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ABSTRACT In this paper we describe a class of cryptographic guess-and-determine attacks which is based
on the notion of a linearizing set. A linearizing set-based attack is applied to a system of Multivariate
Quadratic equations (MQ) overGF(2) field, which encodes how a considered cryptographic function works.
By substituting into such MQ system a random (in some strict sense) assignment of variables from a
linearizing set we aim to transform the system into a linear one. We introduce a probability of such an
event and call it a probability of linearization. Then we describe a guess-and-determine attack, the hardness
of which can be expressed via a probability of linearization. To estimate the latter it is possible to use a simple
Monte Carlo algorithm. Also we describe a technique that allows to augment a consideredMQ system by new
linear equations and to construct a newMQ system, for which the probability of linearization is usually larger
than that for an original one. For this purpose we apply a SAT oracle to a Boolean formula that is naturally
associatedwith a consideredMQ system. Finally, we reduce the problem of searching for a linearizing set that
yields the best effectiveness of a constructed guess-and-determine attack to a pseudo-Boolean optimization
problem, which can be solved using metaheuristic optimization algorithms. The important consequence of
this is that this waywe can construct guess-and-determine attacks automatically by solving the corresponding
optimization problem. In the computational experiments we used the proposed methodology to construct
attacks on several well-known stream ciphers. The runtime estimations of some of the attacksmake it possible
to implement them in reasonable time.

INDEX TERMS Algebraic cryptanalysis, guess-and-determine attack, system of multivariate quadratic
equations, Boolean satisfiability, pseudo-Boolean optimization, evolutionary algorithm.

I. INTRODUCTION
The main object of the study in this paper are the Multivariate
Quadratic systems of algebraic equations over GF(2) field,
or MQ-systems. They are interesting because for any total
effectively computed discrete function (i.e. a function that
transforms binary words into binary words) its inversion
problem (also known as preimage finding problem or
preimage attack) can be effectively reduced to MQ-system.
The problem of solving an MQ-system or proving its
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inconsistency is NP-hard (see e.g. [1]). However, in many
practical cases one can construct an algorithm for solving
such systems, that has the complexity significantly smaller
than that of a brute force attack. The corresponding methods
can be useful for analysis of existing systems of lightweight
cryptography or for the development of such systems.

In the present paper, we describe both theoretical and com-
putational instruments, that can be employed for inverting an
arbitrary discrete function specified by some fast algorithm.
The proposed approach is based on the notion of a linearizing
set: a set of variables of a considered system, such that
assigning values to these variables in a system with some
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probability transforms this system into linear. The probability
we mention here is referred to as probability of linearization.
We would like to specifically note that the introduced term

linearizing set is the base for constructing a special class
of guess-and-determine attacks [2] and the corresponding
attacks can not be viewed in the context of the widely
known eXtended Sparse Linearization (XSL) method [3], [4].
Thus, the notion of ‘‘linearizing set’’ is not related to XS
linearization and similar techniques.

To construct a preimage attack that can actually be used
in practice, one needs a linearizing set of as small size
as possible which at the same time has a relatively high
probability of linearization. We propose an algorithm for
finding such sets for an MQ-system associated with a
considered cryptographic function. It optimizes a special
fitness function which evaluates how good a specific set of
variables is when viewed as a linearizing set candidate. The
value of this fitness function can be viewed as the hardness of
solving an MQ-system using this particular set of variables.
Thus, we are looking for a linearizing set that yields an
attackwithminimal hardness. The introduced fitness function
is minimized via metaheuristic optimization algorithm in a
completely automatic mode. Apart from that we propose a
new technique for generating additional linear equations that
outline the connections between some of the variables in a
considered MQ-system. For this purpose we invoke a SAT
solver to check the consistency of additional constraints with
an original MQ-system.

In the computational experiments we applied the proposed
method to constructing the attacks on several lightweight
stream ciphers, in particular, the A5/1, ASG, Bivium and
Trivium keystream generators. The runtime estimations
that we obtained for A5/1 and Bivium show that the
corresponding attacks can be implemented in practice.

Thus, the main contributions of our paper are as follows.
1) We introduce a new class of guess-and-determine

attacks based on a special technique for solving
MQ-systems over GF(2) field. The technique asso-
ciates with anMQ-system, which encodes a considered
cryptographic function, a set of linear systems over
GF(2) using a set of Boolean variables which is
referred to as linearizing set.

2) With each linearizing set we naturally associate the
notion called probability of linearization, using which
we can define the hardness of the linearising set-based
attack. We show that the probability of lineariziation
and consequently the hardness of the corresponding
attack can be effectively estimated using a simple
Monte Carlo algorithm.

3) The problem of finding a linearizing set attack with
the smallest runtime estimation is formulated as a
pseudo-Boolean optimization problem and is solved
using metaheuristic algorithms.

4) We also develop a special technique that can be used to
augment the obtained linear systems over GF(2) with
new linear equations derived using a SAT oracle.

5) In the computational experiments we use the proposed
method to automatically construct linearizing set-based
attacks on a number of stream ciphers. In several cases
the constructed attacks have a runtime estimation that
allows one to implement them in reasonable time.

Let us give a brief outline of our paper. In Section II
we introduce the necessary notions and basic results about
Boolean circuits and satisfiability. In Section III we demon-
strate the interconnection between cryptanalysis problem
considered as an instance of the Boolean satisfiability
problem (SAT) and tne corresponding system of Multivariate
Quadratic Equations over GF(2). In Section IV we introduce
the notion of a linearizing set, describe a class of guess-
and-determine attacks based on linearizing sets and reduce
the problem of constructing an attack with a good runtime
estimation to a metaheuristic pseudo-Boolean optimization
problem. In Section V we describe the technique employed
for generating additional linear equations using a SAT
oracle. Section VI contains the results of computational
experiments and Section VII – the review of related work.
Finally, in Section VIII we briefly discuss the obtained
results, consider the strengths and limitations of the proposed
methods, draw conclusions and outline the directions for
future research.

II. PRELIMINARIES
Remind that GF(2) is a field of two elements which are
usually denoted as 0 and 1, and can be viewed as the
remainders from division of an arbitrary natural number by 2.
Thus, GF(2) = ⟨{0, 1}, ⊕, ∧)⟩, where ⊕ and ∧ are the
operations in the field. If we define these operations using
a table, then we obtain exactly the binary Boolean functions
⊕ (xor) and ∧ (conjunction). The expressions over GF(2)
that we consider are polynomials of the kind P(x1, . . . , xs),
where xi, i ∈ {1, . . . , s} are variables with values from {0, 1},
as well as algebraic equations of the kindP(x1, . . . , xs) = 0 or
P(x1, . . . , xs) = 1.
Apart from expressions over GF(2) we will consider

Boolean formulas, i.e. the expressions over an alphabet
that includes Boolean variables X = {x1, . . . , xk}, braces
and Boolean connectives (¬, ∨, ∧, ⊕, →, etc.). The simplest
Boolean formulas are formulas x and ¬x, where x is a
Boolean variable and ¬ is the unary connective called
negation (¬1 = 0, ¬0 = 1). These formulas are called
literals. A clause is a formula which is the disjunction of
literals, e.g. ¬x1 ∨ ¬x11 ∨ ¬x118. A Conjunctive Normal
Form (CNF) is a conjunction of different clauses. An arbitrary
mapping of the kind α : X → {0, 1} defines an assignment of
variables from X . For a Boolean formula C an assignment is
called satisfying if substituting it into C (see e.g. [5]) results
in evaluating C to 1 (True). If a satisfying assignment exists,
then a formula is called satisfiable, otherwise it is called
unsatisfiable. The Boolean satisfiability problem (SAT) for
formula C (usually in CNF) is formulated as follows: to
decide whether the formula C is satisfiable. SAT is one of
the classic NP-complete problems [6].
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By {0, 1}n for an arbitrary n ∈ N+ denote the set of all
possible binary words of length n. Hereinafter, by

f : {0, 1}n → {0, 1}m (1)

denote a discrete function, that transforms an arbitrary binary
word of length n into a binary word of length m. Thus, f is
defined everywhere on {0, 1}n. ByRangef ,Rangef ⊆ {0, 1}m

denote the range of values of f . An inversion problem for f
(or preimage attack on f ) consists in the following: given an
arbitrary γ ∈ Rangef to find such an α ∈ {0, 1}n that f (α) =

γ . Clearly, many cryptographic attacks can be considered in
the context of the described inversion problem.

