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ABSTRACT In this paper, we formulate Subcarrier Assignment and Discrete Power Allocation for multi-
UAV millimeter-wave cooperative Orthogonal Frequency Division Multiple Access (OFDMA) networks
as a joint optimization problem considering the heterogeneous user data rate quality-of-service (QoS)
requirements. The formulated joint optimization problem, named Discrete Power and Subcarrier Allocation
(DPSA), is a nonconvex and mixed-integer nonlinear programming (MINP) problem, making it NP-hard to
solve. We then transform the DPSA into the Subcarrier and Power Resource Efficient Cooperative Potential
Game (SRECPG) based on game theory which facilitates distributed execution. We analyze the conditions
under which a Nash Equilibrium (NE) exists in the SRECPG and provide rigorous proof of its existence.
Furthermore, to enhance computational efficiency, we propose a BR-SSO algorithm based on better response
dynamics. BR-SSO dramatically reduces the computational burden compared to the best response dynamics
based on local exhaustive search (BRLES) while still ensuring convergence to a NE. Through extensive
simulations, we demonstrated the effectiveness of the proposed SRECPG and BR-SSO algorithms. The
results show significant improvements in throughput, fairness, and QoS guarantees compared to the baseline
schemes. Our approach offers valuable insights into the design of efficient resource allocation schemes for
multi-UAV millimeter-wave networks with varying QoS demands.

INDEX TERMS Constrained potential game, downlink multi-cell OFDMA, nash equilibrium, unmanned
aerial vehicle, blockage, millimeter-wave, resource allocation.

I. INTRODUCTION
In recent years, Unmanned Aerial Vehicles (UAVs) have
emerged as a promising solution for providing communica-
tion services in various scenarios.With their ability to operate
in remote or inaccessible areas, UAVs offer a flexible and

The associate editor coordinating the review of this manuscript and

approving it for publication was Yunlong Cai .

rapidly deployable platform that can support a wide range
of applications, including disaster response, surveillance, and
wireless communication coverage in underserved regions
[1], [2].

Orthogonal Frequency Division Multiple Access
(OFDMA), a key component of the Long-Term Evolution
(LTE), fifth-generation (5G) and 5G beyond cellular
networks, has garnered significant attention because of its
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ability to efficiently allocate subcarriers to multiple users,
thus enabling high data rates and spectral efficiency [3].
Moreover, the utilization of millimeter-wave (mmWave)
frequencies allows for a substantial increase in available
bandwidth, offering the potential to support ultra-high data
rates in wireless communication systems. The combination
of OFDMA and mmWave technologies has become a phe-
nomenon in the field of wireless communication, providing a
promising approach to overcome the limitations of traditional
wireless networks. Leveraging the advancements in OFDMA
and mmWave frequencies, further enhances the capabilities
of UAV-based communication systems [4], [5].

Recently, cooperative communication between UAVs
has been recognized as an effective means of enhancing
the performance and coverage of UAV-based networks.
By leveraging the spatial diversity and mobility of multiple
UAVs, cooperative communication can mitigate the effects
of fading channels, extend coverage area, and improve
overall system capacity. Furthermore, cooperation among
UAVs can enable advanced applications, such as joint beam-
forming and interference management, leading to improved
quality-of-service (QoS) provisions for heterogeneous user
requirements [6].

To cooperate effectively, coordination among UAVs must
be considered. However, jointly optimizing the operations of
multiple UAVs in a centralizedmanner often result in inherent
challenges and limitations. One significant drawback is the
high cost associated with backhaul communications and the
substantial control overhead required [7], [8]. As the number
of UAVs in the network increases, the amount of information
exchanged between the UAVs and the central controller esca-
lates rapidly, resulting in excessive communication delays
and network congestion. This increased control overhead
not only consumes valuable bandwidth resources but also
introduces additional latency, which can severely degrade
the real-time performance of the system. In scenarios where
strict latency requirements exist, such as in mission-critical
applications or time-sensitive communications, the central-
ized approach may not be viable.

In contrast, distributed optimization approaches offer a
promising alternative for mitigating the limitations of central-
ized control architectures [9]. In a distributed optimization
framework, each UAV operates autonomously and makes
local decisions based on its own information and the
information received from neighboring UAVs. This approach
eliminates the need for a central controller and the associated
backhaul communications, thereby reducing the cost and
control overhead significantly [10], [11].
By distributing the optimization process among UAVs,

the overall system becomes more scalable and adaptable.
Each UAV can independently optimize its resource allocation
based on local observations and consider its own objectives
and constraints. The distributed nature of the optimization
process also enhances the robustness of the system against
failures or disruptions in individual UAVs, because the

decision-making process is not dependent on a single central
entity [12].

