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ABSTRACT The shortage of parking spaces in metropolitan cities has become a significant challenge,
leading to wasted time, money, traffic congestion, and environmental pollution. While smart parking
solutions offer potential relief, existing systems often struggle with integration and coordination issues in
the complex smart city ecosystem. In response, this paper introduces SCOPE, a cooperative distributed
system architecture and interaction model that facilitates the management of parking spaces in a smart city
through coordination and autonomous interactions. The system leverages an overlay network, a hierarchical
and spatial structure of coordination nodes, and an integration layer to organize traffic and communication
among facilities. By incorporating a sharing economy business model, SCOPE maximizes parking resource
usage, merges public and private parking resources, and provides economic opportunities for private parking
owners. The evaluation results demonstrate that SCOPE significantly reduces search time, traffic, cost, and
air pollution while improving driver satisfaction. This novel approach presents a comprehensive solution
to the challenges of smart parking management in metropolitan cities, paving the way for more efficient,
sustainable, and economically viable urban environments.

INDEX TERMS Smart parking, smart city, smart agents, cooperative distributed systems, cooperative AI,
cloud, edge, IoT.

I. INTRODUCTION
As urban populations continue to grow, the number of
automobiles in circulation concurrently increases, leading to
a shortage of available parking spaces in many cities. This
scarcity of parking space results in wasted time, money, and
traffic congestion, contributing to environmental pollution.
For instance, UK drivers spend an average of 44 hours
annually searching for parking spots, with an estimated cost
of approximately $23.3 billion per year [1]; nearly one-third
of all vehicles on the roads in a given city are searching for
parking spots at any given time [2]. As per GeoTab’s Urban
Infrastructure dataset from 2021, Toronto drivers spent an
average of 60 hours seeking parking spaces [3]. Figure 1
visually represents these challenges, with areas in Toronto
exhibiting significant parking difficulties highlighted in red.
The search for parking index heatmap is derived from two
parameters in GeoTab’s dataset (SearchingForParkingRatio,
AvgTimeToParkRatio) and is scaled from 1 to 10. Higher
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values correspond to increased driving times dedicated to
searching for parking.

Smart city planning involves diverse stakeholders. By uti-
lizing technologies such as IoT devices, software, data, user
interfaces, and communication networks, smart city planning
aims to create more livable and environmentally sustainable
cities. Smart digitization and socioeconomic factors are
essential components of this planning process planning [4],
[5], [6]. However, in a smart city context, the proliferation of
smart parking solutions parking leads to integration problems
due to their heterogeneity. Existing parking systems can face
coordination and interaction challenges in an open smart
city ecosystem with diverse stakeholders and services [7].
While cloud-based parking management has been proposed
to address the heterogeneity problem [8], [9], [10], it may
not be ideal for situations involving multiple stakeholders
with conflicting interests, such as in the case of parking
spaces, where each stakeholder aims to maximize their
revenue from selling parking spots [11]. In addition, in a
large city like Toronto, drivers seeking parking space may
need to use multiple mobile apps, such as Honk Mobile,
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FIGURE 1. Search for Parking Index Heatmap. The index is calculated
from two parameters in GeoTab’s dataset(SearchingForParkingRatio,
AvgTimeToParkRatio). The index is scaled from 1 to 10, with higher values
indicating longer driving times spent searching for parking.

SpotHero, BestParking, PARKWHIZ, or Green P, etc.,
to locate available parking spaces. However, due to a
lack of information sharing amongst parking apps, drivers
only receive partial information from parking providers,
which wastes a valuable and limited resource (i.e., parking
space). In order to overcome the challenges associated with
smart parking solutions and improve information exchange
among diverse stakeholders, an integration layer can be
introduced within the smart city ecosystem. This layer
serves as a platform that enables seamless communication
and cooperation among various parking providers, city
authorities, and users. By facilitating the sharing of real-time
data on available parking spots, pricing, and occupancy, the
integration layer can help optimize parking resources while
reducing inefficiencies and redundancies.

Furthermore, the presence of such an integration layer
allows for the development of a sharing economy business
model for parking spaces. The economic benefits of the
sharing economy arise from the goal of replacing traditional,
centralized services with decentralized yet highly organized
(peer-to-peer) networks comprised of active agents [12].
On the one hand, this sharing economy business model
maximizes parking resource usage by favouring access
over ownership [12]. During business hours, for example,
unoccupied private parking spaces in major cities that are
accessible to non-owners can significantly reduce the number
of parking spaces needing to accommodate other drivers
[12], [13]. Further to that, many argue that the sharing
economy would aid the socially disadvantaged by providing
them with more affordable access to services [14]. The
sharing economy, on the other hand, creates opportunities for
private parking space owners to earn money by renting out
their parking spots during timeswhen they are not in use (such
as from 9:00 AM to 5:00 PM).

This work presents Smart Cooperative Parking Environ-
ment (SCOPE) that represents a system architecture and
interaction model for managing parking space in a smart

FIGURE 2. Major approaches used in the literature. (A) the application
per facility approach, (B) the cloud-centric approach.

city through coordination and autonomous interaction using a
cooperative distributed systems approach. The contributions
of this work are as follows: First, SCOPE creates an overlay
network enabling agents to locate and communicate with
one another to facilitate interaction. Second, it introduces a
hierarchical and spatial structure of coordination nodes that
harnesses the Cloud-Edge continuum and 5G networks to
organize traffic and communication among agents, reducing
network congestion and accelerating processing rate. Third,
SCOPE presents an integration layer facilitating autonomous
interaction among parking agents in a smart city. Moreover,
SCOPE supports a sharing economy businessmodel, merging
private and public parking resources and allowing private
parking owners to generate passive income from unused park-
ing spaces. Lastly, SCOPE considers driver preferences when
serving requests, reducing search time, traffic congestion, and
harmful emissions.

The rest of the paper is organized as the following.
Section II explains related published work. Section III
describes the System design. Section IV describes the
formal model. Section V discusses the model architecture.
Section VI elaborates on the performance evaluation plan of
the proposed architecture. Section VII discusses limitations
and real-world deployment. And finally, Section VIII con-
cludes the paper.

