVE OPTIMIZATION
Quadtree is a tree data structure where each internal node
has four children, and it adaptively subdivides based on the
presence of significant data in each node. Depending on
the application, the ‘‘minimum unit of interest’’ in terms of
information is typically stored in the leaf cells of a quadtree
(see Figure 10). In this paper, the quadtree is used to reduce
the size of the data because cracks occupy a small portion of
the overall space compared to the entire dataset.

In this paper, binary data representing cracks as white areas
is used as input (see Figure 11a). As shown in Figures 11b
and 11c, the spatial is divided based on the crack regions as a
reference for the quadtree subdivision. The reason for using
a quadtree to partition the crack data is not to obtain pixel
information, but rather to extract meaningful information
from the spatial domain. The network training is performed
using image patches represented by the leaf nodes of the
quadtree, which are denoted as Cp. The lowest level nodes
used to construct the quadtree are generated using the method
described earlier, and the nodes are merged in an upward
manner to form the tree structure.

Before combining the generated nodes into the quadtree,
the density value of each node is compared to a threshold
to determine if a crack exists within the node. Based on
this comparison, the nodes are classified as either FD (Full
Density) or ED (Empty Density) states (see Figure 12a).
The lowest-level nodes have their own classified state values,
and the state value of higher-level nodes is determined
by combining the state values of their child nodes (see
Figure 12b). Each node in the tree has a state value, density
data, and a key value associated with it. The key contains
the X and Y coordinates representing the node’s position and
tree depth used to construct the tree. The depth and position
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FIGURE 12. Overview of generating the quadtree containing path-state
values(ED=empty density, FD=full density).

are used after the network process is completed to combine
the results. The state is represented as FD (Full Density),
ED (Empty Density), or MIX. In this paper, the density of
each patch is used as the data for the lowest-level nodes (see
Figure 12a). The depth of the lowest-level nodes is calculated
using the following equation (see Equation 4).

d = log2

(
Dwidth
Nwidth

)
(4)

where d represents the depth of the current node, whileDwidth
and Nwidth respectively indicate the width of the entire input
data and the width of the current node. The parent node is
generated in an upward manner from its four child nodes.
The data of the parent node is the sum of the data from its
child nodes. The depth decreases by 1, and the position is
determined when merging the child nodes. Finally, the parent
node’s state value is determined by aggregating the states of
its child nodes : If all child nodes have the same state value,
that value is assigned to the parent node. If the child nodes
have both FD and ED states, the state value of the parent node
is assigned as MIX.

If all child nodes have the same state value, the parent
node stores that value and the child nodes are removed.
Nodes with the state ED indicate the absence of cracks,
so they do not require network training. In the case of FD,
instead of applying network training all at once, this paper
follows a more efficient approach by applying it selectively
to the child nodes containing the necessary data. By repeating
this process until reaching the root node, a quadtree with
assigned state values for all nodes is constructed. Once
the tree is completed, the data and key values of the FD
nodes are collected (see Figure 13), and this dataset is
used for network training. The experimental results in this
paper showed that overall, approximately 37.5% of the
data could be compressed, leading to improved memory
efficiency.

FIGURE 13. Example of quadtree nodes for collecting crack patches
(dotted red line : final dataset).

FIGURE 14. Convolutional neural network architecture for cracks(input :
x(128,128,3), output : x(4, 4, 512), [weight][bias], #x(width,height,depth)).

V. IMPLEMENTATION DETAILS
This paper presents a data augmentation technique based
on neural networks to efficiently learn the direction and
thickness of cracks. The hyperparameters used for training
are as follows: The network architecture was designed with
a batch size of 128, a learning rate of 1e-4, and a stride
of 1. In this paper, we designed the network using the
VGG19 convolutional neural network, and in this section,
we will provide a detailed explanation of the VGG19 network
architecture. TheVGGNetmodel consists of twomain stages,
as follows : VGGG network and reconstruction. For example,
when receiving a 3-channel image with a resolution of 128×

128 as input, the input x can be represented as follows :
x(128,128,3).

