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ABSTRACT Event-based cameras are novel vision sensors that respond to local variations in intensity,
generating asynchronous pixels, referred to as events, with low latency, high temporal resolution, and high
dynamic range. These events contain information related to the spatio-temporal dynamics of a scene. Given
the temporal nature of the asynchronous event stream, several authors have contributed to recognising
deformable objects in motion, specifically gestures. However, another category of deformable objects, such
as facial expressions, has yet to be adequately addressed. In this paper, we present a comprehensive review
of two topics of interest in novel event-based cameras: gesture and facial expression recognition. For both
tasks, we evaluate two existing state-of-the-art learning models, and also we use a third model that learns
from temporal and spatial correlations of events. To this end, we evaluate a wide range of classification
models across multiple scenarios, analysing: the time/event cut-off window of the sample, the number of
samples per class for each database, the spatial resolution of the databases, amongst other factors. In the case
of gesture recognition, we utilise existing databases, while in the case of facial expression recognition we
have synthetically generated two completely new databases (based on two state-of-the-art image databases):
e-CK+ and e-MMI, with promising results for the future of this area. Finally, we provide our contributions
to the community, specifically the databases developed and used for this study.

INDEX TERMS Event-based cameras, bio-inspired vision, asynchronous sensors, gesture recognition, facial
expression recognition.

MULTIMEDIA MATERIAL
The project’s code is available on the following page:

https://github.com/uoh-rislab/event-based_gesture_and_
facial_expression_recognition

I. INTRODUCTION
Traditionally, computer vision research has focused on
developing methods for frame-based cameras, thus working
with images or videos. While recent advancements in deep
learning, active learning, and reinforcement learning have led
to significant progress in computer vision applications, these
techniques cannot fully address the limitations of traditional
cameras, such as high latency, motion blur, and low dynamic
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range. To overcome these limitations, researchers have begun
to explore the use of event-based neuromorphic vision
sensors, also known as event cameras [1]. These devices are
characterised by their response to local intensity changes in
a scene, generating an asynchronous stream of events that
capture the time stamp and polarity of the brightness change
of each pixel. A complete survey on event-based cameras can
be found in [2]. For event-based vision tasks, deep learning
[3], [4] and other classification techniques have been suc-
cessfully applied to object and gesture recognition problems,
achieving 90% or better classification accuracy when using
event-based cameras (e.g. [5], [6]). However, event-based
facial expression recognition remains a largely unexplored
territory, where research hasmainly focused on face detection
[7], [8], [9] and eye blinking/tracking [8], [10], [11]. This may
be due to the scarcity of neuromorphic databases on facial
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expressions and the complexity of the problem. Nevertheless,
this represents a unique and exciting opportunity for research
in event-based facial analysis, specifically focusing on
event-based facial expression recognition (as in computer
vision [12], [13], [14]). Consequently, this study aims to
perform comparative analyses of two interesting topics:
event-based gesture and facial expression recognition. For
this purpose, we use two event-based gesture benchmark
datasets and generate two new facial expression datasets (by
applying event emulation methods). Then, we evaluate the
performance of the existing classification methods on each
task (using the respective datasets) and compare the results
by varying two key parameters: the time size and the number
of events in a sample of events.

The present paper is structured as follows: Section I
introduces the problem under study; Section II provides an
overview of the state-of-the-art in event-based gestures and
facial recognition, including available datasets, tools, and a
review of existing classification methods; Section III presents
the comparative analysis of event-based gestures and facial
expressions recognition; Section IV addresses the use of two
event-based gesture benchmark datasets and the development
of two new event-based facial expression dataset; Section V
presents the achieved results; and Section VI concludes and
projects this work.

II. STATE OF THE ART
This section provides a comprehensive overview of the
current state-of-the-art event-based gesture and facial expres-
sion recognition. Specifically, we begin by reviewing the
fundamentals of event representations and prior research
in this field, followed by an examination of the current
state-of-the-art in event-based object recognition, with the
different methods that have been proposed. This includes
reviewing deep learning-based methods, particularly effec-
tive for specific tasks, and examining relevant datasets.
Finally, we examine novel methods for generating event-
based datasets, such as simulators and emulators. These tools
are essential for creating realistic and diverse datasets that can
be used to train and test event-based recognition systems.

A. EVENT REPRESENTATIONS
Event cameras are electronic devices that asynchronously
respond to changes in the received logarithmic brightness
signal L(uk , tk )

.
= log(I (uk , tk )), where uk corresponds to the

sensor pixel, tk to the associated time, L to the luminosity,
and I to the brightness signal [2]. Then, an event is triggered
at pixel uk = (xk , yk )T and at time tk as soon as the brightness
change since the last event at the pixel reaches a threshold±C
(with C > 0):

L(uk , tk ) − L(uk , tk − 1tk ) ≥ pkC, (1)

where pk ∈ {−1, +1} is the sign of the brightness change
and 1tk is the time since the last event at uk . Then, in a given
time interval, an event camera produces a sequence of events,

E(tN ) = {ek}Nk=1 = {(xk , yk , tk , pk )}Nk=1 with microsecond
resolution, where tN denotes the last timestamp in the event
stream E . An important issue in event-based cameras is
extracting and representing meaningful information from the
generated event data. As mentioned above, the most basic
representation in event-based cameras is an individual event,
which contains information about the pixel’s position, timing,
and polarity that triggered the event. A second level of
representation is an event packet, which corresponds to a
spatio-temporal neighbourhood of events. Several methods
have been proposed for representing event data, including
accumulating events in the image plane. This representation
can be used for computer vision tasks like object detection,
tracking, and recognition. Likewise, many other learning-
based approaches work by first preprocessing events, con-
verting them into dense images or dense tensors –which is a
convenient representation for image-based models–, and then
using those dense images in convolutional neural networks.
Existing representations include [2]: a) Event frame (image)
or 2D histogram, b) Time surface, c) Voxel Grid, d) 3D
point set, e) Point sets on the image plane, f) Motion-
compensated image, g) Reconstructed images. Thus, it should
be emphasised that event representation performs a key role
in event-based vision tasks, as it describes the spatial and
temporal distribution of events. Combined with the high
temporal resolution of events, the representation captures
detailed temporal distributions over scenes -independently
of the vision task- which is impossible with traditional
frame-based cameras. Therefore, it is essential to carefully
consider the event representation used to extract meaningful
information from event data effectively.

B. EVENT-BASED OBJECT RECOGNITION
Gestures and facial expressions are often used as similar
terms. However, the taxonomy of deformable and non-
deformable objects shows that these categories describe
different types of spaces. To clarify this, a taxonomy of
objects is described below (as presented in Fig. 1) to
distinguish the different types of objects clearly.