Below we assume that function (1) is specified by
some deterministic algorithm (e.g. by some Turing machine
program). It is a well known fact that using a technique of
propositional encoding of algorithms which is based on the
Cook-Levin theorem [1], one can construct a Boolean circuit
over some complete basis, such that this circuit specifies
function f . Denote such a circtuit as Sf . Essentially, Sf is
a directed acyclic graph that contains n vertices without
parents (input nodes) and m vertices without children (output
nodes). Apart from that, Sf has a certain number of inner
vertices. With each vertex in Sf which is not an input node, an
element of some complete basis [7] is associated. Let us refer
to such nodes as gates. Further, we consider the complete
Boolean basis {∧, ¬}, containing only the connectives ∧

(conjunction or logical and) and ¬ (negation or inversion).
The corresponding circuit over basis {∧, ¬} is often referred
to as an And-Inverter Graph (AIG) [8].
Associate with each node of circuit Sf some Boolean

variable.We denote the set of variables associated with inputs
of Sf as X in = {x1, . . . , xn}. The set of variables associated
with outputs of Sf is denoted as Y = {y1, . . . , ym}.
Let us construct for Sf a Boolean formula in CNF using

Tseitin transformation [9]. Namely, let g be an arbitrary gate
of circuit Sf and v be a Boolean variable linked with gate
g. Let g be an Inverter-gate and u be the Boolean variable
linked with the parent of g. Then we associate with g a
CNF-representation of formula v ≡ ¬u, i.e. CNF formula
(v ∨ u) ∧ (¬v ∨ ¬u). Now, let g be an And-gate and u,w be
the variables linked with its parents. Then we associate with
g the CNF-representation of formula v ≡ u ∧ w, i.e. CNF
formula (v∨ ¬u∨ ¬w)∧ (¬v∨ u)∧ (¬v∨w). Let us denote
the CNF formula associated with g as Cg and consider the
following CNF formula (constructed using all gates in Sf ):

Cf =

∧
g∈Sf

Cg (2)

Below, similar to [10] let us employ the following notation:
by xσ denote literal x if σ = 1 and literal ¬x if σ = 0.
Remind that the Unit Propagation rule (UP) [11], is the

main rule used for Boolean constraint propagation in the
modern SAT solvers [12]. Let C be some CNF formula,
every clause of which contains at least two literals. A single
application of UP to a formula of the kind xσ

∧C consists in

the following: first remove from formula C all occurrences
of literal x¬σ . Next remove from C all clauses that contain
literal xσ . Denote the resulting CNF formula as C ′. The
formulas xσ

∧ C and xσ
∧ C ′ are equisatisfiable. Formula

C ′ can contain clauses that consist of a single (unit) literal of
the kind xτ . In this case it is said that such literals are derived
from xσ

∧ C w.r.t. the Unit Propagation rule.
Following [13] we will refer to CNF formula Cf in (2)

as to template CNF formula for function f . Let us denote
by X the set of all variables occurring in Cf . Template CNF
formulas possess an important property. Consider an arbitrary
α ∈ {0, 1}n, α = (α1, . . . , αn) and construct the following
formula (remind, that X in = {x1, . . . , xn}):

xα1
1 ∧ . . . ∧ xαn

n ∧ Cf (3)

The following fact is well-known (see e.g. [14], [15]).

Theorem 1. By iteratively applying UP to (3) we derive
(in form of literals) the values of all variables from X. For
the variables from Y = {y1, . . . , ym} the derived values
y1 = γ1, . . . , ym = γm are such that f (α) = γ , where
α = (α1, . . . , αn), γ = (γ1, . . . , γm). The derived assignment
of variables from X does not contain any inconsistencies in
form of pairs of complementary literals (i.e. literals of the
kind x, ¬x).

Informally, the Theorem 1 means, that the iterative
application of UP to (3) effectively simulates the computing
of function f on an arbitrary input α, based on the circuit Sf .

Now let us consider the following CNF formula

Cf (γ ) = Cf ∧ yγ11 ∧ . . . ∧ yγmm (4)

where γ = (γ1, . . . , γm), γ ∈ Rangef . From the properties
of Tseitin transformations it follows that (4) is satisfiable (see
[13]). However, finding its satisfying assignment can be a
very hard problem, especially if f is a cryptographic function
with good resistance to attacks. Nevertheless, if one manages
to find such a satisfying assignment, then it is easy to extract
from it such an α ∈ {0, 1}n that f (α) = γ .

III. MQ-SYSTEMS OVER GF (2): SUBSTITUTIONS AND
INFERENCE
Once again, consider function (1) and the circuit Sf over the
basis {∧, ¬} that defines it. With each node of this circuit
we associate a variable x̃ which takes the values from GF(2)
field. Thus, we obtain the set of variables which we denote
as X̃ . There is a natural one-to-one correspondence between
X and X̃ . Moreover, in all cases that we consider further,
a variable x ∈ X takes the value of 1 if and only if the
corresponding variable x̃ ∈ X̃ takes the value of 1. Taking
this fact into account, let us abuse the notation by denoting the
variables which take values in GF(2) and the corresponding
Boolean variables by the same letters, and explicitly mention
whenever necessary what case is considered. Thus, in this
section the sets X , X in, Y have the same meaning as above,
with the only difference that the variables from these sets take
the values from GF(2).
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Similar to the method that we employed to construct
template CNF formula Cf , let us traverse circuit Sf and
associate with each gate an algebraic equation over GF(2).
Let g be an arbitrary gate and let v be a variable with values
from GF(2) associated with g. Assume that g is an Inverter
gate and u is a variable associated with the parent of g. Then,
we construct for g the equation u⊕v = 1. Now, let us assume
that g is an And-gate and u,w are the variables associated
with its parents. In this case the equation corresponding
to g is u ∧ w ⊕ v = 0. Denote the system of obtained
algebraic equations over GF(2) as Ef . It is clear, that Ef is
an MQ-system overGF(2). We will refer to Ef as to template
MQ-system for function f . In accordance with the above we
denote by X the set of variables occurring in Ef .

FIGURE 1. An example Boolean circuit with two inputs and 3 gates.

Consider an example at Fig. 1. It has two inputs associated
with variables x1 and x2 (so, X in = {x1, x2}) and three
gates, with which the varables v1, v2, v3 are associated. Let
us construct an MQ-system overGF(2) for this circuit. It will
look as follows:

x1 ⊕ v1 = 1 negation-gate in the second layer;

x1 ∧ x2 ⊕ v2 = 0 and-gate in the second layer;

v1 ∧ v2 ⊕ v3 = 0 the output and-gate.

It is possible to substitute an assignment of val-
ues to variables in MQ-systems in a standard manner,
i.e. by replacing the occurrences of a variable by the corre-
sponding constant from GF(2) and performing all possible
elementary transformations. Sometimes, such substitutions
can lead to derivations of equations of the kind x = c, where x
is some variable and c is a constant fromGF(2). For example,
consider the equation u ∧ w ⊕ v = 0 and substitute to this
equation the assignment v = 1. It is easy to see, that from this
substitution we derive the equation u ∧ w = 1, from which
we have two new equations u = 1, w = 1. In this case we
can say that the values u = 1, w = 1 were derived from the
considered MQ-system in accordance with the inference rule
u∧w⊕v=0,v=1
u=1,w=1 . Hereinafter, we will use the standard formalism

from mathematical logic (see e.g. [16]) locating the premise
over the line and conclusion under the line.