II. RELATED WORK
The integration of IoT and cloud computing has led to
the development of Smart Parking Systems, resulting in
reducing traffic congestion, driving cost, and environmental
pollution [15]. Various models of parking systems have been
presented in the literature, including IoT-Cloud Smart Park-
ing, Intelligent Smart Parking, Multi-Agent Smart Parking,
and IoT-Fog-Cloud Smart Parking [16]. Figure 2 illustrates
two major approaches to smart parking systems. The first
approach is called application per facility, in which a client
system communicates with individual parking systems in
the area of interest to query available spots for a specified
time frame. The second approach is called the cloud-centric
approach, in which the client system communicates with a
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centralized system that manages parking facilities. The status
of the spots is sent to a central point that handles all booking
operations.

A. IoT-CLOUD SMART PARKING
The development of cloud-based smart parking systems has
revolutionized the way drivers find parking spaces around
the city. These systems rely upon the use of IoT sensors,
RFID devices, or satellite cameras to monitor the status
of parking spots. The information collected is sent to a
cloud-based resource allocator that handles booking and
payments. Communication within this type of system is
facilitated through the Internet. The main focus of the
IoT-Cloud Smart systems is on efficiency in finding parking
spots, and its main distinguishing factor is its real-time
updates. Melnyk et al. [17] proposed the Smart Parking
Management System (SPMS) that helps drivers find available
parking slots in multistory parking facilities by providing
real-time updates on parking slot status through a mobile
app. Hainalkar and Vanjale [18] proposed a system that
allows drivers to book specific parking spots and facilitates
automatic cashless billing and post-trip booking. Also, the
system provides transportation authorities with status updates
on each parking area, which helps control urban traffic.
Griggs et al. [13] addressed the issue of efficient parking
spot utilization by offering a scheme that allows university
visitors to use residential parking spaces during daytime
hours. The authors study an alternative to the first-come-
first-served model. They also focus on determining the
appropriate size of parking reserve the university allocates to
resolve conflicts in residential parking spots. Pham et al. [19]
proposed a parking system in which the cost of parking
is determined by the distance and the number of available
parking spaces, using wireless sensor networks and RFID
technologies. Baranwal et al. [20] tackle the issue of parking
in cities by proposing a personalized Parking Recommender
System that takes into account multiple quality parameters
related to parking, such as walking distance, pricing, and
safety. They utilize fuzzy logic to handle the uncertainty in
human decision-making.

B. INTELLIGENT SMART PARKING
Intelligent smart parking systems have become popular as
they allow drivers to reserve parking spaces in advance based
on their preferences and location. These preferences may
include factors such as the duration of the stay, previous
parking history, and traffic congestion levels. The Intelligent
Parking system is also cloud-based but has a unique
feature of centralized resource allocation that considers
driver preferences. Like IoT-Cloud, it uses the Internet for
communication and relies on IoT sensors, RFID, satellite,
and cameras for information. Parking Spot status is updated
in real-time. The pricing model is dynamic and varies based
on the parking lot’s capacity. Kanteti et al. [21] proposed
an algorithm that allocates parking spaces according to the

driver’s preferences and provides guidance on the reserved
parking spot. Additionally, the pricing algorithm calculates
parking fees based on allocation preferences and demand
factors. Delot et al. [22] presented a reservation protocol
based on event sharing with a mobile P2P architecture, where
events represent messages disseminated to notify drivers
of available parking spaces in their vicinity. This solution
allocates parking spaces in short-range vehicular ad-hoc
networks, avoiding competition among vehicles but limited
to short-range communication. In contrast, Kotb et al. [23]
proposed a Mixed Integer Linear Programming model that
minimizes parking cost and search time. Lin et al. [24]
introduces a smart parking allocation algorithm (SPA)
designed to maximize the benefits generated by a given
parking lot while ensuring high-quality parking services.
The proposed SPA algorithm predicts driver behaviour and
estimated parking traffic based on historical parking records,
allowing for improved matching of parking demands with
available resources. P. Zhao et al. [25] tackles the issue
of effectively managing shared parking resources while
guaranteeing parking availability for private space owners
(O-users). The authors present a management framework that
considers both time and spatial aspects of shared parking that
is used to create an intelligent parking management system
(IPMS) to model shared parking operations. Babic et al. [10]
assessed three parking policies using real-world data and
simulations with the aim of fulfilling electric vehicle charging
requirements and optimizing revenue from parking resource
management.

C. MULTI-AGENT SMART PARKING
Multi-Agent Smart Parking systems use a multi-agent
software design paradigm to model the parking environment.
Unlike the previous systems, it uses a decentralized resource
allocator. Communication among the agents is facilitated
through VANET (Vehicular Ad-hoc Networks). The system
also relies on IoT sensors, RFID, satellite, and cameras for
information. Real-time updates on spot status are provided.
The pricing model can be either fixed or dynamic. The
Multi-Agent system focuses on agent-based allocation of
parking spots, and its primary distinguishing factor is
that system functionality is delegated to different agents.
Dargaye et al. [26] proposed an agent-based smart parking
model. This system recommends parking spots to drivers
based on several factors, including the driver’s location,
speed, and time needed to reach the final destination. The
system’s functionality is delegated to seven agents: speed,
GIS, parking, mobile, routing, and analytics. This system
was influenced by the Agent-based Intelligent Parking and
Guidance System, which uses mobile technology and a
multi-agent system approach to select parking spots based
on the desired location and guidance system [27], [28].
Another example is the agent-based parking management
system presented by Rizvi et al. [8], which offers drivers
the best available parking place based on their preferences.
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FIGURE 3. High-level architecture of SCOPE.

These preferences include the maximum amount the driver is
willing to pay, the parking type, and the acceptable walking
distance to the driver’s ultimate destination. The system uses
a parking broker, a software agent that collects useful route
planning information from other traffic intelligence services
to increase road safety by reducing the need for drivers to
engage with their cellphones or onboard devices. The Multi-
Agent Auction-based Parking (MAPark) system proposed
is designed to benefit both drivers and Parking Facility
Providers (PFPs) by utilizing real-time demand-based pricing
for parking places [9].

Although the aforementioned systems leverage the multi-
agent paradigm to model the parking environment and
display elements of the sharing economy, their approach is
rooted in functional modelling, where each agent is assigned
a specific task. On the other hand, SCOPE significantly
diverges from this structure and functionality by recognizing
the multi-stakeholder nature of the environment.