FIGURE 1. Object recognition taxonomy in computer vision: from
non-deformable to deformable objects. The left branch represents
non-deformable objects characterised by a constant shape and volume.
The right branch represents deformable objects, characterised by a
variable shape and volume, including body gestures, hand gestures, head
and face gestures.
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In computer vision, objects can be classified into non-
deformable and deformable objects. Non-deformable objects
maintain their shape and structure (such as a chair or a table),
while deformable objects change their shape and structure,
such as a human body or a face. Deformable objects can
be further divided into several subcategories. Body gestures,
for example, refer to the movement of the entire body, such
as a wave or a dance move. Hand gestures, on the other
side, refer to the movement of the hands and fingers, such
as pointing or grasping. Facial gestures, meanwhile, refer
to the movement of the face and head, such as nodding or
shaking. Facial gestures can be further classified into several
subcategories, such as Valence-Arousal, Action Unit, and
Facial Expression. Valence-Arousal refers to the emotional
state of the individual, with valence indicating the positivity
or negativity of the emotion and arousal indicating the
intensity of the emotion. ActionUnit, on the other hand, refers
to individual muscle movements on the face, such as raising
the eyebrows or smiling. Lastly, Facial Expression combines
Action Units to convey a specific emotion, such as happiness
or sadness. Frame-based deformable object recognition is
an active area of research focusing on recognising objects
that can change their shape or appearance over time. Event
cameras in this task offer several advantages over traditional
cameras, such as high dynamic range and lower event latency.
However, processing data from event cameras also involves
significant challenges, such as handling large amounts of
data and developing new algorithms to extract meaningful
information from asynchronous event streams. Therefore, the
following subsection reviews the state-of-the-art of event-
based object recognition, providing the foundations for
developing the comparative analysis proposed in this article.

1) EVENT-BASED NON-DEFORMABLE OBJECT
RECOGNITION
In event-based pattern recognition, the study of non-
deformable object recognition is one of the most extensively
researched areas. Early contributions made use of traditional
Machine Learning methods for real-time recognition, such
as CNN [15] and Random Forest [16], as well as advanced
methods that take advantage of the spatial and temporal
dispersion of events [17]. More recent research has focused
on the use of state-of-the-art methods, such as SNN
[18], Graph-based [19], Visual Transformer [20]) and the
development of specialised hardware [21].
At the same time, the availability of large and well-

known object databases in computer vision –such as
Caltech101 [22] and MNIST [23], has led to the devel-
opment of neuromorphic counterparts –N-Caltech101 [24]
and N-MNIST [24], respectively–. These neuromorphic
datasets are generated using event cameras and capture
the spatiotemporal characteristics of the objects, making
them well-suited for event-based recognition tasks. Other
examples of neuromorphic datasets include MNIST-DVS
[25], Poker-DVS [25], N-CARS [26], N-ImageNet [27],

among others. These datasets provide a valuable resource for
developing and validating new event-based non-deformable
object recognition methods.

2) EVENT-BASED GESTURE RECOGNITION
Along with non-deformable object recognition, gesture
recognition is another important area in event-based applica-
tions. In this field, the development of recognition methods
based on state-of-the-art computer vision has laid the
foundations for new and novel contributions that have aimed
to exploit the temporal dispersion of events. Examples
include: End-to-End Learning of Representations using Event
Spike Tensor (EST) [5], Event-based Asynchronous Sparse
Convolutional Networks (Asynet) [6], Spike Layer Error
Reassignment in time (SLAYER) [28], Deep Continuous
Local Learning (DECOLLE) [29], Time-Ordered Recent
Event (TORE) [30], RG-CNN [31]. These contributions use
Deep Learning-based architectures and emphasise the design
of new event representations capable of capturing gestures’
spatial and temporal dispersion, enabling these recognition
systems to achieve high-performance metrics.

In terms of neuromorphic gesture databases, their avail-
ability is more limited. However, there are several datasets
available in the literature, such as the DVS128 Gesture
Dataset [32], IITM DVS128 Gesture Dataset [33], NavGes-
ture [34], and Celex DVS gesture dataset [35]. We highlight
the DVS128 Gesture Dataset, a pioneering database with
11 classes of hand and arm gestures (including the category
‘‘other’’). This dataset is widely used in the literature as a
comparative benchmark to evaluate new event-based gesture
recognition methods’ performance, as seen in Table 1.

TABLE 1. State-of-the-art summary of classification accuracy on the
DVS128 Gesture dataset [32].

Table 1 summarises the different state-of-the-art event-
based gesture recognition methods using two different
numbers of classes for the DVS128 Gesture dataset. The
best-performing model for this task is Inception3D + Voting,
which achieves an accuracy of 99.58% and 99.62% for data
sets of 10 and 11 classes, respectively. Advanced models,
such as EvT, Space-time clouds and AlexNet - LSTM, also
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obtain high accuracy scores. The performance in Table 1
illustrates that event-based gesture recognition is promising,
with several high-performance models currently available.
Thus, it is clear that event-based gesture recognition has
experienced significant advances in recent years, and the per-
formance of the designed learning methods is continuously
improving.

3) EVENT-BASED FACIAL ANALYSIS
Face analysis is a well-studied area in computer vision,
with a significant amount of research devoted to the study
of facial features, facial recognition, and facial expression
recognition [12], [13], [14]. However, the field of event-based
facial analysis is relatively unexplored regarding event-based
cameras. To date, research in this area has been primarily
limited to face detection [7], [8], [9] and eye blinking/tracking
[8], [10], [11]. These studies address important issues in
face analysis; however, they are not directly applicable to
facial expression recognition. Furthermore, a lack of event-
based databases for facial expressions and the complexity of
the problem make event-based facial expression recognition
a challenging task. Despite these challenges, the potential
for event-based cameras to capture high-temporal-resolution
facial expressions presents an exciting new opportunity
for research. Two additional works that mention emotion
recognition using event-based cameras are [40], which
explores using event-based cameras to identify individuals
based on facial dynamics derived from speech, and [41],
which proposes modelling expressions with event-based
cameras to understand human reactions.

a: EVENT-BASED FACE DETECTION
In event-based face detection, several approaches have been
proposed to take advantage of the unique properties of event
cameras. In [7], a patch-based model was proposed for
event streams acquired from event cameras, which performed
direct face detection and highlighted the potential of these
sensors for low-power vision applications. Another approach,
presented in [8], exploited the high temporal resolution of
events to detect the presence of a face in a scene, using
eye blinks (characterised by a unique temporal signature
over time) and applying a probabilistic framework for face
localisation and tracking, in both indoor and outdoor envi-
ronments. Additionally, [9] proposed an event-based method
for learning face representations using kernelized correlation
filters within a boosting framework, useful for surveillance
applications. These works demonstrate the potential of event
cameras for face detection and open up new lines of
research.

b: EVENT-BASED EYE BLINKING/TRACKING
In this topic, research has focused on utilising the high
temporal resolution of event cameras to detect and track
eye movements. In [8], a correlation of the acquired local
face activity with a generic temporal model of eye blinks is

made, using the blinks to correct for drift and tracking errors
in faces. Another work, [10], presents a hybrid event-based
near-eye gaze tracking system that offers update rates beyond
10,000 Hz. This system integrates an online 2D pupil fitting
method that updates a parametric model for a few or every
event, using a polynomial regressor to estimate the gaze point.
Additionally, [11] proposes a method for simultaneously
detecting and tracking faces and eyes in driver monitoring
systems, using a fully convolutional recurrent neural network
architecture to determine the driver’s level of fatigue.