Essentially, Theorem 1 makes it possible to use UP
to derive from Cf the values of all variables in Cf by
substituting to Cf the values of input variables. Similarly,
we can define the set of inference rules, which will result in
derivation of values of all variables in Ef when substituting
the values of input variables. In particular, let us consider the

following inference rules:

u⊕ v = 1, u = 0(1)
v = 1(0)

;
u⊕ v = 0, u = 0(1)

v = 0(1)
;

u ∧ w⊕ v = 0, u = 1
w⊕ v = 0

;
u ∧ w⊕ v = 0, u = 0

v = 0
. (5)

For a template system Ef we can define an analogue of (3)
as a system produced from Ef by adding to it the equations
of the kind xi = αi, i ∈ {1, . . . , n} (X in = {x1, . . . , xn}).
Denote the obtained system as Ef ,α , where α = (α1, . . . , αn).
The immediate analogue of Theorem 1 in the context of
MQ-system is the following fact.

Theorem 2. By iteratively applying the rules (5) to equations
from the system Ef ,α we derive (in form of equations of
the kind x = c) the values of all variables from X. For
the variables from Y = {y1, . . . , ym} the derived values
y1 = γ1, . . . , ym = γm are such that f (α) = γ , where
α = (α1, . . . , αn), γ = (γ1, . . . , γm). The derived assignment
of variables from X does not contain any contradictions
(e.g. pairs of equations of the kind x = 0, x = 1).

Proof sketch: The basic idea of the proof is based on
the notion of the interpretation of circuit Sf on a particular
input α ∈ {0, 1}n. Briefly, the interpretation is defined as
consequent computation of values of gates, when with an
input vertex number i, i ∈ {1, . . . , n} of circuit Sf there
is associated a corresponding αi ∈ {0, 1}. In this case by
traversing through a circuit let us assign to each gate some
value from GF(2). We will refer to such value as to the value
of the corresponding gate on the input word α. If e is an
equation associated with gate g and the parents of this gate
have some values, then the value of gate g is derived from e
using one of the rules (5). As a result, by traversing the entire
circuit Sf we obtain the values of all gates in form of equations
x = 0 or x = 1, where x is a variable associated with a
considered gate. Each gate will be assigned a single value,
so there will be no contradictory equations in the obtained
system. □
Thus, the substitution of an input α ∈ {0, 1}n in form of

equations of the kind xi = αi, i ∈ {1, . . . , n} and application
of the rules (5) results in effective derivation of values of all
the remaining variables in Ef . Substituting the values of a
specific output γ ∈ Range f in form of equations yj = γj, j ∈
{1, . . . ,m} results in a system that we denote as Ef (γ ). This
system is consistent, but the problem of finding its solutions
can be very hard for a cryptographically resistant function
f . Nevertheless, if the solution of Ef (γ ) can be found, then
one can effectively extract from it such an α ∈ {0, 1}n that
f (α) = γ .

IV. CRYPTOGRAPHIC ATTACKS BASED ON LINEARIZING
SETS
The attacks described in the present section belong to the
class of guess-and-determine attacks [2]. In such attacks there
is some system of algebraic equations or a formula over
variables from a set X . The goal is to find such a subset
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B ⊆ X that by substituting to a system or to a formula
all 2|B| assignments of variables from B and solving the
resulting subproblems using some algorithm A we spend
less resources than by attacking an original function using
the brute-force method: in case of a function of the kind
(1) we have a trivial brute force attack with O(2n) calls
of function f . The set B is called a guessed bits set. One
of the key points when constructing guess-and-determine
attacks is how to choose an algorithm A. In form of A one
can employ some polynomial algorithm or a combinatorial
algorithm that is effective on a large number of practical
problems of high dimension. The modern SAT solvers belong
to the latter category and are employed in cryptography
increasingly often (see Section VII). However, in the present
paper wewill assume thatA is some polynomial algorithm for
solving systems of linear equations overGF(2) (for example,
the well-known Gaussian Elimination algorithm [17]).

A. LINEARIZING SET NOTION
Hereinafter, by {0, 1}|B| we denote the set of all possible
assignments of all variables from set B. Informally, the basic
idea of the attack described below in detail looks as follows.
We aim to find such a guessed bits set B that substituting an
assignment β ∈ {0, 1}|B| to system Ef (γ ), γ ∈ Range f with
high probability results in a linear system. We measure the
hardness of a corresponding attack using B in the number
of the linear systems that need to be solved. Below let us
formally describe the attacks of this kind.

So, consider a total function f : {0, 1}n → {0, 1}m and the
problem of its inversion: for a known γ ∈ Range f to find α ∈

{0, 1}n such that f (α) = γ . Assume that f is defined by circuit
Sf over the basis {∧, ¬}. Let us construct based on circuit
Sf the corresponding template MQ-system Ef over the set of
variables X associated with circuit Sf in a manner described
above. Let B be an arbitrary subset of X : B ⊆ X . Denote
by Ef [β/B] the system over GF(2) obtained by substituting
into Ef the assignment β ∈ {0, 1}|B| and applying to it the
rules (5) as well as the rule

u ∧ w⊕ v = 0, v = 1
u = 1,w = 1

(6)

Let α be an arbitrary vector from {0, 1}n which is
considered as an assignment of variables from X in. Associate
with α the set of values 0α (0α ∈ {0, 1}|X |) of all variables
from Ef derived (w.r.t Theorem Theorem 2) by substituting
α into Ef . For an arbitrary B ⊆ X we say that an assignment
of variables from B in 0α is induced by α and denote such an
assignment as βα . Assume that γα = f (α) is an assignment
of variables from Y induced by α.
Define the probability space 6 in which the sample space

is {0, 1}n, and assign to each α ∈ {0, 1}n the probability 1
2n ,

thus defining the uniform distribution over {0, 1}n. Consider
an arbitrary B ⊆ X . Denote by ‘‘Ef [βα/B, γα/Y ] ∈ Lin’’
the fact that after substitution of assignments βα and γα (of
variables from B and Y , respectively), which are induced
by α ∈ {0, 1}n, into Ef , and subsequent application of all

inference rules mentioned above, we obtain a linear system
over GF(2). Denote the corresponding event in the event
algebra of space 6 (i.e. in the set 2{0,1}n ) by IB. It is clear
that the probability of IB is defined as follows:

Pr{IB} =
#

{
α : Ef [βα/B, γα/Y ] ∈ Lin

}
2n

Definition 1. In application to an arbitrary set B ⊆ X we
will say that B linearizes the system Ef with probability ρB =

Pr{IB} or that B is a linearizing set for Ef with probability of
linearization ρB.

With an arbitrary set B ⊆ X let us associate a Bernoulli
random variable ξ (B) : {0, 1}n → {0, 1} which is equal to
1 on α ∈ {0, 1}n if α ∈ IB and equal to 0 on α /∈ IB. It is
obvious, that the success probability for ξ (B) is ρB. It is not
hard to imagine both situations: when ρB = 0 and when ρB =

1 (e.g. if B = X in then ρB = 1 due to Theorem 2).

B. GUESS-AND-DETERMINE ATTACK USING LINEARIZING
SET AND ITS HARDNESS
If B is a linearizing set with probability ρB which is
not extremely small, then we can use it to construct the
following cryptographic attack on function (1). Assume that
we observe the outputs γ 1, . . . , γ k of function f obtained for
inputs α1, . . . , αk , chosen independently from {0, 1}n w.r.t.
a uniform distribution.