D. IoT-FOG-CLOUD SMART PARKING
The emergence of Fog Computing has caught the attention
of researchers exploring the potential of fog computing
architecture to solve smart parking management issues.
Fog computing architecture provides cloud services at the
network’s edge, distributing workloads across multiple micro
data centers and reducing response time. This makes it an
excellent choice for time-sensitive applications like parking
management systems. The IoT-Fog-Cloud system uses a
multi-tier compute and network fabric architecture. It has
a centralized resource allocator and uses LoRaWAN-5G
and the Internet for communication among different system
components. Information is sourced from IoT sensors, RFID,
satellite, and cameras. Spot status updates are provided in
real-time, and the pricing model is dynamic. The system
focuses on time-sensitive spot updates, and its main dis-
tinguishing factor is its reduced response time due to the
multi-tier architecture. Hsieh et al. [29] presented a fog

computing architecture for managing parking infrastructure
in urban cities. The system involves multiple fog nodes
that manage parking spots and respond to driver requests,
assisted by Roadside Units. Kim et al. presented a similar fog
architecture, but it considers private parking lots like those
found at restaurants, stores, and bookstores. Tang et al. [30]
presented a multi-layer architecture that combines edge
nodes in the parking with VANET to get real-time parking
availability information and handle parking requests from
approaching vehicles. Tondon et al. [31] proposed an online
reservation system that uses bookings to reduce driving time,
fuel consumption, CO2 emissions, and traffic congestion.
The system uses cloud and fog computing to track parking
space status. Parking facilities report spot status to nearby fog
nodes that convey these updates to Roadside Units and cloud
computing nodes. Awaisi et al. [32] presented a fog-based
smart parking architecture that utilizes computer vision to
efficiently identify vacant parking spaces, reducing both time
and fuel consumption for drivers.

E. RESEARCH GAP AND CONTRIBUTIONS
The current state of smart parking applications predominantly
follows a methodological individualism approach that has
persisted for decades, leading drivers in megacities to rely on
multiple mobile apps to locate parking. This individualistic
approach, once reasonable, has become increasingly inade-
quate with the emergence of smart city concepts and the rapid,
intricate interactions between various smart systems and
individuals. Consequently, the need for cooperative solutions
has grown [33]. Existing smart parking solutions suffer from
a lack of information sharing among apps, which results in
drivers receiving only a partial view of available parking
spaces and squandering valuable and limited resources like
parking spots. Furthermore, the absence of cooperation
between parking facilities hinders their ability to adjust
pricing strategies and maximize profits. Rather than using
a cloud-centric resource management approach or numerous
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TABLE 1. Comparison of smart parking systems in the literature.

collaborative agents to assist drivers in identifying suitable
parking space, as proposed in [8], [9], and [26], SCOPE
portrays parking facilities as independent, smart agents,
each holding total control over its parking space. These
facilities distribute information in a competitive manner,
fostering an environment of trading competition facilitated
by a cloud-edge architecture. This highlights a shift from the
other systems’ collaborative, cloud-centric approach towards
a decentralized, competitive model that emphasizes the
autonomy of individual parking facilities while incorporating
cooperative AI strategies. Table 1 offers a detailed analysis
of various smart parking systems discussed in the literature.
Each row represents a different system or research paper,
identified by its reference. The table compares these systems
based on five key dimensions: System Model, Parking Type,
Business Model, Autonomous Interaction, and Localized
Processing. The System Model describes the architecture.
Parking Type indicates whether the system is designed
for public, private, or specialized parking. Business Model
outlines the operational framework, such as Facility-App or
Marketplace. Autonomous Interaction reveals if the system
allows for self-governing interactions between parking facil-
ities. Lastly, Localized Processing specifies if data processing
occurs locally or is sent to a central server. This table serves as
a comprehensive tool for understanding the nuances between
SCOPE and the reviewed parking systems.

To address these limitations, the proposed work introduces
a novel system architecture that leverages a cooperative
approach among public and private parking facilities, such as
those found in restaurants, stores, bookstores, and residential
areas, with the aim of increasing parking capacity. The
proposed system architecture, SCOPE, sets itself apart from

existing work by harnessing joint behaviour among parking
facilities to augment capacity and streamline the parking
experience. SCOPE features a layered architecture and
integration framework that establishes a common parking
market, enabling public and private parking facilities to
engage in trading competition to meet drivers’ parking spot
requests. This benefits both drivers and parking facilities,
as it allows parking providers to adjust their pricing based
on demand, optimizing profit generation.

III. SYSTEM DESIGN
In this section, we highlight the fundamental concepts driving
the design of SCOPE.

A. INTERACTION MODEL
SCOPE models the smart parking environment as an assem-
bly of autonomous economic agents, which are Parking Facil-
ities and Smart Vehicle agents, alongside hierarchical coor-
dination agents called Edge Coordinators and Cloud-based
Middleware. The implementation of SCOPE agents follows
the CIR-Agent architecture [34]. This means that every agent
makes rational decisions and executes tasks independently.
Furthermore, coordination agents facilitate negotiation and
resolve knowledge interdependence among parking facility
agents. Figure 3 graphically illustrates SCOPE agents’
hierarchical and spatial structure. Using autonomous inter-
action, SCOPE enables collaboration among diverse parking
facilities, allowing parking agents to address challenges
beyond individual capabilities jointly. One such challenge is
acquiring comprehensive knowledge about available parking
spaces in an Area of Interest (AoI) and utilizing this
information to fulfill parking requests efficiently. Another
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advantage of SCOPE’s autonomous interaction is its ability
to handle conflicts in a parking facility agent’s booking
schedule. Such conflicts may arise from parking booking
violations, where a car remains in a parking spot beyond its
allotted time slot. If the parking facility is at total capacity, the
parking facility agent cannot redirect the approaching vehicle
to another parking spot. In this situation, neighbouring
parking agents can offer extra parking spaces to resolve
the conflict. This interaction can also be triggered when a
driver approaches a fully occupied parking facility without
a booking. In this scenario, since SCOPE is unaware of
the driver’s preferences, the parking facility agent asks
neighbouring parking facility agents to submit their offers
and directs the driver to a neighbouring parking facility that
provides the best commission to the parking agent initiating
the interaction. These collaborative efforts encourage parking
facility agents to willingly share their resources, fostering a
more efficient and cooperative smart parking environment.