C. DATA GENERATION USING SIMULATORS AND
EMULATORS OF EVENT-BASED CAMERAS
The problem of lack of data is a common challenge in new
research areas. This is mostly the case with novel sensors
like event-based cameras, where the availability of databases
to train machine learning-based algorithms is limited. For
example, only the Face Detection [8], DAVIS Face [9], and
Neuromorphic Helen [11] datasets are available for face
detection, eye tracking, and blink recognition, respectively.
To address this problem, several researchers have developed
simulators and emulators to generate realistic event-based
data from traditional frame-based data. One example is ESIM
[42], which simulates an event camera from an adaptive
rendering scheme that selectively samples frames. Another
example is v2e [43], which aims to replicate the working
principle of event cameras to generate high-fidelity DVS
event streams with a realistic temporal resolution, high
dynamic range, pixel-level Gaussian event, finite intensity-
dependent bandwidth, and intensity-dependent noise [43].
More details about the v2e emulator fundamentals will be
provided later. This tool allows the generation of two new
large and diverse datasets for event-based facial expression
recognition.

III. GESTURE AND FACIAL EXPRESSION RECOGNITION: A
COMPARATIVE ANALYSIS
This section presents a comprehensive methodology for eval-
uating event-based gesture and facial expression recognition.
We introduce the pipeline of Fig. 2, commonly used in most
existing works that classify event data, particularly those
based on deep learning techniques. This pipeline includes an
event representation module that captures the event’s spatial
and temporal distribution, an event feature extractor, and a
classifier layer. Sometimes a sequence learning module is
also added (a network that learns about the temporal evolution
of events).

FIGURE 2. Pipeline for event-based recognition methods. This pipeline
addresses the need to: (i) a representation that captures the event’s
spatial distribution and asynchronous temporal evolution, (ii) build a
feature extractor that properly encodes the input information, (iii)
accurately classify the respective event streams.
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In the following, we study three learning models, each of
which will be evaluated for the respective recognition task.

A. EVENT-BASED RECOGNITION METHODS EVALUATED
Event-based recognition methods are a benchmark for
research, as they have diverse applications in fields such as
human-computer interaction and robotics. In the following
subsections, we describe the methods used in the comparative
analysis later presented in this work.

1) END-TO-END LEARNING OF REPRESENTATIONS FOR
ASYNCHRONOUS EVENT-BASED DATA
A End-to-End Learning of Representations method used
for event-based classification is proposed in [5]. This
method utilises a sequence of differentiable operations to
convert events into grid-based representations, which are
then integrated into a learning model for end-to-end event
representations. The above-mentioned representation, known
as the Event Spike Tensor (EST), effectively preserves
spatial, temporal, and polarity information by converting
the event set E(tN ) into a grid-based representation. The
EST representation provides three sub-representations: Two-
Channel Image, Event Frame and Voxel Grid. Subsequently,
the novel event representation is fed into a CNN, with a
ResNet-34 backbone, to learn from events. Furthermore,
the architecture employs a fully connected layer to detect
the processed features’ global configurations and a softmax
activation function to assign a probabilistic distribution to
each class under study. The described pipeline is illustrated
in Fig. 3, based on [5].

FIGURE 3. End-to-End Learning of Representations for Asynchronous
Event-Based Data pipeline, inspired from [5]. The event stream ε is
processed by applying a trilinear kernel to generate the EST
representation, which preserves spatial, temporal and polarity
information. The representation is then fed into an adapted CNN (based
on a Resnet-34 as a backbone), with a fully connected layer (FC) to detect
global configurations of the processed features and a softmax activation
function.

This architecture has been applied to event-based object
recognition (N-Caltech101 dataset [24]) and event-based
gesture recognition (DVS 128 Gesture Dataset [32]). In the
case of gesture recognition, the method achieved an accuracy
of 93.82%, representing the best performance until 2019.

2) ASYNCHRONOUS SPARSE CONVOLUTIONAL NETWORKS
A second method for the event-based gesture and object
recognition is Asynchronous Sparse Convolutional Networks
[6], usually known as Asynet, which aims to exploit
the spatiotemporal sparsity of event data in convolutional

architectures through a novel approach. This method focuses
on creating a sparse representation of events and integrating
it with a Submanifold Sparse Convolutional network (SSC).

The sparse representation proposed by the authors is an
image-like representation that can be processed by standard
CNNs, preserving the spatial distribution of the events but
discarding their temporal dispersion. To recover the temporal
sparsity of the event stream ε, the authors focus on changing
the image-like representation when a new event arrives,
creating a novel Sparse Recursive Representation (SSR).

As for the SSC network, it is a novel type of CNN designed
to exploit the spatiotemporal sparsity of event data. The
SSC uses a sparse representation of events as input and
applies convolutional operations to extract features and make
predictions. Unlike traditional CNNs, which generate fuzzy
activation maps and thus reduce sparsity, the SSC network
only computes the convolution operation on active sites,
leading to sparse activation maps in subsequent layers. This
approach preserves the event data’s sparse nature and reduces
the computational consumption required.

Based on the type of convolutional network used, the
authors [6] propose two variants: Dense and Sparse (referred
to as Asynet-I and Asynet-II, respectively). Both variants
perform asynchronous processing of the sparse representa-
tion, however, they differ in that Asynet-I uses a traditional
CNN while Asynet-II uses the novel SSC network. The
Asynchronous Sparse Convolutional Networks pipeline is
illustrated in Fig. 4.

FIGURE 4. Asynchronous Sparse Convolutional Networks pipeline,
inspired from [6]. The event stream ε is processed to generate the Sparse
Recursive Representation. It is then fed into a Submanifold Sparse
Convolutional network (SSC), which has a VGG-16 backbone, fully
connected layers, and a softmax activation function for the final
prediction. The SSC network is specifically designed to exploit the
spatiotemporal sparsity of the event data.