For an arbitrary γ j, j ∈ {1, . . . , k} consider the set {0, 1}|B|

and for each assignment β ∈ {0, 1}|B| check whether the
system Ef [β/B, γ j/Y ] is linear, and if yes then solve this
system, otherwise (e.g. if Ef [β/B, γ j/Y ] /∈ Lin) move to the
next assignment β. Let αj ∈ {0, 1}n be an assignment which
induces γ j and β j, β j ∈ {0, 1}|B|. Then the probability that
Ef [β j/B, γ j/Y ] ∈ Lin is ρB. If as a result of processing all
assignments from {0, 1}|B| the event IB was not observed for
a fixed γ j, j ∈ {1, . . . , k − 1} then consider γ j+1 and repeat
the described procedure. The probability that after analyzing
k outputs of function f in this manner we will be able to invert
at least one of them (under assumption that αj, j ∈ {1, . . . , k}
are chosen independently) is

PB = 1 − (1 − ρB)k (7)

Definition 2. Let us say that the considered attack is
successful if PB ≥ 0.95.

Taking into account (7) it is easy to see that to fulfill
the condition PB ≥ 0.95 it is sufficient to analyze k =⌈

3
ρB

⌉
of outputs γ 1, . . . , γ k . It follows from the fact that

(1 − ρB)

⌈
3

ρB

⌉
≤ (1 − ρB)

3
ρB and the value in the right side

of this inequality monotonically increases with the decrease
of ρB and does not exceed e−3

≈ 0.04978.
From the above it follows that the hardness of a successful

(in the aforementioned sense) guess-and-determine attack of
the described type, when we use some linearizing set B as
a guessed bits set, can be expressed by the following value
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(number of systemswhich should be checked if they are linear
and should be solved in the case the answer is ‘‘yes’’):

2|B|
·

⌈
3
ρB

⌉
(8)

Thus, to estimate the hardness of the described attack
we need to know the value ρB. The fact that ρB is the
success probability of some Bernoulli random variable makes
it possible to effectively estimate the value of ρB with any
required precision using the algorithm which is traditionally
referred to as the Monte Carlo method [18]. Fix B ⊆ X
and construct the inputs α1, . . . , αN , picking them uniformly
and independently from {0, 1}n. For each j ∈ {1, . . . ,N } let
us construct the assignments β j and γ j, induced by αj (of
variables from B and Y , respectively). Observing the value
ξ (B) in the experiment number j (we will denote this value
by ξ j) is defined as follows:

ξ j =

{
1, if Ef [β j/B, γ j/Y ] ∈ Lin
0, if Ef [β j/B, γ j/Y ] /∈ Lin

The estimation of probability ρB based on N independent
observations of ξ (B): ξ1, . . . , ξN is the following value:

1
N

N∑
j=1

ξ j (9)

As it can be derived from the results of the paper [19], for
any ε ∈ (0, 1) the following form of Chernoff’s bound holds:

Pr


∣∣∣∣∣∣ρB −

1
N

N∑
j=1

ξ j

∣∣∣∣∣∣ ≤ ε

 ≥ 1 − 2e−
ε2N
4 (10)

In (10) ε ∈ (0, 1) represents the tolerance (see [19]) of the
estimation of probability ρB by value (9) and we can notice
that ε can be fixed to arbitrarily small values and at the same
time one canmake the confidence level 1−δ (see [19]), where

δ = 2e−
ε2N
4 , to be as close to 1 by increasing the number of

observations N of variable ξ (B). In more detail, for any fixed
ε, δ ∈ (0, 1) we need to ensure that N ≥

4 ln(2/δ)
ε2

to guarantee
that (10) holds.

Therefore, we can move from (8) to the following
estimation of the hardness of a cryptographic attack based on
linearizing set B:

2|B|
·

3N∑N
j=1 ξ j

. (11)

C. CONSTRUCTION OF GUESS-AND-DETERMINE ATTACK
AS A METAHEURISTIC OPTIMIZATION PROBLEM
The next step consists in automatizing the search for such
B that yields an attack with acceptable hardness estimation
(11). Here we will use the approach described in a series of
works [20], [21], [22], [23]. These papers considered guess-
and-determine attacks which employed the SAT solvers
to solve subproblems weakened by substituting into CNF
formulas the values of variables from a guessed bits set.

In these works, the problem of finding such a set with
good estimation of attack hardness was reduced to the
pseudo-Boolean optimization problem [24], to solve which
the metaheuristic algorithms such as local search [25] or
evolutionary algorithms [26] were then applied. We will use
a similar approach to construct linearizing set-based attacks
with relatively small hardness estimation.

First, let us define a fitness function such that the minimum
of this function gives us a linearizing set-based attack with the
smallest hardness. Let us define it in the following manner:

FEf : {0, 1}|X |
→ R+ (12)

The arguments of function (12) are the Boolean vectors from
{0, 1}|X | which define different sets B, B ⊆ X . For an
arbitrary λB ∈ {0, 1}|X | if the value of a coordinate number
i, i ∈ {1, . . . , |X |} is 1 then it means that xi ∈ B, otherwise
if the value of a coordinate number i is 0 then xi /∈ B. Let
us describe the process of computing the value of function
(12) on an arbitrary λB ∈ {0, 1}|X |. First, construct set
B = {xB1 , . . . , xBs } corresponding to λB. Next, generate N
randomly chosen inputs of function f : α1, . . . , αN . For each
αj, j ∈ {1, . . . ,N } derive the assignments of all variables from
X induced by it and based on them construct assignments
β j (of variables from B) and γ j = f (αj) (of variables
from Y ). Then, we substitute to Ef the assignments γ j and
β j and apply inference rules described above for as long
as they are applicable. If the resulting system of equations
becomes linear, then we assume that ξ j = 1, otherwise
ξ j = 0. Once we obtain the values ξ1, . . . , ξN we compute
the estimation (9) and then use formula (11) to compute the
value of (12).

From the definition of function (12) it follows that it is a
pseudo-Boolean function that is not defined analytically. That
is why it is possible to view it as some black-box function and
apply metaheuristic search algorithms to its minimization.
As we mentioned above, in a number of earlier works there
have been considered fitness functions that are somewhat
similar to (12). They were minimized using both local search
algorithms [20], [21], and evolutionary algorithms [22].
In our experiments the best results on minimizing function
(12) were obtained using a variant of genetic algorithm
described in [22] and [27]. In all experiments below we used
exactly this algorithm. Let us briefly describe it.

The algorithm for minimizing (12) works with several
vectors of the kind λB ∈ {0, 1}|X |. Denote these vectors by
λ1, . . . , λR and let us refer to the set P = (λ1, . . . , λR) as
to population of size R. With each individual of population
P associate the value of fitness function (12) on the
respective individual, and denote the corresponding values
by F1, . . . ,FR. Also, let us associate with P the set D =

{p1, . . . , pR}, formed by numbers from [0, 1] defined as
follows:

pi =
1/Fi∑r
j=1 1/Fj

, i = 1, . . . ,R

Thus, each λi is linked with some pi, i ∈ {1, . . . ,R},
and, therefore, the set D can be viewed as the probability
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distribution on the sample space P (because all Kolmogorov’s
axioms [28] hold). Next we use the standard mechanism
for choosing the elements from P in accordance with
distribution D. First, choose h pairs (each element of a pair
is chosen independently from P), apply two-point crossover
[26] to each pair and add the resulting pair to the new
population Pnew (which is initialized as empty). At this
point, Pnew has H = 2h individuals. Next, choose from
P (w.r.t. D) L individuals, and apply either standard (1+1)
random mutation (see e.g. [29]) or a variant of this operator
described in [30] to each of them. The resulting individuals
are also put into Pnew. Finally, we add to Pnew E individuals
from P with the best values of the fitness function. The
parameters H ,L,E are constrained as follows: H + L +

E = R, which means that Pnew consists of exactly R
individuals. The particular values of R,H ,L,E are picked
for each considered cryptographic function individually in
the process of computational experiments. The algorithm is
terminated after a specified number of iterations and outputs
the individual (i.e. a specific linearizing set B) with the best
known value of the fitness function as the result.