B. SMART AGENTS
SCOPE consists of the following agents:

Smart Vehicle (SV): An interface for drivers to interact
with SCOPE through web applications, mobile applications,
or smart vehicle gadgets.

Parking Spot Agent (PSA): A PSA is a combination
of a computing unit and a sensor for monitoring a parking
spot’s status. A parking lot contains multiple PSAs, each
implementing the CIR-Agent architecture.

Parking Facility Agent (PFA): A PFA is a CIR-Agent
deployed at a public or private parking facility and respon-
sible for managing the parking space resources. A PFA
communicates with other PFAs in the same geographical
cluster through an Edge Coordinator (EC).

The Edge Coordinator (EC): An EC is an agent
that organizes and facilitates communication between PFAs
within a given geographic cluster. ECs can also talk to their
neighbours to manage drivers’ preferences across multiple
clusters. In addition, an EC acts as an abstraction layer
enabling SVs to request directly from roadside nodes.

Cloud-BasedMiddleware (CBM):The CBM is the initial
point of contact for SVs seeking parking spaces through
SCOPE. CBM’s abstraction layer hides the heterogeneity of
the parking system and serves as a client-facing API gateway,
decoupling SVs from the underlying parking infrastructure.
SV requests are forwarded to the CBM’s findParkingSpot
API, which redirects them to PFAs within the area of interest
(AOI). PFAs then submit bids to accommodate the request.
Additionally, CBM functions as a global coordination node
for regional EC nodes. Figure 6 illustrates the multi-layer
architecture of SCOPE.

C. SINGLE-ROUND, SEALED-BID, REVERSE AUCTION
STRATEGY
The interest in employing auction-based methods to address
resource allocation and pricing challenges within the sharing

FIGURE 4. Distribution of parking facilities across geographical clusters.

economy has been steadily increasing [35]. As a decen-
tralized system, SCOPE lacks a global view of available
parking spaces. To address this, Edge Coordinators (ECs)
act as auctioneers, conducting Single-Round, Sealed-Bid,
Reverse Auctions [36] to resolve knowledge interdepen-
dencies among Parking Facility Agents (PFAs). In sealed-
bid auctions, participants submit bids without knowing
offers from other participants. The reverse auction model
encourages suppliers to lower resource prices or service
costs to secure clients’ business, with buyers and sellers
exchanging roles. This approach drives prices downward
and can result in savings of 10-40%. [37]. Resolving
knowledge interdependency process is formally defined
in Section III.

D. GEOGRAPHICAL CLUSTERING
Geohash [38] is a hierarchical geocoding system used for
spatial indexing [39]. It encodes location coordinates and
groups nearby points on the globe with varying resolutions
across 12 levels, with cell sizes decreasing as levels
increase. SCOPE employs a hierarchical, spatial structure
of coordination nodes, utilizing the Cloud-Edge continuum
and 5G networks to manage traffic and communication
among agents. PFAs are grouped into geographical clusters
based on their Geohash level 6 code, which covers an area
of 1.2 km x 609.4M. Each geographical cluster represents
a Geohash level 6 area, and an Edge Coordinator (EC)
is assigned to facilitate interaction among PFAs. Figure 4
depicts the Geographical clustering.

IV. SCOPE FORMULATION
This section presents the mathematical model of SCOPE
agents and the interaction model. In addition, a formal
definition of the parking spot selection algorithm is pre-
sented. Table 2 provides frequently used variables and their
description.
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TABLE 2. Frequently used variables.

FIGURE 5. The interaction model for the find parking spot (FPS)
scenario.

A. DEFINITIONS
SCOPE contains a set of CBMs defined as M, such that:

M = {m0, . . . ,mK } (1)

where K is the number of CBMs in SCOPE, and each CBM
m ∈ M represents a cloud-based middleware that manages
the interactions within the city. A city is divided into multiple
geographical clusters, where every geographical cluster is
managed by an EC. Therefore, a CBM, m, manages a set of
ECs, Em, such that:

Em
= {e0, . . . , eLm} (2)

where Lm is the number of ECs within a CBM, m, and each
EC, e ∈ Em is the edge coordinator which facilitates the
interaction among parking facilities within the geographical
cluster that belongs to the CBM, m. A geographical cluster
contains multiple parking facilities. A set of PFAs, Fe,
is defined as follows:

Fe = {f0, . . . , fN e} (3)

such that N e is the number of PFAs in e. A parking facility
contains multiple parking spots. A set of PSAs Sf is defined
as follows:

Sf = {s0, . . . , sPf } (4)

such that Pf is the number of PSAs in f . A set of SVs, V,
is defined as:

V = {v0, . . . , vG} (5)

where G represents the number of all smart vehicles in the
city.

120352 VOLUME 11, 2023



M. Alarbi et al.: SCOPE: Smart Cooperative Parking Environment

B. FIND PARKING SPOT SCENARIO
Finding a parking spot starts when a smart vehicle sends a
request to SCOPE. The request is sent from the SV, v, to the
CBM, m, with a set of driver preferences. This is defined as:

πfind = 1H(v,m, 9v) (6)

SCOPE maintains a set of all possible parking preferences,
9, divided into the set of cost preferences, 9c, and the set
of benefit preferences, 9b. The price and walking distance
benefit are examples of cost preferences where smaller values
are preferred, while parking ratings are an example of benefit
preferences where larger values are preferred. This is defined
as follows:

9 = 9c
∪9b

= {(ψ0, λ0), . . . , (ψi, λi), . . . } (7)

where ψi represents the criterion, and λi is a binary indicator
that determines whether ψi is a cost or benefit criterion.