However, the distributed nature of this optimization also
presents challenges, primarily due to the lack of global infor-
mation visibility. This is where game theory comes into play.
Game theory, especially in the context of communication
networks, offers a mathematical tool to model and analyze
interactions among rational entities or players. In our work,
game theory provides the analytical framework to model,
analyze, and solve the distributed subcarrier assignment and
discrete power allocation problem. It allows us to capture the
independent and often conflicting objectives of each UAV,
while also accounting for the inherent network dynamics and
heterogeneous QoS requirements.

Recently, game theory has gained substantial attention as
a powerful tool to address these challenges [13], [36], [37].
Game theory provides a framework to model the strategic
interactions among self-interested UAVs, facilitating the
design of distributed algorithms that can achieve opti-
mal resource allocation solutions. By incorporating game-
theoretic concepts into the design process, we can harness the
self-organizing and adaptive nature of UAV networks while
considering the heterogeneity of the QoS requirements.

A well-known game theory-related resource allocation
scheme called iterative water-filling (IWF) was first proposed
in [14], where a non-cooperative game was used to model
the spectrum management problem with each user iteratively
maximizing its own rate. This per-user optimization problem
is convex and leads to a water-filling solution. For the two-
user cases, it was proven that the Nash Equilibrium (NE)
exists and the IWF algorithm converges to the NE under
certain conditions [15], [16]. Although game theory has
already been used in some related works, we emphasize
that there may be no equilibrium exist in traditional non-
cooperative game [17]. Therefore the use of IWF is limited
under such situations. However, one specific game, called
potential game, has gained attention owing to its mathematic
properties related to NE existence [18].

Although the existing literature has paid much attention
to the power allocation to the OFDMA systems, they are all
concerned with the continuous power control problem [19],
[20]. However, the discrete power control problem has
seldom been investigated. We believe that discrete power
control is preferred because it offers two main benefits over
continuous power control: simplicity and efficiency, and
reduced signaling overhead [7]. By adjusting the transmission
power at predefined discrete levels, discrete power control
reduces the computational complexity, making it more
efficient and resource-friendly. Additionally, limited and
known power levels lead to reduced signaling overhead,
enabling more efficient communication between devices and
base stations, making it an attractive choice in various com-
munication scenarios, particularly in cellular networks [7].
Moreover, existing solutions have the disadvantage of

causing unfairness to edge users. This inequity stems from
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the fact that edge users generally experience higher path loss
compared to others, and in the resource allocation process,
the network manager tends to favor users in closer proximity
to the base station (BS) who have better channel conditions.
While some current approaches attempt to address this
fairness concern by using network-level criteria such as max-
min, they often neglect to consider the specific and distinct
needs of individual users [21], [22].
In addition to the drawbacks of the previous literature

mentioned above, ensuring the existence of a NE is the
most important aspect of all game theory-related research.
Traditional potential game theory can be applie to a problem
in which one play’s strategy does not affect the others’
feasibility strategies. As in [18], a potential game is formed
called an interference coordination game, and there are no
coupled constraints between players so a traditional potential
game can be applied. The same situation also holds in [9]
and [23], to name a few. Contrary to all these works, our
game has coupled constraints among players whichmakes the
problem harder, and the direct application of the traditional
potential game is prohibited because other players can change
their strategies to trap the current player in the unfeasible
region which can not escape whatever strategy it chooses.

A. CONTRIBUTIONS
Different to most existing optimization approaches for multi-
UAV, such as [20], [24], and [25], in this paper, we propose
a distributed algorithm based on constrained potential game
theory principles to address the aforementioned challenges in
multi-UAV millimeter-wave cooperative OFDMA networks
with heterogeneous QoS consideration. Our algorithm aims
to achieve efficient subcarrier assignment and discrete power
allocation, ensuring optimal system performance and satisfy-
ing the diverse QoS requirements of users. The contributions
of this paper are as follows:

1) We proposed a joint optimization problem named Dis-
crete Power and Subcarrier Allocation (DPSA) which
jointly optimizes the discrete power and subcarrier
allocation. The fairness and QoS are considered. Note
that the heterogeneous QoS we considered is similar
but harder than [26], which is a convex constraint and
easy to handle. In addition, the formulated problem is
nonconvex and mixed-integer nonlinear programming
(MINP), and thus is NP-hard in general, which is very
challenging to solve.