Experimental results on the DVS128 Gesture dataset
show that Asynet has better performance on gesture recog-
nition tasks (94.66% accuracy [6]) compared to End-to-
End Learning of Representations (93.82% accuracy [5]).
The authors attribute this improvement mainly to the novel
Sparse Recursive Representations and the SSC Network for
asynchronous events. However, it is important to note that this
method has high inference times.

3) LEARNING FROM THE TEMPORAL SEQUENCE OF
ASYNCHRONOUS EVENTS: ESTM
The previous subsections described state-of-the-art meth-
ods, providing novel event representations and efficient
asynchronous processing. However, both methods have
limitations in capturing the temporal dispersion and
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FIGURE 5. ESTM general framework architecture for the event-based gesture and facial expression recognition. This architecture consists of (i) a
sequence of event streams, which can be generated with an ESBT/ESBN approach (Et

j (x, y ) or Eϵ
j (x, y ), respectively), (ii) the use of the Event Spike Tensor

as an event representation, (iii) a feature extractor module responsible for identifying and encoding the events’ key patterns, (iv) the addition of temporal
memory networks that allow temporal learning of the sequence of events, (v) a classification module that categorises the events into the respective class.

sequential correlation of event streams. As a result, the event-
based object recognition models cannot fully learn from
the temporal information in asynchronous event sequences.
To address this issue, we present an ESTM approach
combining the Event Spike Tensor representation [5] with a
Recurrent Neural Network, specifically a Long Short Term
Memory (LSTM) network. This approach aims to learn from
event sequences’ spatial and temporal information to improve
object recognition.

In this enhanced method, the EST event representation
captures events’ spatial, temporal, and polarity information.
Then, a CNNwith fixed weights extracts spatial and temporal
dispersion features. Finally, we integrate an LSTM network
between the previously trained static backbone and the
fully connected classifier layer, as shown in Fig. 5. Thus,
the LSTM network can model the temporal dependencies
in asynchronous event sequences, enhancing the described
method’s performance.

In this architecture, the system receives an event sub-
stream Ej as input. Based on the considerations made by [37],
two possible approaches can be adopted for the elaboration
of event substreams:

• Event Stacking Based on Time (ESBT): a substream of
events is sequenced in E tj (x, y) from a fixed duration
of time of the temporal size of the sample (denoted
as 1t). Here, the time duration of the event stream is
divided into n equal-scale portions, and then E tj (x, y)
are built by sequencing the events in each time
interval

[
(j−1)1t

n ,
j1t
n

]
. Thus, each E tj (x, y) sub-stream is

generated from time windows, i.e. E tj (x, y) = f (j, 1t).
• Event Stacking Based on Number of events (ESBN): a
substream of events is sequenced in Eϵ

j (x, y) using a con-
stant number of events for each sample (denoted as1ϵ).
Here, the event stream is divided into m equal-scale

portions, and then Eϵ
j (x, y) are built by sequencing the

events in each time interval
[
(j−1)1ϵ

m ,
j1ϵ
m

]
. Thus, each

Eϵ
j (x, y) sub-stream is generated from time windows, i.e.
Eϵ
j (x, y) = f (j, 1ϵ).

The two approaches described above – ESBT and ESBN
– have a key role in the comparative analysis proposed
in this paper. These two parameters will allow us to
determine the relevance and priority of each variable in the
performance of event-based learning methods. By comparing
the performance of event-based object recognition methods
using both ESBT and ESBN, we can better understand how
the temporal and spatial sparsity of events influences the
learning of the models, which is essential for the practical
application of these systems. This, for this work, we will
analyse its performance for both event-based gesture and
event-based facial expression recognition.

B. SIMULATION/EMULATION METHODS
An intrinsic challenge in event-based gesture and facial
expression recognition is the scarcity of databases. The
availability of event-based cameras that capture only the
event stream (e.g., DVS event-based vision sensor) or those
that also capture the frames of traditional cameras (e.g.,
DAVIS event-based vision sensor) is limited, which makes
it difficult to employ a rigorous methodology to develop
new databases. To address this issue, [43] proposes the v2e
algorithm, which simulates the working principle of event
cameras to generate realistic DVS event streams.

This algorithm, illustrated in Fig. 6, uses the SuperSloMo
interpolation model to achieve high temporal resolution
and calculates the logarithm of the luminance intensity to
achieve a high dynamic range. By comparing the logarithmic
curve with the activation thresholds, the algorithm generates
emulated events and associated frames.
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FIGURE 6. V2E From video frames to DVS events pipeline, based on [43].
This method generates events from conventional frame-based video and
simulates the behaviour of a neuromorphic sensor, providing a realistic
emulation.

This approach can be useful in situations where: (i) it is
not possible to acquire real event data, (ii) it is necessary to
control the variability of the data to perform a fair comparison
between different methods, or/and (iii) the scarcity of event-
based databases is a major challenge. Then, this method
enables the evaluation of event-based algorithms on a large
collection of conventional video datasets and helps bridge
the gap between event-based and frame-based recognition
research.

IV. DATASETS
This study performs a comparative analysis of event-
based gesture and facial expression recognition methods
using several datasets. Specifically, we use two event-based
gesture benchmark databases and generate two completely
new databases for event-based facial expression recognition
using a state-of-the-art emulator. The following section
provides an overview of the databases employed for this
analysis. The databases can be accessed from the website
https://sites.google.com/uoh.cl/uoh-ris-lab/datasets.

A. EVENT-BASED GESTURE DATA
1) IBM DVS128 GESTURE DATASET
A pioneering database for event-based gesture recognition
research is DVS128 Gesture [32] –also called IBM DVS128
Gesture Dataset– developed by IBM Research, in collabora-
tion with UC San Diego and UZH-ETH Zurich. This dataset
was recorded using an Event-Based Vision Sensor (DVS128)
with a 128 × 128 spatial resolution in a controlled environ-
ment with varying lighting conditions. This combination of
challenging yet realistic recording conditions makes the IBM
DVS128 Gesture dataset a valuable benchmark for evaluating
the performance of gesture recognition algorithms. The
gestures in the IBM DVS128 Gesture dataset include hand
and finger movements, which are crucial for a wide range
of human-computer interaction applications. It is structured
into 11 hand and arm gestures classes, which are grouped into
multiple trials collected from 29 subjects under three different
lighting conditions, as partially shown in Fig. 7.
These features make the dataset representative of the

gesture recognition problem, and its relevant contribution is
evident in the 250+ literature citations and the seven state-
of-the-art methods that have achieved an accuracy of over
95% for all 11 classes, as reported in Table 1. That is why the

FIGURE 7. IBM DVS128 Gesture Dataset - Events representation with
128 × 128 spatial resolution and 33ms time window. Gestures:
(a) Right-hand wave; (b) Right hand clockwise; (c) Hand clapping;
(d) Drums; (e) Left-hand wave.