The driver’s preferences set is considered as a set of
criterion, 9v, of size, Z . Each criterion bounds the preferred
values provided to the CBM, m. Each criterion is bounded by
a lower limit and an upper threshold such that:

9v = {ψ0, . . . , ψZ } (8)

ψi ∈ 9v = (ψ l
i , ψ

u
i ) (9)

9v ⊆ 9 (10)

where ψi ∈ 9v is a single criterion with the lower limit,
ψ l
i , and the upper threshold, ψu

i . The CBM, m, forwards the
request, πfind , to the EC, e, associated with the geographical
cluster that matches the preferred area of interest. This
forwarding is defined as:

πforward = 1H(m, e, πfind ) (11)

The EC, e, then broadcasts this request to all subscribed PFAs,
Fe, and forwards the criteria set to the subscribers as follows:

πpublish = 1P (e, f , πforward ), ∀f ∈ Fe (12)

Each PFA evaluates the requested preferences and replies
back to the CBMwith a set of bids that represent the available
matching spots to the criteria set:

πbid = 1H(f , e,8f ), f ∈ Fe (13)

where πbid is the response message from f to e, that contains
a list of bids for the matching parking spots in the facility, f .
After receiving the bid, SCOPE agent that holds the auction,
in this case EC, creates an alternative, φ, e.g., a potential
parking spot that satisfies the driver criteria. This is defined
as follows:

8 = {φ0, . . . , φY } (14)

φ ∈ 8 = φf ∪ φe (15)

Z = ∥9v∥ =
∥∥φf ∥∥ + ∥φe∥ (16)

where φf represents a set of criterion values provided by the
PFA, f , (e.g., price, spot type, parking type, etc), while φe
represents a set of criterion values provided by the EC, e,

(e.g., walking distance to destination, parking ratings, etc.).
The size of the set of alternatives is represented by Y . The
alternatives set, 8, is defined as a 2D matrix as:

8Z×Y =

φ1 φ2 · · · φY

ψ1

ψ2
...

ψZ


φ11 φ12 · · · φ1Y

φ21 φ22 · · · φ2Y
...

... φ
j
i

...

φZ1 φZ2 · · · φZY

 (17)

Y =

f∗∈Fe∗∑
f∗

∥∥∥Sf∗∗
∥∥∥ ≤ Pf .N e (18)

such that:

f∗ ∈ Fe∗, f ∈ Fe, Fe∗ ⊆ Fe

s∗ ∈ Sf∗, Sf∗ ⊆ Sf

where Fe∗ represents the set of PFAs that submitted bids,
Sf∗ represents the set of proposed spots. φ

j
i is the i

th alternative
value (e.g., PFA bid) of the jth criterion, s∗ is a parking spot
that satisfies all the criteria and is located in the facility, f∗.
The number of bids, Y , is defined as the summation of the
number of proposed spots, Sf∗, for all proposing facilities, Fe∗.
The alternatives set received by the EC, e, must satisfy the

bound conditions such that:

ψ l
j ≤ φ

j
i ≤ ψu

j

φ
j
i ∈ 8 , i < Y , j < Z (19)

C. PARKING SPOT SELECTION
The Best-Worst Method (BWM) [40] is used to calculate the
optimal weights of the user-defined criteria. The weights are
used to select the best suitable alternative (e.g., PFA bid)
that satisfies the user criteria. In BWM, the driver selects the
most important criterion,ωb, and the least important criterion,
ωw. Afterward, the driver establishes a pairwise comparison
between ωb and the rest of the criteria, ωi ∈ W such that:

ωb = αbi ωi (20)

where αbi is a coefficient proportional to the relative
importance between ωb and ωi, in other words, αbi shows
how much the driver prefers criterion ωb over criterion ωi.
In addition, the driver establishes a pairwise comparison
between ωw and the rest of the criteria, ωi ∈ W such
that:

ωw = βwi ωi (21)

where βwi is a coefficient proportional to the relative
importance between ωi and ωw, the following Linear Integer
model is used to derive the optimal weights:

min ξL (22)

s.t. |ωb − αbi ωi| ≤ ξL ∀i, i < Z (23)

|βwi ωi − ωw| ≤ ξL ∀i, i < Z (24)
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FIGURE 6. SCOPE multi-layer architecture.

0 ≤ ξL (25)

0 ≤ ωi ≤ 1 ∀i, i < Z (26)
i<Z∑
i=0

ωi = 1 (27)

where ξL is considered an indicator of the consistency of
the criteria pairwise comparisons. In this context, consistency
represents relevance in the driver pairwise comparison for
(ωi, ωb) and (ωi, ωw). The lower values of ξL represent higher
consistency. By solving the optimization problem, a weights
vectorW is defined as:

W =


ω1
ω2
. . .

ωZ


such that the value of ωi corresponds proportionally to

the importance of the criterion ψi. The weights obtained
from BWM are used to select the best parking spot based
on the driver’s preferences. To achieve this, a BWM score
vector2 is constructed. The score vector represents a ranking
of PFA bids based on driver preferences. The score vector 2
is defined as:

2 =


θ1
θ2
. . .

θY

 = 8
T
.W (28)

Such that:

θj =

i≤Z∑
i=1

ωi.φ
j
i , ∀j < Y (29)

where 8 is the normalized alternatives matrix 8Z×Y , where
each normalized element is defined as:

φ
j
i ∈ 8Z×Y =


ψu
i − φ

j
i

ψu
i − ψ l

i

, ψi ∈ 9c
v

φ
j
i − ψ l

i

ψu
i − ψ l

i

, ψi ∈ 9b
v

(30)

The scores vector 2 is sorted in descending order. The
score, θ∗, that wins the auction is the maximum score:

θ∗
= MAX (2) (31)

and the corresponding alternative to the winning score is φ∗.
The EC sends a confirmation message to the PFA that won
the auction i.e., proposed φ∗, as follows:

πconfirm = 1H(e, f , φ
∗) (32)

The PFA should reply backwith an acknowledgmentmessage
to state the commitment to the proposed spot:

πack = 1H(f , e, φ
∗) (33)

Upon receiving the acknowledgment by the EC, the EC sends
a booking confirmation message to the SV:

πbooking_ack = 1H(e, v, {φ
∗, f , s}) (34)

Suppose the EC did not receive the acknowledgment within
a specific time frame. In that case, the winning bid, φ∗,
is cancelled, the second next maximum score is considered
as winning, and the confirmation process is performed again.
Figure 5 illustrates how SCOPE agents handle a find parking
spot request.

V. THE ARCHITECTURE
In this section, we highlight the main building blocks of
SCOPE architecture.

A. ECONOMIC AGENTS
With SCOPE, we envision PFAs as economic agents that join
the SCOPE environment for their benefit. SCOPE provides
the architecture and framework enabling interaction among
these agents. Influenced by the CIR-Agent model [34],
SCOPE’s PFAs comprise the following modules: Problem
Solver, Knowledge Base, Interaction, and Communication.