2) Owing to the existence of heterogeneous QoS con-
straints in DPSA, the ordinary potential game for-
mulation in most literature, which definitely exists
at least one NE [27], does not applicable here.
Hence, we propose a novel constrained potential game
to tackle this problem, named the Subcarrier and
Power Resource Efficient Cooperative Potential Game
(SRECPG). We analyze the conditions under which a
NE exists in our proposed SRECPG game and provide
a proof of its existence under these conditions.

3) In contrast to the current research, which uses best
response dynamics to deal with one iteration update
with each UAV, we proposed the BR-SSO algorithm
and the corresponding sequential play algorithm to
dramatically decrease the computation burden caused
by the exhaustive search. Furthermore, we demonstrate
the convergence of the BR-SSO algorithm to a NE is
ensured.

4) Extensive simulations are conducted. The results
obtained from the simulations validate the effec-
tiveness of the proposed SRECPG and demonstrate
its ability to achieve desirable system performance.
We analyzed various performance metrics of BR-SSO,
including throughput, fairness, and QoS guarantees,
and compared them with the exhaustive search and
best-play baseline schemes. The simulation results
provide insights into the benefits and advantages of
our proposed approach for multi-UAVmillimeter-wave
cooperative OFDMA networks.

Overall, our contributions include the formulation of a non-
convex and NP-hard joint optimization problem, introduction
of the SRECPG framework tailored for millimeter-wave
characteristics, the analysis of NE existence conditions, proof
of convergence for the proposed distributed algorithm, and
extensive simulations to validate the effectiveness of our
approach. Our work provides valuable insights into the design
of efficient resource allocation schemes for multi-UAV
millimeter-wave networks, considering the heterogeneous
QoS requirements.

B. POTENTIAL APPLICATIONS AND OUTLINE
The development and optimization of multi-UAVmillimeter-
wave cooperative OFDMA networks, especially with a
nuanced consideration of heterogeneous QoS, find relevance
in a wide array of real-world applications. As technology
continues to permeate every facet of modern life, the
need for advanced communication infrastructures to support
diverse data traffic requirements becomes paramount. Herein,
we outline some salient applications for our proposed
network model:

• Emergency Response and Disaster Recovery: Catas-
trophic events, such as earthquakes, hurricanes,
or floods, often result in significant infrastructural dam-
age, disrupting traditional communication networks.
In such scenarios, multi-UAV networks can swiftly
establish a temporary communication bridge. Given the
diversity of data, ranging from voice communications
among first responders to high-definition video feeds
from search and rescue drones, heterogeneous QoS
becomes essential to ensure that each data type receives
the requisite bandwidth and priority.

• Large-scale Events Broadcasting: Modern events,
be they concerts, sports fixtures, or large-scale
public gatherings, increasingly rely on technology
for enhanced experiences. With augmented reality
applications, live streaming, and real-time social media
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engagements becoming the norm, there’s a burgeoning
demand for high-bandwidth, low-latency communica-
tion. UAV-assisted networks can supplement existing
infrastructures, providing the necessary bandwidth.
The heterogeneous QoS consideration ensures smooth
streaming for live broadcasts while simultaneously
supporting other types of data traffic.

• Precision Agriculture: The agriculture sector is expe-
riencing a technological renaissance, with innovations
aiming to optimize yields and resource utilization.
UAVs play a pivotal role, offering real-time monitoring
of crops, soil health, and environmental conditions.
Some data, like high-resolution imagery, demand high
bandwidth, while others, like soil moisture readings,
have lesser requirements but might need more frequent
transmissions. The heterogeneous QoS in our proposed
network ensures each data type’s optimal transmission,
promoting efficient and informed decision-making for
farmers.

• Surveillance and Security: For applications like border
patrol, crowd monitoring during public events, or even
wildlife tracking, UAVs equipped with cameras and
sensors can provide real-time feedback to central
monitoring stations. The need for high-resolution video
feeds, often in real-time, necessitates networks with high
data rates and low latencies. Our proposed network
model, with its QoS considerations, ensures that video
feeds are seamlessly transmitted while concurrently
supporting other data types like telemetry or sensor
readings.

In summation, the proposed multi-UAV millimeter-wave
cooperative OFDMA network, with its nuanced understand-
ing of QoS considerations, finds applications in diverse
domains. Its ability to dynamically allocate resources based
on data type and requirement ensures optimal utilization,
making it a suitable choice for future communication
needs.