IBM DVS128 Gesture dataset is widely used as a benchmark
for evaluating new gesture recognition and classification
algorithms.

2) NavGesture DATASET
A second event-based gesture recognition dataset is NavGes-
ture [34]. It consists of recording gestures made by subjects
using a wearable device equipped with an event-based vision
sensor and an accelerometer. The gestures in this dataset
include hand and finger movements that are typically used
for navigation tasks of smart mobile devices, i.e., down
swipe, up swipe, left swipe, right swipe, select, and home
(as partially shown in Fig. 8).

FIGURE 8. NavGesture Sit Dataset - Events representation with
304 × 240 spatial resolution and 33ms time window. Gestures: (a) Swip
Left; (b) Swip Up; (c) Home; (d) Swip Right; (e) Select.

The dataset was recorded in a realistic environment using
the ATIS sensor (304 × 240 spatial resolution) with varied
background scenes (sitting for static conditions and walking
for dynamic indoor and outdoor conditions), illumination
conditions, and subject populations, making it a challenging
and representative test bed for evaluating gesture recognition
algorithms. Additionally, the NavGesture dataset provides an
opportunity to study the performance of algorithms under
different motion and gesture types.

As this is a recent contribution, the state of the art shows
that it has not been compared with other methods: only an
accuracy of 95.9% for the sit scenario and 92.6% for the walk
scenario was reported in [34]. To achieve these metrics, the
authors used a time-surface representation as a descriptor of
the spatiotemporal neighbourhood of an event and built their
own learning network.

B. EVENT-BASED FACIAL EXPRESSION DATA
In many problems, when a new sensor is made avail-
able, scarcity of databases has always been a major
issue [44]. Traditional data collection methods can be
difficult, time-consuming, and expensive. Consequently, v2e
is a valuable resource for research development in this area.
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Using these emulated event streams and literature-inspired
facial expression recognition methods makes it feasible
to address the aforementioned limitations and offer new
contributions. This will be described in the next subsection
to perform a comparative analysis of event-based facial
expressions.

1) USING v2e FOR EVENT EMULATION
In the present work, we aim to evaluate the proposed
facial expression recognition methods using two event-based
datasets. Due to the data scarcity for event-based facial
expression recognition, we synthetically generate event-
based equivalents of two frame-based facial expression
benchmarks: the CK+ and the MMI datasets. The CK+

dataset is a widely used benchmark for facial expression
recognition and contains image sequences of individuals
exhibiting various facial expressions [45]. The MMI Facial
Expression Database is another well-known benchmark,
recorded in static and dynamic conditions [46]. To convert
these frame-based image sequences into event-based data,
we employ the v2e emulation method [43], generating event
streams with high temporal resolution and dynamic range.
The parameters used in the v2emethod are detailed in Table 2.

TABLE 2. Configuration parameters adopted for the
generation/emulation of new event-based databases, using v2e for
event-based comparative analysis of gesture and facial expression
recognition.

These parameters are used to create the Event CK+ dataset
(e-CK+) and the Event MMI Facial Expression Database
(e-MMI). The event-based equivalent datasets provide a
more representative evaluation scenario for event-based facial
expression recognition algorithms than the frame-based
image sequences from CK+ and MMI. Therefore, in the
following subsections, we will describe in more detail the
databases used and their properties, as well as report visually
on the newly generated databases.

2) EVENT CK+ DATASET (e-CK+)
Facial expression recognition is an important area in com-
puter vision and has numerous applications in fields such
as psychology, sociology, and human-computer interaction.
Therefore, the taxonomic definition of human emotions in
a broad valence and arousal two-dimensional space [47]
inspired the authors of [45] for the development and release
of the Cohn-Kanade Extended image database (CK+).

The CK+ database is widely used in facial expression
recognition and was created to address the limitations of
the original Cohn-Kanade database (CK) [48], which only
contained posed expressions. The CK database includes
a diverse range of spontaneous facial expressions, with
123 subjects recorded under several scenarios. The CK+

database, on the other hand, is an extension of the CK
database and includes 93 subjects, with a greater emphasis
on capturing the transition of expressions, simplifying the
two-dimensional space of valence and arousal into seven
fundamental expressions: Anger, Disgust, Fear, Happiness,
Sadness, Surprise and Neutral (as partially shown in Fig. 9).
Also, this dataset contains 327 video sequences labelled,
recording at 30 frames per second with a spatial resolution
of 640 × 490 or 640 × 480 pixels [45].

FIGURE 9. The Extended Cohn-Kanade Dataset (CK+) [45], [48]: A
complete dataset for action unit and emotion-specified expression,
released to promote research on the automatic detection of individual
facial expressions. A few example expressions from the CK+ dataset:
(a) Anger; (b) Fear; (c) Happiness; (d) Sadness.

Both databases contain images and videos annotated with
facial landmarks and expression labels, making them valuable
resources. The CK and CK+ databases have been widely
used in benchmarking and evaluating the performance of
several facial expression recognition algorithms.

In this work, the v2e realistic event generation algorithm is
applied to the CK+ dataset to generate the Event CK+ dataset
(e-CK+), which contains both the original image sequence
and the corresponding asynchronous stream of events, for the
seven expressions classes (as partially shown in Fig. 10).

FIGURE 10. The Event-based Extended Cohn-Kanade Dataset (e-CK+): A
novel event-based dataset for emotion-specified expression. A few
example expressions from the e-CK+ dataset: (a) Anger; (b) Fear;
(c) Happiness; (d) Sadness. The images show the events projected into
the image plane.

This new dataset is a pioneering state-of-the-art database
for event-based facial expression recognition –based on a
frame-based vision benchmark– with events characterised by
their asynchrony, polarity and spatiotemporal dispersion.

3) EVENT MMI FACIAL EXPRESSION DATABASE (e-MMI)
Another relevant frame-based facial dataset is the Multi-
Modal Affect Facial Expression database (MMI) [46], [49],
an ongoing project which aims to provide large volumes of
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visual facial expression data to the facial expression analysis
community.

To address the problem of affect recognition, the MMI
dataset was conceived as a resource for building and
evaluating facial expression recognition algorithms. The
database contains recordings of the full temporal pattern of
a facial expression (in controlled laboratory conditions), and
consists of over 2900 high-resolution videos and still images
from 75 subjects, for the nine expression classes: Anger,
Disgust, Fear, Happiness, Sadness, Surprise, Scream, Bored,
Sleepy (as partially shown in Fig. 11). It is fully annotated
for the presence of facial expressions, making it a rich and
diverse resource for academic research.