V. USING SAT ORACLES TO GENERATE ADDITIONAL
LINEAR CONSTRAINTS
In many cases it is possible to augment the system Ef by
additional new linear equations, which in turn increase the
probability of linearization. To construct new linear equations
we invoke a SAT solver as an oracle. The technique described
below is based on the fact that a template CNF formula of the
kind Cf is not hard for modern CDCL SAT-solvers even if f
is a strong cryptographic function. Moreover, the solvers are
quite effective even when a small portion of output bits of
function f or an assignment of a small part of internal gate
variables of Sf is fixed in Cf .

Now let us in addition to systems Ef and Ef (γ ) consider
CNF formulas Cf and Cf (γ ). As we noted above, there is
a natural bijective mapping between the sets of variables
in these systems of equations and formulas, which makes
it possible to denote these variables by the same symbols.
Assume that we want to determine the consistency of
system Ef to which we substituted the values of variables
corresponding to some inner gates of circuit Sf (not to its
outputs). It is easy to see that the situations are possible when
the resulting system is inconsistent. Indeed, let g be some
AND-gate, u,w be the variables assigned to its inputs and v
be the variable assigned to its output. Evidently, the situation
when u = w = 0 and v = 1 is impossible since the value of
v must coincide with the value of the logical connective (∧)
corresponding to g on the considered input. In other words,
in this case the value of v contradicts the semantics of g. Let
us refer to such a contradiction as explicit. However, as we
show below, the situation is possible when an assignment
does not result in explicit contradiction with specific gates,
but the system Ef is inconsistent with such an assignment.
We will also see that the proof of inconsistency of Ef and an
assignment of variables associated with some gates in some

cases allows one to extend the system Ef (γ ) by new linear
equations over GF(2). The main question lies in how to find
such assignments? We achieve this goal using a SAT solver.

As we have seen above, with an arbitrary assignment
σ = (σ1, . . . , σr ) of some variables u1, . . . , ur in CNF
formula Cf we can associate the set of literals uσ1

1 , . . . uσr
r ,

and to substitute σ into Cf we apply the Unit Propagation
rule to the formula uσ1

1 ∧ . . . uσr
r ∧ Cf . Similarly, with

the variables u1, . . . , ur in Ef and their assignment σ =

(σ1, . . . , σr ) in GF(2) we associate the following set of
elementary equations: u1 = σ1, . . . , ur = σr . Adding these
equations to Ef can evidently be viewed as a substitution of
the corresponding values into Ef . Denote the resulting system
as Ef ∪{uj = σj}

r
j=1. The theoretical foundation of the results

described below is based on the following theorem.

Theorem 3. Consider the system Ef and the CNF formula Cf
and let u1, . . . , ur be the variables associated with some gates
in Sf . Then for an arbitrary Boolean vector σ = (σ1, . . . , σr )
the system Ef ∪{uj = σj}

r
j=1 is inconsistent if and only if CNF

formula uσ1
1 ∧ . . . ∧ uσr

r ∧ Cf is unsatisfiable.

Proof sketch:The validity of the theorem follows from
Theorem 1 and Theorem 2. Indeed, assume that uσ1

1 ∧ . . . ∧

uσr
r ∧ Cf is unsatisfiable. But it means that for any input

α ∈ {0, 1}|X
in

|, α = (α1, . . . , αn) the application of UP to
CNF formula xα1

1 ∧ . . .∧ xαn
n ∧Cf , where {x1, . . . , xn} = X in

will derive literal u
¬σp
p , for some p, p ∈ {1, . . . , r}, which

will contradict with the substituted assignment σ . However,
in this case, as it follows from Theorem 2 the application
of inference rules (5) to Ef ,α will derive the equation of the
kind up = ¬σp, p ∈ {1, . . . , r}, which also contradicts the
set of equations {uj = σj}

r
j=1. Thus the system Ef ∪ {uj =

σj}
r
j=1 becomes inconsistent. The proof of the complementary

statement is constructed in exactly the same manner. □
Now let us describe the technique that makes it possible to

extend the systems of the kind Ef (γ ), γ ∈ Range f by new
linear equations.

Assume that function f : {0, 1}n → {0, 1}m is specified by
circuit Sf over the basis {∧, ¬}. Let us construct for Sf the
MQ-system Ef and CNF formula Cf . Consider an arbitrary
AND-gate g ∈ Sf such that v ∈ X is the variable associated
with g and variables u,w are associated with the parents of g.
Then, as it was noted above, there is an equation over GF(2)
that corresponds to g, let us denote it by e∧ : u ∧ w⊕ v = 0.
Let χe∧ be the characteristic function of this equation, that
takes the value of 1 only on the assignments of variables from
U = {u,w, v} which are the solutions of the equation e∧
and takes the value of 0 on all the other assignments. This
function is specified by Table 1 to which we will refer as
to T (χe∧ ). It is clear that substituting to Ef any assignment
of variables from U on which χe∧ = 0 immediately results
in an explicit contradiction. Similarly, the substitution of
the corresponding values to Cf (in form of unit clauses)
immediately derives the explicit contradiction by UP from
the clauses which correspond to the AND-gate g. Therefore,
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TABLE 1. Table T (χe∧ ).

we can safely exclude the corresponding rows of table T (χe∧ )
from consideration. Now let us focus on the part of table
T (χe∧ ) formed by the rows on which χe∧ = 1. Denote this
table by T̃ (χe∧ ) (Table 2).

TABLE 2. Table T̃ (χe∧ ).

Now let us establish the validity of the following fact.

Theorem 4. Let σ = (σ1, σ2, σ3) be an arbitrary assignment
of variables u,w, v from table T̃ (χe∧ ). Assume that CNF
formula uσ1 ∧ wσ2 ∧ vσ3 ∧ Cf is unsatisfiable. Then to any
MQ-system of the kind Ef (γ ), γ ∈ Range f we can add a new
linear equation over GF(2) and the resulting MQ-system will
have the same set of solutions as Ef (γ ).

Proof sketch: Consider table T̃ (χe∧ ) constructed for
an arbitrary AND-gate g. Let us pick assignments σ ∈

{000, 010, 100, 111}, σ = (σ1, σ2, σ3) one by one and
assume that uσ1 ∧ wσ2 ∧ vσ3 ∧ Cf is unsatisfiable. After this
we cross out the row σ from table T̃ (χe∧ ) and observe that the
remaining rows are the solutions of some linear equation over
GF(2). The equations corresponding (in the sense above) to
the removed rows are outlined in Table 3

TABLE 3. Linear equations over GF (2) that correspond to the removed
rows of table T̃ (χe∧ ).

Let us illustrate this approach on the example of the first
row. If (σ1, σ2, σ3) = (0, 0, 0) and formula uσ1∧wσ2∧vσ3∧Cf
is unsatisfiable, then from Theorem 3 any input α ∈ {0, 1}n

during the interpretation of circuit Sf on this input will result
in the assignment of values of variables u,w, v from the set
{010, 100, 111} which is the subset of the set of solutions for
the equation u⊕ w⊕ v = 1. Therefore, adding this equation
to Ef will not actually change the set of solutions of Ef . Since

this is valid for any input of f , it is also valid for the preimage
of an arbitrary image γ ∈ Range f . □

In the computational experiments that we describe in the
following section, we will show that even for some resistant
cryptographic functions, a SAT solver, when viewed as an
oracle, is able to prove the unsatisfiability of CNF formulas
of the kind uσ1 ∧wσ2 ∧ vσ3 ∧Cf quite effectively. Moreover,
the SAT oracles can be effective even in the situations when
apart from literals uσ1 , wσ2 and vσ3 the formula is extended
with some other known information, e.g. a small number of
known output bits.

VI. COMPUTATIONAL EXPERIMENTS
In this section we present the results of our experiments on the
application of the proposed method for solving MQ-systems
to a number of well-known stream ciphers.