B. COORDINATION AGENTS
In SCOPE, CBM and EC are coordination agents that enable
autonomous interaction and communication among SCOPE’s
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economic agents. In addition to the base smart agent
components highlighted in Economic Agent Architecture,
Coordination agents have additional components such as
Discovery Service, Reverse Proxy, and Message Broker.

C. COMMUNICATION COMPONENTS
SCOPE is designed to operate efficiently within an open
environment, where numerous parking agents can coexist
without limitations or reliance on each other. In this setting,
parking agents have the freedom to enter or exit the
environment as they please. Consequently, they do not
possess information about other agents’ network addresses,
such as IP addresses or port numbers. To support seamless
interaction in this open environment, SCOPE incorporates the
following communication components:

API Gateway/Load Balancer: To ensure scalability and
high availability, SCOPE uses multiple CBM instances.
SV requests are routed via the API Gateway and Load
Balancer, which creates a single-entry point for all clients,
abstracting the CBMs layer for the SVs.

Discovery Service: SCOPE employs a multi-replica dis-
covery service that maintains a network registry of available
agents’ (hostname, address) pairs. This service dynamically
discovers an agent’s network location (IP address and port)
to enable agent communication. Agents continuously report
their availability to the discovery service using heartbeats,
and their addresses and online statuses are replicated across
other discovery services. These services collectively form a
peer-to-peer network responsible for managing knowledge
about agent addresses. In SCOPE, the Discovery Service
is integrated as a component within the Cloud-Based
Middleware (CBM) and Edge Coordinators (ECs).

Reverse Proxy Service: SCOPE uses a Reverse Proxy
service for dynamic request routing among agents, supporting
scalability and high availability. When an agent sends a
request, it submits the message and the receiving agent’s
name to the nearest Edge Coordinator’s Reverse Proxy
service. The Reverse Proxy queries the Discovery Service
registry for the receiving agent’s address and uses a
load-balancing algorithm to route the request to one of the
available instances. The response returns to the sender agent
via Reverse Proxy, enabling smooth communication without
requiring address lookups by the sending agent. In SCOPE,
the Reverse Proxy Service is a Cloud-Based Middleware
(CBM) and Edge Coordinators (ECs) component.

Message Broker: The Message Broker enables indirect
communication among agents in SCOPE. It allows an
agent to send a find parking spot request to nearby
agents without direct contact. Using the Publish-Subscribe
messaging pattern, agents send messages to the Message
Broker, which publishes the messages to potential recipients.
This bidirectional messaging approach occurs through an
intermediary system, the Message Broker, without direct
communication between data publishers and consumers.
In SCOPE, theMessage Broker is a Cloud-BasedMiddleware
(CBM) and Edge Coordinators (ECs) component.

VI. EVALUATION
The interaction model described in section IV is simulated
and compared to four smart parking system baselines.
The assessment metrics are driving time, distance, fuel
consumption, CO2 emissions and parking search costs in
Canadian dollars.

A. EXPERIENTIAL SETUP
In this assessment, we simulate SCOPE parking agents with
a form of smart objects that implement the CIR-Agent
model [34]. Each parking agent (PFA) that represents a
parking facility has knowledge of available space in the
facility and provides this knowledge to the Edge Coordinator
(EC) upon request. Afterwards, the EC selects the best
parking spot based on the driver’s preferences.

To further elaborate on the simulation architecture, the
SCOPE environment was simulated as a web application
composed of a number of micro-services. This application
is structured into three primary components: a Cloud-Based
Middleware (CBM) service, a set of Edge Coordinator
(EC) services, and multiple Parking Facility services (Smart
Objects). In addition, Kafka, Eurka and Zull services are
used to facilitate communication among SCOPE’s primary
components. Figure 7 graphically depicts SCOPE’s simula-
tion architecture. The simulation process is initiated when
the CBM selects a random trip from the designated trips
dataset. Subsequently, the CBM determines the appropriate
Edge Coordinator responsible for facilitating interactions
among the parking facilities within the geographical cluster
corresponding to the trip’s destination. Upon identification,
the EC object communicates with potential parking facilities
and orchestrates an auction based on the bids received.
Once the auction concludes, the winning bid is relayed
to the CBM object. This CBM then executes the baseline
algorithms and saves the results in a MongoDB database
for further analysis. It’s important to highlight that SCOPE’s
geographical clustering serves as a method to arrange parking
facilities into groups, where an edge coordinator manages the
communication within the group. This arrangement doesn’t
interfere with the existing road network. Road distance and
traffic details between the trip’s start and nearby parking
at the destination are sourced from the Google Distance
Matrix API. This API optimally selects routes based on both
historical and real-time data.

The experiments utilized 52 parking facilities in downtown
Toronto, with coordinates collected from Google Places
API [41]. For each experiment, 1050 trips are simulated in
which drivers head to downtown Toronto where they search
for parking. We use 105 trip origins, reflecting coordinates
picked randomly in the Toronto suburbs (35 in East York,
35 in North York, and 35 in Etobicoke) and 105 random trip
destinations in downtown Toronto. We employ the Google
Distance Matrix API to calculate the time and distance a car
travels while searching for a parking spot.

For each trip, we pass the following parameters to
SCOPE and the baselines: a random trip origin, a random
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FIGURE 7. SCOPE simulation architecture.

FIGURE 8. SCOPE vs baselines: environmental metrics (rolling avg window = 100 trip).

destination, a set of user preferences including (Walking
Distance, Price, and Driving Distance), and a search radius
of 1 kilometre. The performance of SCOPE and the baselines
are measured in two settings based on user preferences.
The values associated with walking distance are the
following:

W = {Ww : 0.6666667,Wp : 0.0666667,Wd : 0.266666667}

and the values associated with the driving distance are the
following:

W = {Ww : 0.2666667,Wp : 0.0666667,Wd : 0.666666667}

where Ww is the walking distance weight, Wp is the Price
Weight, andWd is the driving Distance Weight.