FIGURE 11. The MMI Facial Expression Dataset [46], [49]. A few example
expressions from the MMI dataset: (a) Surprise; (b) Anger; (c) Happiness;
(d) Disgust.

The MMI database is particularly valuable as it contains
annotations of both static and dynamic facial expressions,
allowing for the study of subtle and nuanced expressions. Fur-
thermore, the MMI database provides multiple annotations
of each expression, including facial landmarks, action units,
and expression labels, making it a comprehensive resource
for researchers. The MMI database has been widely used
as a benchmark for evaluating the performance of facial
expression recognition algorithms and has been instrumental
in advancing the field.

Analogous to CK+, the v2e realistic event generation
algorithm is applied to build the eventMMI Extended Dataset
(e-MMI), which contains both the original image sequence
and the corresponding asynchronous event stream, for the
nine expression classes (as partially shown in Fig. 12).

FIGURE 12. The Event-based MMI Facial Expression Dataset (e-MMI): A
novel event-based dataset for emotion-specified expression. A few
example expressions from the e-MMI dataset: (a) Surprise; (b) Anger;
(c) Happiness; (d) Disgust. The images show the events projected into the
image plane.

This second new benchmark database for event-based
facial expression recognition will be fundamental for the

comparative analysis of this study, as it will give objectivity
and perspective to the analysis of the results to be reported in
the next section.

V. RESULTS AND DISCUSSION
This section presents a comparative analysis of event-based
gesture and facial expression recognition using the three
state-of-the-art classification models mentioned above: End-
to-End Learning of Representations (EST), Asynet CNN
Dense (AsyI), Asynet SSC Sparse (AsyII), and ESTM. The
performance of these models was evaluated using standard
metrics such as accuracy, and by varying two relevant
parameters: the size of the time window and the size of the
number of events in a sample.

For this purpose, we used two databases for each task:
DVS128 Gesture and NavGesture for gesture recognition,
the novel Event-based Extended Cohn Kanade (e-CK+) and
Event-basedMMI (e-MMI) for facial expression recognition.
Then, we evaluate each model in different configurations
(with corresponding databases), and later, a comparison is
reported and discussed.

A. EVENT-BASED GESTURE RECOGNITION
In the following subsections, we will analyse event-based
gesture recognition methods using two datasets: IBM’s
DVS128 and NavGesture. In these data sets, we carefully
portioned the data into time windows of different sizes
(10 ms, 33 ms and 100 ms) and event windows of different
sizes (500 events, 1500 events and 4500 events) to provide a
comprehensive examination.

1) IBM DVS128 GESTURE DATASET
This subsection provides the results of the comparative
analysis of three event-based recognition methods –EST,
AsyI, and AsyII– on the IBM DVS128 Gesture dataset.
The results are displayed in Fig. 13. To further evaluate the
performance of these methods, two key parameters have been
varied in the comparative analysis: the temporal sample size
(Fig. 13a), and the number of events per sample (Fig. 13b).
In addition, the number of samples per class was also varied,
with values ranging from 1000 to 4000.

a: REGARDING THE TEMPORAL LENGTH OF THE SAMPLE
The results of the comparative temporal analysis of the event-
based gesture recognition methods on the IBM DVS Gesture
128 database are reported in Fig. 13a.
These findings indicate that, regardless of the number of

samples per class, increasing the temporal length of the event
samples allows for better learning of the gestures’ dynamics,
as evidenced by the significant improvement in accuracy
observed in the EST method (9.1% increase from 10ms to
33ms and 2.6% increase from 33ms to 100ms). However, it is
also noted that as the length of the time window increases,
the rate of accuracy improvement decreases. In some cases,
an excessive increase in the time window may result in
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FIGURE 13. Performance evaluation of three state-of-the-art event-based recognition methods on the IBM DVS128 Gesture dataset, varying: (a) the
temporal length of the sample (10ms, 33ms, 100ms); (b) the number of events in the sample (500 events, 1500 events, 4500 events). In addition, the
number of samples per class is varied (from 1000 to 4000) to analyse its impact on the performance of the methods and to measure the trade-off with
the other parameters studied. EST refers to [5], AsyI to Asynet Dense [6], and AsyII to Asynet Sparse [6].

overfitting, as demonstrated by the decrease in accuracy
(−0.9%) reported in the AsyI method, from 33ms to 100ms.

As for the number of samples per class, Fig. 13a reveals a
cutoff point, where event-based classification methods reach
an optimal performance level, at 3000 samples per class.
Beyond this point, performance decreases due to overfitting,
where the classifier learns to fit known patterns and fails to
generalise to previously unseen data.

As for the evaluated method, the AsyII method –which
employs SSC convolution designed to leverage the sparse
and asynchronous distribution of events– demonstrates the
best overall performance, as shown in every configuration of
the comparative analysis (Fig. 13a). In particular, the AsyII
method achieves the highest accuracy (94.27%) in the 100ms
time window and 3000 samples per class configuration.

These results suggest that proper time window selection
is essential in capturing the events that effectively describe
the dynamics of the analysed gestures. The AsyII method
yields promising results, demonstrating its effectiveness in
event-based gesture recognition.

b: REGARDING THE NUMBER OF EVENTS PER SAMPLE
The results of the comparative analysis of the event-based
gesture recognition methods on the IBM DVS Gesture
128 database, as the number of events in each sample varies,
are reported in Fig. 13b.
From the above results, and analogous to the previous

comparative analysis, it is evident that increasing the number
of events results in improved learning of gestural dynamics,
regardless of the number of samples per class (e.g., in the
case of EST with 2000 samples per class, accuracy increased
by 6.9% from 500 events to 1500 events, and by 6.3% from
1500 events to 4500 events). However, it is also observed
that the percentage of new learning decreases as the number
of events increases, and an excessive increase can lead to
over-fitting, as indicated by the decrease in accuracy of

−0.3 percent for EST with 4000 samples per class from
1500 events to 4500 events.

As for the number of samples per class, Fig. 13b reveals
two cutoff points: 2000 samples per class for the event-
based recognition methods with 4500 events per sample and
3000 samples per class for the other methods. This suggests
the existence of a trade-off between the number of events in
a sample and the number of samples per class, as a sample
with a significant number of events may already hold enough
information for gesture recognition.

Once again, AsyII performed the best among the evaluated
methods but with a different configuration. The highest
accuracy of 93.24% was recorded with 2000 samples per
class and 4500 events per sample.

The above considerations indicate that an adequate event
window is key to learning the dynamics of gestures in
event-based recognition tasks.