A. CONSIDERED FUNCTIONS AND THEIR ENCODINGS
We considered several keystream generators that have been
extensively studied in the literature. In particular, we ana-
lyzed the following stream ciphers: A5/1, Alternating Step
Generator (ASG), Trivium and Bivium.We will present some
historical perspective related to these ciphers in Section VII.
In accordance with the formalism employed in the present
paper in the case of the A5/1 generator we considered the
problem of inversion of function fA5/1 : {0, 1}64 → {0, 1}64.
ASG generator was studied in two variants earlier analyzed
in papers [22], [31] using the SAT solvers: here we mean
the functions fASG72 : {0, 1}72 → {0, 1}76 and fASG96 :

{0, 1}96 → {0, 1}112. For the Bivium cipher we considered
the state recovery attack in the same formulation as in papers
[32], [33], [34] and some others. In particular, we studied
the problem of inversion of function fBiv : {0, 1}177 →

{0, 1}200. The cryptanalysis of Trivium was considered as
the problem of finding a secret key with a known initial
value (IV) of length 80 and the known keystream fragment
of length 300 bits, thus in the case of Trivium we analyzed
the inversion problem for function fTriv−M : {0, 1}80 →

{0, 1}300, where M is the number of initialization steps (the
corresponding parameter is a part of the specification of the
Trivium algorithm [35]).

In all considered cases based on the algorithmic description
of a corresponding function f we first constructed the
circuit Sf over the basis {∧, ¬}, i.e. an And-Inverter Graph
(AIG). For this purpose we employed the Transalg tool
[13], [36]. Then, using the AIG produced by Transalg
we constructed MQ-systems and CNF formulas of the
kind Ef , Ef (γ ), Cf , Cf (γ ) using the procedures described
above. We also implemented a program that performs
substitution of assignments of variables into MQ-system and
the application of inference rules (5)-(6). The problem of
finding a linearizing set with minimal estimation of hardness
of the corresponding attack was solved as a pseudo-Boolean
optimization problem using the algorithms described in
Section IV.
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B. IMPLEMENTATION DETAILS
All computational experiments were run on the computing
platform comprised of a single node of the Academician
V.M. Matrosov computing cluster of Irkutsk supercomputer
center [37], which is equipped with two 18-core Intel Xeon
2695 v4 CPUs and 128 Gb RAM. To optimize fitness
function (12) we employed the EvoGuessAI framework
that was developed specifically for solving pseudo-Boolean
black-box optimization problems [38]. Each experiment took
24 hours, and as the result we chose the linearizing set
with the best known value of function (12). To compute the
values of fitness function we used random samples of size
N = 1000.

Despite the fact that checking whether a system of the kind
Ef [β/B, γ j/Y ] is linear can be performed fast, to compute
the value of function (12) in a single point of the search
space, we need to make N checks of such kind, which leads
to a significant slowdown of the search when N is large,
while when N is small, we lack the justified guarantees of
the accuracy of constructed estimations. That is why we
employed the reduced search spaces. The simplest variant of
such a reduction is based on the following fact which is a
direct consequence of Theorem 2: the set X in is a linearizing
set with ρB = 1 for any system of the kind Ef and Ef (γ ).
Taking all this into account, in all experiments we minimized
function (12) only over the set 2X

in
, representing different

subsets of X in by Boolean vectors of length n = |X in|.
To construct additional linear equations (see Section V)

we used in the role of SAT oracles the Glucose SAT solver,
versions 3 and 4 [39].

C. LINEARIZING SET ATTACKS ON A5/1
The A5/1 keystream generator is one of the most well-known
cryptographic functions (together with DES, AES, RSA, MD
and SHA) since for a long time it was used to encrypt the data
transmitted in GSM networks. This algorithm is considered
completely compromised ever since the the construction of
the rainbow tables, which made it possible to find a secret
key of the generator (with some probability of success) in just
several minutes on a usual PC [40]. We will mention other
attacks on A5/1 in Section VII.

A5/1 uses three Linear Feedback Shift Registers (LFSR)
[41], which are shifted asynchronously. We used the descrip-
tion of the algorithm presented in [42]. The A5/1 LFSRs
are of the sizes 19, 22 and 23, thus the size of the secret
key is 64 bits. One of the first attacks on A5/1 which is
significantly more effective compared to brute force is the
attack described by Ross Anderson but from the practical
point of view the corrected version of this attack from [43]
is of more interest since it was implemented using FPGA.
In the context of this attack the variables corresponding to
the 1st and the 3rd LFSRs are put into the guessed bits set
together with 11 variables from the 2nd LFSR. As a result we
have the guessed bits set B comprised of 53 variables.We will
refer to this set as to ‘‘Anderson’s set’’ and note that the

details regarding its construction can be found in [43]. Also
we refer to the corresponding guess-and-deremine attack as to
‘‘Anderson’s attack’’. By analyzing the structure of this set it
is easy to see that the Anderson’s setB is actually a linearizing
set with linearization probability ρB = 1. Thus, the hardness
of this attack is 253 of solved systems of linear equations over
GF(2).

TABLE 4. The results of linearizing set-based attacks on the A5/1
keystream generator.

From the results of the paper [44] it follows that in the case
of A5/1 to restore the secret key that leads to the generation of
a keystream fragment of size ≥ 64 bits, it is sufficient to use
the first 64 bits of this keystream. Thus, we considered the
problem of cryptanalysis of A5/1 as the inversion problem
for the function fA5/1 : {0, 1}64 → {0, 1}64. It means, that
in a single inversion attempt we used a 64-bit fragment of
keystream.

In the computational experiments conducted in accordance
with the general scheme outlined above, we found linearizing
sets comprised by fewer than 53 variables but with ρB < 1.
The results of the best found attack (in the sense of the number
of solved linear systems) are showed in Table 4. Hereinafter,
to denote the attack in which we consider only template CNF
Ef we use the notation LS, and by LS+SAT we denote the
attack in which Ef is extended by additional linear equations
constructed with the help of a SAT oracle using the technique
described in Section V. Note, that for A5/1 the LS+SAT
attack has better value of ρB and smaller hardness, compared
to the LS attack.

We would like to specifically note, that the constructed
attack has significantly smaller hardness compared to the
Anderson’s attack. Also, the algorithms for solving linear
equations over GF(2) allow effective GPU implementation
thus making the constructed attack realistic.

D. LINEARIZING SET ATTACKS ON THE ALTERNATING
STEP GENERATOR
The Alternating Step Generator (ASG) is a popular object
of studies in cryptography, despite the fact that to the best
of our knowledge, it was not employed in any practical
security system. ASG was proposed in [45]. It uses 3 LFSRs,
among which one is called control register and it produces
the so-called control sequence. The latter defines which of
the other two registers will be clocked at each moment. The
keystream bit is formed by the sum of the output bits of two
controlled registers modulo two.

The trivial guess-and-determine attack on ASG consists in
choosing the variables encoding the contents of the control
register in the role of the guessed bits set. In our experiments
we launched the procedure for minimization of function (12)
on the set X in (formed by the variables encoding the initial
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values of all three LFSRs). An interesting fact is that in almost
all experiments the minimization algorithm constructed the
set that coincides (with the exception of a single variable
in some cases) with the set of variables corresponding to
the control register. We would like to emphasize that the
algorithm was not provided with any additional details about
the control register, and still it managed to find this set in a
completely automatic mode.

In Table 5 and Table 6 we show the results of the
automatic construction of linearizing set attacks on variants
of ASG with key lengths 72 and 96 bits (ASG72 and
ASG96, respectively). Recall, that we considered the inversion
problems for functions fASG72 : {0, 1}72 → {0, 1}76 and
fASG96 : {0, 1}96 → {0, 1}112. For ASG 72 and ASG 96 the
keystream sizes were picked from [31].

TABLE 5. The results of linearizing set-based attacks on the ASG72
keystream generator.

TABLE 6. The results of linearizing set-based attacks on the ASG96
keystream generator.