Fuel consumption and CO2 emissions are computed using
International Energy Agency’s report [42]. The report shows
that Canadians consume an average of 8.9 litres of gasoline
per 100 KM (8.9 L/100km), and cars in Canada produce an
average of 206.0 gCO2 per KM(206.0 gCO2/KM). As for the
fuel cost, we collected the average gasoline price in Toronto
in 2021 [43].

B. URBAN INFRASTRUCTURE SEARCH FOR PARKING
DATASET:
We use the search for parking dataset provided by GeoTab
Inc. to supply baselines with traffic information [3]. The
dataset highlights challenging parking areas in Toronto and
is updated monthly, aggregating data over six months and
summarized at Geohash level 7 (153m× 153m).We analyzed
the dataset and constructed new features at Geohash levels 5,
6, and 7. The constructed features are an hourly distribution
representing the number of vehicles searching for parking
spots near a parking facility and an hourly distribution
representing the total number of vehicles located around a
parking lot. Figure 4 highlights the Geohash levels.

C. BASELINES
The baselines for SCOPE evaluation are probability-based
parking systems inspired by the work proposed by
Wu et al. [44], which features smart parking systems that
have complete information about available parking spots in
each facility. These systems utilize a probability model to
determine the most appropriate parking facility, which is
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FIGURE 9. SCOPE vs baselines: driving metrics (rolling avg window = 100 Trip).

FIGURE 10. SCOPE vs baselines: driver satisfaction.

expected to have an available spot when the vehicle arrives.
In this evaluation, the probability that there is available space
at a given parking facility, i at time t , is computed as follows:

Pas(i, t) = 1 −
occupancy(i, t)
capacity(i, t)

(35)

Furthermore, to add a level of smartness to the baseline,
we use the Historical Urban Infrastructure dataset [3] to
compute the competition for parking probability as follows:

Plc(i, t) = 1 −
σ (NC (i, t)
NAS (i, t))

(36)

where σ is the sigmoid function, Plc(i, t) is the probability
of low competition for parking at a given parking facility i at
time t , NC represents the number of cars around the parking
facility searching for spots, and NAS is the number available
spots in the parking facility, i, at time, t . Therefore, the
probability that there is available space in a given parking
facility at a given time can be formulated as follows:

Pπ (i, t) = Pas(i, t) ∗ Plc(i, t) (37)

1) RECOMMENDATION SYSTEM (RS)
Wu et al. [44] proposed a parking recommendation system
that aims to minimize the expected travel time to successfully

FIGURE 11. SCOPE behaviour reflecting driver preferences (rolling AVG
window = 100 trip).

park a car. Given the driver’s current location, RS arranges
parking lots in a permutation set π ={PL1, PL2, . . . , PLn}
in which parking facilities around the car are arranged based
on the probability of parking successfully in each parking
facility. Assuming the driver follows the permutation set in
order, the expected travel time is computed as follows:

For every parking facility PLi, the time needed for a driver
to reach the parking facility is weighted by the probability
of successfully parking the car at the facility PR(π, i). The
same method is used for computing the expected travel
distance. As this system provides an estimated driving
time and distance for the permutation set, its comparison
would SCOPE might not be fair. For this reason, the
following greedy algorithms were implemented based on the
permutation set computed by RS.

2) GREEDY BASED ON PROBABILITY (GP)
The aim of this algorithm is to simulate a car following the
permutation set computed by RS until it successfully finds
a parking spot. Whenever the car reaches a parking facility,
a decision variable is assigned a value from the uniform
distribution on the interval (0,1). If the decision variable is
less than or equal to the probability that there is available
space in PLi (Pπ (i)), then the system assumes the car finds
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FIGURE 12. SCOPE vs GT: Trip cost in cad (rolling AVG window = 100 trip).

a parking spot in PLi. Otherwise, the car proceeds to the
next parking lot in the permutation set. As the car travels
from one parking facility to another, the system computes the
travel time and distance using real data from Google Maps
API. These values are added to the total travel time and total
distance, respectively.

3) GREEDY BASED ON PROBABILITY AND DISTANCE (GPD)
This algorithm aims to minimize the travel distance.
Generally, the GPD approach is similar to GP in the sense
that there is a car following the permutation set until it
successfully finds a parking spot. However, the permutation
set is reordered for each decision cycle based on the following
cost function.

Cost(PLj) = Pπ (j)distance(PLi,PLj) (38)

4) GREEDY BASED ON PROBABILITY, DISTANCE, AND
DRIVER PREFERENCES (GPDP)
The approach is similar to GPD. However, on every decision
cycle, the permutation set is reordered based on an objective
function that aims to minimize driving distance and takes into
account the driver preferences.

utility(PLj) = Pπ (j) + BWM (preferences,PLj) (39)

Cost(PLj) = utility(PLj) ∗ distance(PLi,PLj) (40)

D. RESULTS
This section presents the performance of the baselines and
the proposed approach used in SCOPE. The metrics used
were environmental, driving satisfaction rate and the cost of
finding a parking spot. Figure 9 shows the moving average
of driving time and distance for each group of 100 trips,
a 100-trip sliding window. The figure shows that SCOPE’s
average driving time was in the range of 35 minutes to
45 minutes, while SCOPE’s driving distance was in the
range of 12KM to 17 KM. The figure indicates that SCOPE
outperformed the baselines in decreasing driving time and
distance. Also, in terms of environmental metrics, SCOPE
uses less fuel and emits less carbon monoxide, as shown in
figure 8. The figure also shows that among the baselines,

FIGURE 13. SCOPE agents interaction in response to requests.

the GP model gives better results, but the difference between
the GP and SCOPE results is large. Figure 12 shows that,
on average, SCOPE trips cost 18 percent less than GP trips,
with a mean moving average of 1.645 CAD for SCOPE and
2.004 CAD for GP.

PT (C, π) =

n∑
i=1

PR(π, i)(Tπ (i) − t0) (41)

In addition, in comparison with the baselines, SCOPE
can capture driver preferences and select parking spots that
provide higher driver satisfaction rates. In this context, the
driver satisfaction rate is measured using the parking facility
BWM score. The Kernel Density Estimate (KDE) plot is
used to visualize the distribution of BWM scores recorded
by SCOPE and the baselines. Figure 10 depicts the KDE
curve for SCOPE and the baselines. While the KDE curves
for the baselines are comparable, the KDE curve for SCOPE
demonstrates that SCOPE observations for BWM scores are
significantly higher than those for the baselines.