2) NavGesture DATASET
This subsection provides the results of the comparative
analysis of three event-based recognition methods –EST,
AsyI, and AsyII– on the NavGesture dataset. The results
are presented in Table 3a and 3b for NavGesture Sit
and NavGesture Walk, respectively. To further evaluate the
performance of these methods, two key parameters have been
varied in the comparative analysis: the temporal sample size
and the number of events per sample. The number of samples
per class has been set at 3000, as it was the best value for most
methods in the IBM DVS128 Gesture dataset.

Based on the previous results, the comparative analysis
performed on the NavGesture Dataset indicates that the
three event-based recognition methods under evaluation
demonstrate better accuracy in a static scenario (as shown
in Table 3a), as opposed to a dynamic scenario (as shown
in Table 3b). This behaviour can be attributed to the
reduced complexity in identifying gesture structure events
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TABLE 3. Performance evaluation of three state-of-the-art event-based recognition methods on the: (a) NavGesture Sit dataset; (b) NavGesture Walk
dataset, varying the temporal length of the sample (10ms, 33ms, 100ms) and the number of events in the sample (500 events, 1500 events, 4500 events).
The number of samples per class has been set at 3000. The EST refers to [5], AsyI to Asynet Dense [6], AsyII to Asynet Sparse [6].

in a scenario free of external perturbations caused by the
environmental movement. The results suggest that a stable,
controlled environment improves gesture recognition by
clearly representing the underlying event structure.

For the temporal analysis of events, the best performance
for the threemethods employed is recordedwith an event time
window of 33ms. In NavGesture Sit Dataset, Table 3a reports
an accuracy of: 89.1% for EST, 93.5% for Asy I and 94.6%
for Asy II. In NavGesture Walk Dataset, Table 3b shows an
accuracy of: 88.5% for EST, 90.6% for AsyI, and 91.3% for
AsyII. However, it should be noted that as the window time
becomes shorter (10 ms) or longer (100 ms), the performance
of the methods decreases, with the presence of overfitting in
the learning phase of the algorithms becomingmore apparent.
This highlights the importance of selecting an appropriate
event sample size in event-based gesture recognition.

For the number of events in each sample, the best
performance for the three methods employed is recorded at
4500 events. In NavGesture Sit Dataset, Table 3a reports an
accuracy of: 89.5% for EST, 90.1% for Asy I and 92.3%
for Asy II. In NavGesture Walk Dataset, Table 3b shows an
accuracy of: 88.7% for EST, 90.9% for AsyI, and 91.2% for
AsyII. From these results, three preliminary analyses can be
inferred.

The first analysis shows that neither time nor event
windows consistently perform better. In the NavGesture Sit
scenario (Table 3a), using time windows with a size of
33ms resulted in higher accuracy than using event windows
with 4500 events. Conversely, in the NavGesture Walk
scenario (Table 3b), event windows with 4500 events showed
slightly higher accuracy than time windows with 33ms.
This disparity suggests that the dynamic conditions of the
environment are better captured with a fixed event window
than a time window. The second analysis focuses on the
number of events in the sample. The analysis shows that a
larger number of events –specifically 4500 events– results in
improved learning compared to smaller event sample sizes of
500 or 1500 events. The nature of the NavGesture database,
consisting of gestures related to navigation on a smartphone
device, highlights the importance of capturing enough events
to identify the gesture in action accurately. A final analysis
shows that AsyII performs best in all scenarios. In the case
of the event window for NavGesture Walk (Table 3b), this

method excels as it employs an SCC that exploits the sparse
distribution of events (91.2% accuracy).

These previous analyses illustrate that, depending on the
nature of the action and the environment under study, the
choice of the sample (either time window or event window)
will impact the performance of the recognition task.

3) LEARNING GESTURES FROM THE TEMPORAL SEQUENCE
The achieved performance with the three state-of-the-art
event-based object recognition methods indicates a high
learning rate for the IBM DVS128 Gesture and NavGesture
(Sit and Walk) database. But can this learning rate be
improved? An interesting approach is to train from the
temporal sequence of the event samples, given the correlation
between them. We employ the ESTM method described
earlier: the novel EST representation, an adapted CNN (with
a Resnet-34 as a backbone), and an LSTM. Since the LSTM
requires sequential input, three 10ms time windows and three
33 ms time windows are provided to the ESTM, as shown
in Table 4.

TABLE 4. Performance evaluation of the ESTM event-based gesture
recognition method on the: IBM DVS128 Gesture Dataset (with
11 classes), NavGesture Sit Dataset, NavGesture Walk Dataset. The
number of samples per class has been set at 3000.

Compared to the previous results (Fig. 13 and Table 3),
Table 4 shows significantly better performance in accuracy
rates for event-based gesture recognition tasks, for both the
IBM DVS128 Gesture –99.5%– and NavGesture –93.2%
and 90.9% for sit and walk, respectively– datasets. This
is due to the temporal encoding of events, which allows
for a better understanding of gesture dynamics. The EST
representation can adequately characterise the studied events,
themodified CNN can extract the spatial characteristics of the
events, and the LSTM models the temporal sequence of the
events.
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FIGURE 14. Performance evaluation of three state-of-the-art event-based recognition methods, varying the temporal length of the sample (10ms,
33ms, 100ms) and the width spatial resolution (128, 240, 346, 640), on the two new event databases: (a) the e-CK+ Dataset; (b) the e-MMI Dataset. The
number of samples per class has been set at 3000. EST refers to [5], AsyI to Asynet Dense [6], AsyII to Asynet Sparse [6].

B. EVENT-BASED FACIAL EXPRESSION RECOGNITION
In the following subsections, we will analyse event-based
facial expression recognition methods using two new
datasets: e-CK+ and e-MMI. In these data sets, we carefully
portioned the data into time windows of different sizes
(33 ms, 100 ms, and 1000 ms) to provide a comprehensive
examination. Since both databases are emulated, we also
analysed the spatial resolution of the generated events to
identify if this parameter impacts the classification method
learning.

1) e-CK+ DATASET AND e-MMI DATASET
This subsection provides the results of the comparative
analysis of three event-based recognition methods –EST,
AsyI, and AsyII– for the facial expression recognition task.
The results are presented in Fig. 14a and Fig. 14b for the
new e-CK+ and e-MMI datasets, respectively. The number
of samples per class has been set at 3000.

Based on the previous results, the following analyses can
be inferred. Firstly, and independently of the spatial resolu-
tion of the events, it is evident that the larger the temporal
size of the event sample, the better the performance of the
classifiers under study: EST, AsyI and AsyII. In particular,
the latter two methods show the best accuracy with time
windows of 1000ms, for the e-CK+ and e-MMI databases.
However, when compared to gesture recognition, the optimal
temporal sample size for facial expression recognition is
considerably larger, and this is because both databases were
emulated at a timestamp resolution of 1ms, and not at
a resolution of microseconds (µs) as it is in real event
cameras. Furthermore, the spatiotemporal evolution of facial
expressions requires a longer analysis time than gestures,
as the full sequence of deformable object dynamics needs to
be adequately described.