To the best of our knowledge, the best attack on ASG was
described in [46]. However, in the general case it requires a
keystream fragment of larger size. As far as we are aware
from the published papers on ASG cryptanalysis in the case
when the keystream fragment size is comparable to the size
of the secret key, there are no attacks that are significantly
more effective than brute force of the control register (which
essentially is a linearizing set attack with probability of
linearization ρB = 1). In the case of ASG72 the control
register consists of 23 cells, and in the case of ASG96 –
of 31 cells. Again, they were found automatically by our
method. In the case of ASG72 the use of SAT oracle made it
possible to remove a single variable from this set and improve
the fitness function value.

Thus, we can consider cryptanalysis of ASG as a
reference problem for the proposed method: our algorithm
automatically constructs the attack which is the best known
(for relatively small keystream length).

E. LINEARIZING SET ATTACKS ON WEAKENED VARIANTS
OF TRIVIUM
The Trivium cipher [35] is one of the winners of the
eSTREAM project for lightweight stream ciphers. It has
a simple architecture and, as a consequence, is easy to
implement in hardware. The generator consists of 3 shift
registers of a special kind (they are not LFSRs) of lengths
84, 93 and 111 bits (thus the cipher has the state of registers

of size 288 bits). Trivium uses a secret key of length 80 bits
and a non-secret Boolean vector called initial value (IV) of
the same length. The secret key and IV are put into the first
and the second registers, which are then padded by zeroes.
The third register is filled by a known sequence presented
in the specification of Trivium. After this the cipher works
in the initialization mode in which the registers are clocked
4 × 288 = 1152 times without producing keystream. After
the initialization phase, Trivium can generate keystream of
an arbitrary length. We considered the problems of the kind
fTriv−M : {0, 1}80 → {0, 1}300, where by Trivium-M we
denote a variant of Trivium with the number of initialization
steps equal to M.

To the best of our knowledge, there are no known attacks on
the original Trivium (with M = 1152) that are significantly
more effective than the brute force algorithm that traverses
through all possible variants of the 80-bit secret key (given
the known value of IV and some keystream fragment). The
hardness estimations smaller than 280 can be constructed only
when considering the Trivium variants that are weakened
in the number of initialization steps (i.e. for M < 1152).
The best known results in this context are obtained using
the so-called cube attack [47], [48]. Note, however, that the
attacks from these papers employ the scenario, in the context
of which the encryption uses many different IVs.

The linearizing set-based attacks scenario described above
implies that one uses a single IV. The similar scenario is
implied in the SAT-based attacks which exploit the Inverse
Backdoor Set (IBS) notion. This class of cryptographic
attacks was introduced in [21]. IBS can be considered as a
special case of the backdoor set notion which was proposed in
[49]. The IBS-based attacks are aimed at functions’ inversion
problems, and the probabilistic reasoning that specifies them
is quite similar to the one we used to define the probability of
linearization.

TABLE 7. The results of linearizing set-based and IBS-based attacks on
Trivium-M keystream generator (M is the number of initialization steps).

In Table 7 we show the results on the application
of LS-based and IBS-based attacks on functions fTriv−M ,
M ∈ {160, 192, 288, 384, 416}. Note, that for IBS attacks,
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in accordance with [21] we show the runtime estimation in
seconds for a CPU on which the estimation was computed.
For each of LS attacks we show both the number of linear
systems that need to be solved, as well as the runtime
estimation on the same CPU as in the IBS case (single
core of Intel Xeon 2695 v4). For this purpose we used
a straightforward naive CPU-implementation of Gaussian
Elimination.

From the analysis of the obtained data it can be seen that the
IBS-based attacks are more effective for small M , however,
with the increase of M the effectiveness of LS-based attacks
also grows, and for M ∈ {384, 416} we can see that LS and
LS+SAT significantly outperform IBS. Also, we would like
to again note that the performance of LS-based attacks can be
substantially improved by implementing them on GPU.

F. LINEARIZING SET ATTACKS ON BIVIUM
The Bivium cipher is a weakened variant of the Trivium
cipher, that employs only two out of three Trivium registers.
Bivium is a popular object for different cryptographic attacks,
some of which we will mention in Section VII. Overall,
Bivium is not a cryptographically resistant cipher and it
allows even effective state recovery attacks. In such attacks
one needs to recover the state of cipher registers at the
moment the keystream generation started, by analyzing the
corresponding keystream fragment. In the case of Bivium
the state is of the size 177 = 84 + 93 bits, and the size
of the analyzed keystream fragment is 200 bits (thus the
inversion problem for function fBiv : {0, 1}177 → {0, 1}200

was considered). The hardness estimations of the constructed
linearizing set-based attacks are presented in Table 8.

TABLE 8. The results of linearizing set-based attacks on the Bivium
keystream generator.

We would like to specifically note that the attack
corresponding to the LS+SAT scenario is apparently one
of the most effective attacks on this cipher among the
known state recovery attacks. Indeed, to the best of our
knowledge the best state recovery attacks on Bivium are the
ones presented in [20] and [34]. They both use the SAT
solvers to solve weakened problems and their hardness is
expressed in seconds. For example the attack from [34] has
the hardness of 236.5 seconds. Even naive and straightforward
implementation of Gaussian Elimination (GE) on CPU for
the found linearizing set gives us the hardness estimation of
the corresponding attack in seconds equal to 233. Of course,
this estimation can be significantly improved using a careful
implementation of GE on GPU.

VII. RELATED WORK
The term ‘‘Algebraic cryptanalysis’’ became established
since the publication of a monograph [2] by G. Bard, despite

the fact that the term itself has been used earlier (e.g. in [50]).
In accordance with [2] Algebraic cryptanalysis is an area,
where a cryptanalysis problem is considered as the problem
of solving a system of algebraic equations (usually, over
some finite field). One can employ a variety of methods for
solving such algebraic equations, a good review of which
was presented in [2]. The approach that the monograph lists
as one of the most promising consists in the use of SAT
solvers. The interest to the latter as to computational tools
for reducing the combinatorial complexity steadily increases
in many different areas, see e.g. [51], [52], [53], [54], [55],
and [56], etc. Note, that the SAT solvers are often used to
construct cryptographic attacks, and sometimes such attacks
can even be considered practical: speaking about practical
attack we mean that, first, an attack is applicable to some
cryptographic function which is used currently or has been
used recently, and, second, such an attack can be implemented
in reasonable time (see [34], [57], [58], etc.).

The main object of our interest is formed by the systems
of multivariate quadratic equations (MQ-systems), which
encode the considered cryptographic algorithms. To construct
such an MQ-system we view the cryptographic function
as a Boolean circuit which is a special case of a directed
acyclic graph. In this context we can notice that using a
graph to specify a discrete function is a natural concept
with many examples from different areas (from classic
works on random graphs theory [59] and computational
biology [60] to relatively recent papers about specific graph
connection properties [61], [62], [63]. In the present paper
we exploit the following fact: if a total discrete function
is specified by some polynomial time algorithm, then one
can use this specification to effectively construct Boolean
circuit defining the original function. This fact is the direct
consequence of the fundamental Cook-Levin theorem [1],
[64], [65]. We use the reductions of Boolean circuits to
MQ-systems and SAT to construct guess-and determine
attacks on several stream ciphers and note that some of these
attack can be implemented in practice.