As mentioned earlier, the first ConvNet1 consists of two
ConvNet layers. The weight and bias sizes used in this case
are (5 × 5×64, 64). The output dimensions of ConvNet1
in terms of width, height, and depth are (64, 64, 64). The
activation function used here is ReLU (Rectified Linear Unit).
The output of ConvNet1 is used as the input for ConvNet2,
and the overall VGGNet model is as shown in Figure 14.
In this figure, ‘‘ConvNet 1-2’’ means that two ConvNet layers
are used in the ConvNet1 process, and similarly, ‘‘ConvNet

121908 VOLUME 11, 2023



J.-H. Kim, J. Lee: Efficient Dataset Collection for Concrete Crack Detection

FIGURE 15. Feature reconstruction (input : x(4,4,512), output :
x(256, 256, 3).

FIGURE 16. Generation of virtual cracks via data augmentation from
input data (left to right : 0◦, -45◦, 45◦, 90◦ ).

5-4’’ means that four ConvNet layers are used in the
ConvNet5 process.

In the reconstruction phase, the results are restored using
transposed convolution applied to the output of the VGG
network (see Figure 15). The detailed information for
ConvNet r1 to r7 is as shown in Table 1. The input of the
neural network is half the size of the original map, and when
combined with the residual map in the future, it is added at
the same size as the output of the reconstruction. This network
was implemented in TensorFlow [38], and the optimizer used
here is Adam (Adaptive Moment Estimation).

VI. EXPERIMENTAL RESULTS
To analyze the proposed method from various perspectives,
we perform extensive augmentation of crack data and
generate synthetic data. Subsequently, the generated synthetic
data is applied to the network architecture designed for crack
detection, and validation tests are conducted. By testing the
diverse crack data with different thicknesses and orientations,
we examined the impact of the synthetic data generated
using our method on the training process of the network.
Additionally, we examined the impact of our method on
crack detection results by utilizing not only clean data but
also blurred data affected by motion blur. This allowed us
to assess how significantly our approach affects the crack
detection accuracy in the presence of blurring effects. Lastly,
we conducted experiments to investigate whether our method
produces meaningful results for crack detection in glass
material as well, not just concrete.

A. CRACK DATA AUGMENTATION
To conduct more intuitive augmentation tests, we performed
data augmentation experiments on input data with relatively
low directional freedom in the form of straight lines, where

FIGURE 17. Crack data augmentation with our method.

FIGURE 18. Synthesizing crack images and masks to generate synthetic
data : (a) crack image, (b) concrete material DB, (c) synthetic data.

FIGURE 19. Comparison of synthesized cracks and their masks.

specific angles were tested. Figure 16 displays virtual cracks
generated through our method, showcasing the augmented
results that align with various directions despite the input
being in the form of straight lines.

Figure 17 shows the results of generating cracks with
diverse patterns using the data augmentation technique
proposed in this paper. Unlike previous data augmentation
approaches that performed elastic distortion at the pixel
level, the proposed method enables easy generation of
complex crack datasets considering various directions and
thicknesses. To utilize this dataset for crack detection, it is
necessary to establish pairs of mask images and crack images.
We pre-built a database that can represent various concrete
materials and synthesized synthetic data by combining it
with crack data (see Figure 18). Figure 19 shows the
synthetic data generated by synthesizing virtual crack images
and concrete materials in this paper. The neural network
training for crack detection is conducted using pairs of
images that are represented in a similar form to real crack
images.
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TABLE 1. Details of the crack convolutional neural network architecture.

FIGURE 20. Quality comparison between previous method [39] and our
method (scene 1). In each subfigure, the left, middle, and right figures are
the input data, the previous method, and our method.

FIGURE 21. Quality comparison between previous method [39] and our
method (scene 2). In each subfigure, the left, middle, and right figures are
the input data, the previous method, and our method.

B. CRACK DETECTION
In this section, we apply the proposed data augmentation
technique to crack detection and examine the results. In this
study, we augmented the data provided by DeepCrack to
create a total of 3,000 images [39]. All the data was labeled
with masks according to the presence or absence of cracks,
and it was divided into training, testing, and validation sets
with a ratio of 6:2:2.

Figure 20 presents the results of crack detection using our
method. Compared to the input data, the previous method
failed to accurately represent the details of the cracks,
resulting in discontinuities or introducing noise. In contrast,
our method, with the addition of data augmentation, was able
to detect relatively clean cracks.

FIGURE 22. Results of extracted crack area with our method (scene 3).