Furthermore, figure 11 illustrates how SCOPE selection
reflects the preferences of the driver. Figure 11 shows the
moving average of SCOPE’s driving distance in two separate
experiments where the driver preferences for the exact trip
origin and destination pair are weighted differently.

Finally, Figure 13 depicts SCOPE agents’ cooperation to
resolve the capability interdependency among ECs and PFAs;
the fluctuation in the number of agents in every trip is a result
of the variation of the number of PFAs around the trip’s final
destination.

Overall, the results show that developing a cooperative
model that enables knowledge sharing and interaction among
parking facilities can significantly reduce the travel distance
and time a car spends searching for a parking spot.

VII. DISCUSSION ON LIMITATIONS AND REAL-WORLD
DEPLOYMENT
While we view SCOPE system as a meaningful contribution
to the field of smart parking management, it is essential
to recognize that there are limitations and areas for further
exploration to validate the approach comprehensively.
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A. RELIABILITY AND FAULT TOLERANCE
The distributed nature of SCOPE, involving multiple
interconnected components like Cloud-Based Middleware
(CBM), Edge Coordinators (ECs), and Parking Facility
Agents (PFAs), necessitates a robust framework for ensuring
system reliability and fault tolerance. In a real-world scenario,
the failure or latency in any of these components could
have cascading effects, impacting the system’s overall
performance and user experience. This is particularly critical
given SCOPE’s real-time decision-making requirements for
parking spot allocation.While the current work focuses on the
interaction model, it does not delve into deployment-related
challenges such as reliability and fault tolerance. Future work
could address these limitations by exploring redundancy
measures, failover mechanisms, and real-time monitoring to
enhance the system’s resilience and reliability.

B. CONSIDERATIONS ON TRUST AND PRIVACY
PRESERVATION
Trust evaluation and privacy preservation are crucial yet chal-
lenging elements in facilitating data sharing in cooperative
environments. These factors often have conflicting require-
ments, making it essential to find an optimal balance [45].
The computational, communication, and storage needs of
any proposed solution can also influence its practicality.
Various management schemes have been put forth to address
these challenges. Notably, Liu et al. [45] introduced the
Lightweight Privacy-Preserving Trust Evaluation (LPPTE)
scheme, designed to balance trust and privacy while minimiz-
ing system overhead effectively. Given that SCOPE operates
as a cooperative systemwhere resources are traded and shared
among different smart agents, incorporating trust and privacy
management schemes, such as LPPTE [45], BTMPP [46],
TROVE [47] and PPRM [48] could significantly enhance the
system’s value. Although these aspects are beyond the scope
of the current study, future research could further consider
integrating cryptographic schemes, reputation models, and
privacy-preserving algorithms to enhance the system’s trust-
worthiness and data security.

C. REAL-WORLD DEPLOYMENT
The following discussion focuses on key considerations
necessary for evolving SCOPE from a theoretical construct
into a practical solution suitable for deployment in smart city
settings.

1) SMART CITY INTEGRATION
SCOPE fits well within the smart city paradigm, where IoT
devices, sensors, and intelligent algorithms work in tandem to
optimize urban services. Integration with existing smart city
platforms could be a viable path for deployment.

2) 5G NETWORKS AND TELECO CLOUD
The advent of 5G networks offers unprecedented low-latency
and high-bandwidth capabilities, which are crucial for

real-time decision-making in intelligent systems like SCOPE.
However, to fully exploit these advantages, it is essential
to bring computation closer to the data source, thereby
reducing the time data travel back and forth between the
cloud and the edge of the network. This is where AWS
Wavelength comes into play. AWS Wavelength extends
AWS infrastructure to telecom networks, enabling devel-
opers to run latency-sensitive applications closer to end-
users [49]. By hosting SCOPE’s Edge Coordinators (ECs)
on Wavelength-enabled 5G networks, several key benefits
can be realized, such as Reduced Latency, Localized Data
Traffic, Real-time Analytics, Scalability and Flexibility, and
Enhanced Reliability. The synergy between 5G networks
and AWS Wavelength can significantly enhance SCOPE’s
performance, making it a highly responsive and reliable
system for smart parking management. This integration
aligns well with the broader vision of smart cities, where low-
latency, high-reliability services are essential for improving
urban living conditions.

3) INTEGRATION WITH AUTONOMOUS VEHICLES
As autonomous vehicles become more prevalent, SCOPE
could serve as the parking management component within a
broader autonomous vehicle ecosystem. SCOPE can benefit
from V2X communication technologies, enabling more
dynamic interactions between vehicles and parking facilities.

VIII. CONCLUSION
This work presents SCOPE, a multi-agent smart dis-
tributed cooperative system that addresses parking challenges
in a smart city environment by fostering coordination,
autonomous interaction, and resource sharing. SCOPE lever-
ages an overlay network, a hierarchical and spatial structure
of coordination nodes, and an integration layer to enable
seamless communication and cooperation among parking
agents. The proposed architecture facilitates a sharing
economy business model, allowing private parking owners
to monetize their unused spaces, maximizing resource usage,
and providing affordable access to parking. By considering
driver preferences and enabling autonomous interaction
among parking systems, SCOPE effectively reduces search
time, traffic congestion, and environmental impact. This work
fills a gap in the literature by providing a comprehensive
solution to the parking challenges in smart city settings,
emphasizing agent cooperation and interaction in an open
environment. For future research, there are pivotal areas to
address. Firstly, the system’s distributed nature necessitates
a deeper focus on reliability and fault tolerance, possibly
through redundancy measures and real-time monitoring.
Secondly, the cooperative essence of SCOPE calls for a
balance between trust and privacy, which might be achieved
by incorporating cryptographic schemes and reputation mod-
els. Lastly, for real-world deployment, integrating SCOPE
with smart city platforms, harnessing 5G networks and edge
computing services like AWS Wavelength, and exploring
SCOPE’s role within the autonomous vehicle ecosystem
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using V2X communication technologies will be crucial.
Ultimately, SCOPE holds the potential to revolutionize the
way parking is managed in smart cities, improving the
quality of life for urban residents and contributing to a more
sustainable future.
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