The A5/1 algorithm for a long time was used to encrypt
traffic in GSM networks. It employs three Linear Feedback
Shift Registers (LFSR) [41], that are cycled asynchronously,
and this fact is responsible for the non-linearity of crypt-
analysis equations. There are a number of attacks on A5/1.
Probably, the most well-known attacks are the ones described
in [40] and [42]. After the publication of the attack from
[40] A5/1 is considered to be completely compromised.
The first guess-and-determine attack on this algorithm was
proposed by R. Anderson in 1993. This attack can be
mounted in reasonable time if one uses specialized computing
architectures allowing massive parallelism, such as FPGA
or GPU. The corresponding results were presented in [43]
and [66] for FPGA, and in [67] for GPU. One can view the
Anderson’s attack as an attack in which one has to solve
simple systems of linear equations over GF(2). Then the
hardness of such an attack is equal to solving 253 of such
systems. A similar measure of hardness of an attack found
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automatically by our method (see Section VI-C) is ≈ 247.8 of
linear systems over GF(2).
The Alternating Step Generator (ASG) was proposed in

[45]. It implements the idea of using a separate register for
controlling the shifts of the generating register and in this
sense it is similar to the Shrinking [68] and Self-Shrinking
generators [69]. Apparently, the most effective known attack
on ASG was proposed in [46], however, it requires to use
a keystream fragment of relatively large size. When the
keystream fragment size is small, then the best known attack
is the one which consists in traversing over all possible
assignments of variables corresponding to the initial values of
the control register (it is easy to see that this set is a linearizing
set with ρB = 1). Note that the method proposed in the
present paper almost always automatically finds the set B
which consists of all control register bits.

The Trivium stream cipher is one of the winners of the
eSTREAM project.1 It has a simple structure and is easy
to implement both in software and in hardware. Today
there are no known attacks on the original Trivium that
are significantly more effective than bruteforce over the
80-bit secret key. Thus, the principles behind the Trivium
architecture look quite appealing for constructing lightweight
cryptographically resistant ciphers based on them. Appar-
ently, the best known attacks on Trivium are the cube attacks,
first introduced in [47]. That approach was further developed
in several papers, see e.g. [48] for the state-of-the-art variant.
However, it is necessary to note, that these attacks are
constructed under a very specific scenario, in which the same
secret key is used in combination with many different IVs.

The Bivium cipher [70] is the weakened version of Trivium
in the sense that Bivium employs two registers of Trivium
out of three. There are several known attacks on Bivium, e.g.
[33], [34], and [71], and the ones employing SAT solvers
often yield the results which are among the best. Here we
mean the state recovery attacks, when one needs to recover
the initial values of all generator registers at the moment
the keystream generation starts (once it was done, the key
can be effectively constructed by inverting the initialization
phase). In Bivium the size of the cipher state is 177 bits.
The linearizing set attack constructed in the present paper
uses the guessed bits set of only 42 bits. This fact implicitly
reveals how insecure the Bivium cipher is. In seconds the
hardness of the cryptanalysis of Bivium using the attack
based on the found linearizing set is about 233 (using a
straightforward implementation of Gaussian elimination on
CPU). This estimation is smaller than the estimation (in
seconds) of the attack on Bivium described in [34] which,
to the best of our knowledge, was the best known state
recovery attack on Bivium so far.

As we already mentioned, the guess-and-determine (or
guess-then-determine) attacks form one of the most numer-
ous classes of cryptographic attacks and even the key papers
in this area are too numerous to cite. The monograph [2] can

1https://www.ecrypt.eu.org/stream/portfolio_revision1.pdf

be considered a good starting point for better understanding
the main concepts behind such attacks. It is hard to pinpoint
the exact moment when the automatic construction of guess-
and-determine attacks was proposed for the first time, but
apparently the paper [72] was among the first works in
this direction. In that paper, the authors associated with the
multivariate equations for Trivium a special pseudo-Boolean
function which was later minimized using metaheuristic
algorithms. However, the fitness function used in [72] (to
which they refer as to ‘‘cost function’’) was defined in quite
peculiar manner: namely, without using any basic algorithm
for solving systems of multivariate equations. The idea to
express hardness of a guess-and-determine attack via the
mean value of runtime of some combinatorial algorithm
used to solve weakened cryptanalysis equation systems, was
proposed in [73] (a SAT solver was used for this purpose).
The general approach consisting in the combination of the
Monte Carlo estimation of hardness of a guess-and-determine
attack w.r.t. specific guessed bits set B and specific algorithm
A with the ability to move between different guessed bits
sets using metaheuristic optimization was apparently first
proposed in [20] and [74]. Later, a number of guess-
and-determine attacks were constructed using metaheuristic
pseudo-Boolean optimization in [22], [23], and [31]. We are
aware of several other works that proposed the approaches
to automatic construction of guess-and-determine attacks but
they are based on other principles compared to the ones used
in our method (e.g. [75], [76])

It should be noted that the algorithmic essence of guess-
and-determine attacks using SAT solvers agrees well with the
Cube-and-Conquer concept [77], since specific assignments
of variables from a guessed bits set B can be viewed as the
so-called cubes. It is also easy to see, that the set of all
possible assignments of variables from B provides some SAT
partitioning of formula Cf (γ ) in the sense of [78]. In recent
years, there appeared a number of papers on SAT-based
cryptographic attacks which employ the ideas of cube-and-
conquer and SAT partitioning, see e.g. [23], [79], [80], and
[81], etc.

In [21] it was shown that a guessed bit set in any guess-
and-determine attack can be considered as a special variant of
the so-called ‘‘Backdoor set’’, the notion of which was first
introduced in [49]. Backdoors quickly became the concept
that is widely used in structural and parameterized complexity
[82]. Also note that a fitness function used in [21] essentially
expresses the SAT immunity (see [73]) of a considered cipher
w.r.t. a specific guessed bits set.

In [83] we proposed the concept of probabilistic backdoors.
The notion of linearizing sets introduced in the present
paper can be viewed as a combination of the notions of
probabilistic backdoor set (or ρ-Backdoor) from [83] and
Inverse Backdoor Set (IBS) from [21]. In fact, when we
are working with linearizing sets we need to estimate the
probability that a weakened problem lies in a polynomial
Schaefer’s class [84] comprised by formulas, for which SAT
is solvable via system of linear equations over GF(2).
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Also we would like to note the papers [85], [86] in
which for several keystream generators they described the
attacks which are essentially linearizing set-based ones with
probability of linearization equal to 1.

VIII. DISCUSSION AND CONCLUSION
In the present paper we described a new class of crypto-
graphic guess-and-determine attacks, which are based on the
idea to search for guessed bits sets, such that by assigning
some values to variables from this set one can transform
the considered MQ-system over GF(2) into a linear one
with some probability. We showed that it is possible to
construct a special pseudo-Boolean function, the value of
which for a particular guessed bits set estimates the hardness
of the linearizing set-based attack which uses this set. The
value of such function represents the estimation of the
number of systems of equations, for which one needs to
check whether a system is linear and if yes to solve it,
in order to find a secret key with high probability of success
(> 95%). Any guessed bits set in the context of the
considered scenario is referred to as a linearizing set (with
corresponding probability of linearization). To search for
linearizing sets with non-trivial hardness estimations we
use metaheuristic optimization algorithms. A number of
attacks constructed using our method can be considered
practical, since they can be implemented in reasonable time.
In particular, the state recovery attack on Bivium presented
in this paper is apparently the best known attack among state
recovery attacks on this cipher.

From our point of view, the general concept of constructing
guess-and-determine attacks by combining Monte Carlo
estimations with metaheuristic optimization, which was
described in the paper, looks quite promising. It can be used
in combination with combinatorial algorithms different from
SAT, such as e.g. Buchberger’s algorithm (Gröbner basis
method), or with polynomial subsolvers different from the
ones considered above.

The technique of using SAT oracles to generate additional
linear equations presented in Section V, to the best of our
knowledge, have not been described before. We plan to
develop this technique in the nearest future. In this context it
looks promising to design new heuristics for forming sets of
variables over which we then attempt to construct additional
linear equations by using a SAT oracle.

One of the main problems for implementing SAT-based
algebraic attacks in practice consists in that it is currently
impossible to realize complete state-of-the-art SAT solving
algorithms on modern GPUs. The linearizing set-based
attacks have an advantage in this context, because they can
be mounted on modern GPUs using the implementations of
the algorithms for solving systems of linear equations over
GF(2). Surprisingly, the vast majority of publicly available
implementations of this kind are designed to work with
floating point numbers, and are not suitable for implementing
the techniques proposed in the present paper. We plan to fix
this situation in the nearest future.
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