Figure 21 shows the results of comparing our method with
the previous method using a variety of crack patterns as input.
In Figure 21a, it can be observed that the previous method
fails to accurately detect the crack thickness that is present
in the input data. However, our method demonstrates more
accurate detection of the thick cracks. Figure 21b presents
the results of the experiments conducted on cracks observed
in relatively lighter-colored concrete. While the previous
method struggled to detect the crack, our method, with the use
of data augmentation alone, successfully identified the entire
crack. In Figure 21c, it can be observed that the previous
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FIGURE 23. Experimental results with shaky crack data. This illustration
shows contour filtering applied to clearly see the results : (a) previous
method [39], (b) our method.

method detected the cracks in a discontinuous manner, while
our method provided more stable and consistent results.
In Figure 21d, not only cracks but also two small holes can
be observed at the top of the input image. Such holes are
typically not classified as cracks, but the previous method
mistakenly detected them as cracks. In contrast, our method
accurately detects only the actual crack portions while
disregarding the holes.

Figure 22 presents the results of extracting crack areas
from the input image using ourmethod. It demonstrates stable
crack detection across various crack patterns. The proposed
method, being a data augmentation technique, is expected to
be applicable as an add-on to various approaches that utilize
crack data, rather than being limited to a specific neural
network.

Additionally, experiments are conducted to examine
whether the proposed method can effectively extract cracks
from blurred images caused by motion blur. Cracks often
occur in locations where it is challenging for users tomaintain
a stable posture, such as high areas. In such cases, the
photos may exhibit blur due to shake caused by the unstable
posture of the user. In this experiment, we aim to assess
how effectively our method can detect cracks in cases where
there is shake-induced blur (see Figure 23). The input data
at the top of Figure 23 represents a photo with blur caused
by shake. In Figure 23a, we can observe the crack detection
results using the previous method that does not utilize data
augmentation. On the other hand, Figure 23b shows the
results of crack detection after applying data augmentation.
The results of crack detection using data augmentation
demonstrate a more accurate representation of crack shapes
(see Figure 23b).

Figure 24 shows the results of crack detection performed
on shattered glass. Similar to the previous results, the crack
detection results after data augmentation (see Figure 24c) are
more sharp and accurate compared to the results before data
augmentation (see Figure 24b).

C. CRACK DETECTION NETWORK
In this paper, DeepCrackwas chosen as the neural network for
crack detection [39]. We generate crack data and create pairs

FIGURE 24. Experimental results with glass crack data : (a) input data,
(b) previous method [39], (c) our method.

FIGURE 25. An illustration of our proposed DeepCrack architecture [39].

by synthesizing them with concrete material images. These
pairs are then used for training the neural network. During
the test phase, we input real concrete images and perform
crack detection to identify the regions of cracks. I recommend
reading the DeepCrack paper for a more detailed explanation
of the methodology [39].

D. EVALUATION
In this study, Mean IoU (Intersection over Union) was used
as the evaluation metric. This method evaluates the model
by measuring the intersection over union ratio between the
predicted results and the ground truth values in deep learning.
Generally, an IoU value of 0.5 or higher is considered as a
successful detection (True Positive, TP), while a value below
0.5 is regarded as a false detection (False Positive, FP). It was
observed that without data augmentation, the false positive
(FP) rate was approximately 25%. However, when applying
the proposed method, which involved augmenting the crack
data more than tenfold, the FP rate decreased to as low as 3%.
Additionally, the accuracy of IoU improved from 0.5803 to
0.9223. In this experiment, the initial number of crack images
was 237, and through augmentation, a total of 1,659 images
were used.

VII. CONCLUSION
The paper proposed a framework that augmented crack
data based on network training, enabling the generation of
diverse patterns of crack data by learning the direction and
thickness of cracks in detail. Furthermore, the experiments
demonstrated that the use of augmented data improved the
accuracy of real crack detection. The proposed method was
applied to cracks represented in concrete material, but it is
expected to be extended to various types of material cracks
as well.
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However, this study has several limitations. It is anticipated
that detecting cracks in materials such as glass, ceramics,
plastic, and aluminum, which involve significant reflection
and refraction, may be challenging as the algorithm was
designed and tested specifically for concrete materials. Addi-
tionally, since the synthetic data generation assumes dark-
colored cracks, it may be challenging to detect bright-colored
cracks or scratches. My future plan is to research methods
for automatically detecting and evaluating the severity of
cracks, taking into account the characteristics of various
materials.
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