As regards the spatial resolution of events, it is clear
that algorithms achieve better learning rates as the spatial
resolution increases. This is consistent with facial expres-
sion recognition since identifying the corresponding facial

expressions requires a detailed analysis of each fiducial point.
Given that fiducial points are usually of very low resolution,
having a larger spatial area will allow for better analysis and
identification of each facial expression.

Finally, referring to the performance metrics, it is evident
that neither of the two problems achieves optimal accuracy.
Specifically, for e-CK+, the best method (AsyII-1000ms
with a spatial resolution of 640 × 480) fails to surpass 90%
accuracy, and for e-MMI, the best and same previous method
fails to reach 85% accuracy. For a recognition task, these
metrics are poor. However, they can be explained by the fact
that they are events emulated from frames, which do not
capture the full nature of the dynamics of facial expressions
(either by temporal and/or spatial resolution of the events).
However, as a first approach in this line of research, these
values become a baseline that we will try to overcome in the
following subsection.

2) LEARNING FACIAL EXPRESSIONS FROM THE TEMPORAL
SEQUENCE
The achieved performance with the three state-of-the-art
event-based object recognition methods indicates a good
learning rate for the e-CK+ and e-MMI datasets. But again,
can this learning rate be improved? By training from the time
sequence of the event samples, it is possible.

For this, we employ the ESTM method described earlier.
Regarding the sequential input, three 10 ms time windows
and three 33 ms time windows are provided to the ESTM,
as shown in Table 5.
Compared to the previous results (Fig. 14a and Fig. 14b),

Table 5 shows significantly better performance in accuracy
rates for event-based facial expressions recognition tasks, for
both the e-CK+ –89.1%– and e-MMI –83.7%– datasets.
The use of ESTM captures the temporal correla-

tion of the sequence of movements of facial expres-
sions. However, neither of the two methods manages to
surpass the previously mentioned thresholds (90% for
e-CK+ and 85% for e-MMI), which could be a limitation
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TABLE 5. Performance evaluation of the ESTM event-based facial
expression recognition method on the: e-CK+ Dataset, e-MMI Dataset.
The number of samples per class has been set at 3000. The spatial
resolution has been set at 640 × 480.

associated with generating emulated databases. Eventually,
increasing the temporal size of the event samples may
improve the performance of the classifiers. Nevertheless,
the emulated events probably suffer the loss of valuable
information associated with the evolution of the face
fiducial points, affecting the learning curve of the different
recognition methods under study.

In any case, it is relevant to highlight that this work
opens new possibilities for developing event-based facial
expression recognition systems in low light and high contrast
environments, setting a baseline performance for future
developments and proposals.

C. TRAINING TIMES
The massive event stream processing implies a high require-
ment of computational resources and long training times.
We used an NVIDIA®DGX-1™, a purpose-built system
optimised for deep learning. The specifications are presented
in Table 6, where GPU cores were used for event-based
database emulation (1 week for e-CK+, 1 week for e-MMI)
and the application of several classifier training techniques.

TABLE 6. Hardware specifications used for experiments and tests in
event-based facial expression recognition.

Regarding inference computation times, we used an
NVIDIA®GeForce GTX 1050 4GB, with the results for the
different methods listed in Fig. 7. We can observe that the
ESTM method takes 31.9 ms (29.8 ms more than EST and
8.5 ms more than Asynet).

TABLE 7. Methods performance. Inference times for event-based gesture
and facial expression recognition methods.

VI. CONCLUSION
This article presents a comparative analysis of deformable
object recognition, specifically focusing on gestures and
facial expressions, through spatial and temporal analysis of

events. As a contribution, it includes an evaluation of state-of-
the-art event-based methods in deformable object recognition
and introduces two new facial expression databases: e-CK+

and e-MMI.
Two highly performing methods in object recognition are

selected from the state-of the-art: EST and ResNet-34 [5],
and Asynet [6] (with dense and sparse convolutions). These
methods are evaluated on benchmark databases such as IBM
DVS 128 Gesture Dataset and NavGesture (for gestures)
as well as e-CK+ and e-MMI (for facial expressions),
yielding different results depending on the analysed variable.
To enhance the architecture’s performance proposed by [5],
LSTMmemory units are incorporated to capture the temporal
dependency of event sequence samples in a novel architecture
called ESTM. We believe that the increased accuracy of
ESTM when evaluated on the various databases, compared
to the original method, is due to EST’s ability to characterise
the spatio-temporal distribution of events properly, the CNN’s
capability to extract relevant features, and the LSTM’s
modelling of the temporal sequence.

The comparative analysis highlights how the performance
of deformable object recognition methods is affected by the
number of events in a sample, the temporal window size of the
sample, and the spatial resolution of the events. For all these
variables, it is observed that increasing these variables leads
to enhanced accuracy in both gesture and facial expression
classification. In the case of the number of events, this is
intuitive: having a sample with more events provides more
relevant information for the task. Similarly, regarding the
spatial resolution of events, having sensors with higher spatial
dimensionality allows for better identification of relevant
structures. However, in the case of the temporal window
size of the sample, it should be noted that there exists an
optimal value that yields the best performance for classifiers
(33ms). Values lower (10ms) or higher (100ms) than this
optimal value result in poorer performance of the method,
which may be due to the representation’s inability to properly
characterise the spatio-temporal distribution of events or the
presence of a deficit or surplus of events that hinder the
recognition of the respective class. Consequently, generating
event samples appropriately, considering the nature of the
problem, is emphasised. The choice between a time window
and an event window plays a significant role depending on
the specific task.

Compared with the state-of-the-art, the evaluated method
(ESTM) has two analyses. In gesture recognition, ESTM
achieves a 99.5% accuracy for the IBM DVS128 Gestures
database, being surpassed only by Inception3D+Voting
[39], which reports a 99.62% accuracy. Regarding facial
expression recognition, ESTM reports an 89.1% accuracy
for e-CK+ and an 83.7% accuracy for e-MMI. While these
performances may be low for recognition methods, they are
notable results in a field where new results are not reported.
Additionally, increasing the spatial resolution of events led to
a more than 30% improvement in ESTM’s performance on
both databases.
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For future work, the goal is to replicate this comparative
methodology in similar recognition tasks by developing
databases using different real neuromorphic sensors (not
emulated). This will enable a more comprehensive study of
the influence of various factors, such as spatial resolution,
temporal size, and the number of events in samples,
on the performance of state-of-the-art and novel methods.
Furthermore, new research lines in event-based deformable
object analysis, specifically facial analysis, and examining
influencing factors are intended to be explored.
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