The remainder of this paper is organized as follows.
Section II presents the proposed system model. Section III
presents the formulation of the original joint optimization
problem. In Section IV, we describe our proposed con-
strained potential game formulation for the original problem.
We introduce some basic assumptions, based on which,
we proceed to theoretically prove the existence of NE
and the convergence of a sequential play algorithm to a
Nash equilibrium. Section V presents simulation results and
performance evaluations, and related discussions. Finally,
Section VI concludes the paper and discusses future research
directions.

II. SYSTEM MODEL
A. NETWORK MODEL
In our study, we consider a downlink scenario of a
UAV-based multi-cell Orthogonal Frequency Division Mul-
tiple Access (OFDMA) network as shown in Fig. 1. The

FIGURE 1. System model.

network comprises a set of M coordinated UAVs denoted
by U = {1, 2, . . . ,m, . . . ,M} and a set of C Mobile
User Equipments (MUEs) denoted by C = {1, 2, . . . ,C}.
Each MUE is associated with a UAV, and the communi-
cation between UAVs and MUEs occurs in a single-hop
fashion.

We assume that each UAV cell has a specific set of MUEs,
denoted as �i, where i represents the cell index. The total
number C of MUEs in the entire system is equal to the sum
of the number of MUEs in each UAV cell, given by |�i|, etc,
C = ∪

M
i=1�i. For simplicity, we assume that each MUE is

served by one UAV, and the association is determined based
on predefined rules such as received Signal-to-Interference-
plus-Noise Ratio (SINR), distance, or manual designation.
Hence, there is no overlap between the user sets �i and �j
for i ̸= j. Additionally, we assume |�i| = K for convenience
of the mathematical processing.

The universal frequency reuse deployment is assumed,
where the entire spectrum is shared among all the cells. The
available spectrum is divided into N orthogonal subchannels,
denoted as N = {1, 2, . . . , n, . . .N }. Each subcarrier has
the same bandwidth, which is assumed to be smaller than
the coherent bandwidth so that the links are subject to only
flat fading and are assigned exclusively to at most one user
in each cell, and interferences from adjacent subcarriers
or adjacent symbols are assumed to be negligible. The
channel conditions and locations of the MUEs and UAVs
are further assumed to be static throughout the duration of a
gameplay [9].

In the considered system, we define a wireless link from
transmitter i to receiver j as (i, j), where i and j belong to
the set U and C, respectively. To represent the subcarrier
assignment, we introduce the subcarrier assignment indicator
qn,τ(i,j)(t), which indicates whether subcarrier n is assigned to
the wireless link (i, j) at the τ th phase in a given time slot t .
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It can be defined as follows:

qni,j(t) =


1, if subcarrier n is assigned to wireless link

(i, j) in a time slot t
0, otherwise.

(1)

Moreover, the channel gains between UAV i and MUE j
are represented by the matrix Hn, where Hn

i,j represents the
channel gain between UAV i and MUE j on subcarrier n.

Hn
=



H1,1 H1,2 . . . H1,C
H1,1 . . . . . . H2,C

...
...

...
...

. . . . . .
. . . . . .

HM ,1 HM ,2 . . . HM ,C

 (2)

B. BLOCKAGE MODEL
In the considered network model, we consider the impact
of blockages on the UAV-to-user links. The presence of
obstacles between the UAVs and ground users can signifi-
cantly affect the received signal power and hence the overall
network performance. We modeled the effect of blockages
using a decay factor that modifies the channel gains between
UAVs and users in other cells. Although there exist more
realistic channel models [38], we use a simplified channel
model in this paper because of its mathematical simplicity.
We believe that this simplification does not significantly
affect the reasonableness of our results, given the focus of
our paper.

Let Hn
i,k (t) represent the channel gain between UAV i and

ground user k at time slot t for the n-th subcarrier. The
blockage factor, denoted as Di,k , characterizes the effect of
UAV i on the signal received by user k from other cells.
We assume that the decay factor Di,k is a function of the
blockage density between the UAV and user, with higher
density resulting in more significant blockage effects.

The modified channel gain H̃n
i,k (t) between UAV i and user

k considering the blockage effect is given by:

H̃n
i,k (t) =

1
Di,k

· Hn
i,k (t) (3)

Di,k =

{
1, if k ∈ �i (UAV to its MUE)
βblock, if k /∈ �i (UAV to other MUEs)

(4)

where βblock ∈ (1, +∞) is a predefined constant reflecting
the decay rate, with βblock = 1 represent the non-blockeage
situation and βblock → +∞ refere to the inpenetratable
blockages situation, respectively. The blockage factor Di,k
can be determined based on real-world measurements,
simulations, or empirical models. It depends on the spe-
cific environment, the presence of obstacles, and height
and position of the UAV. Furthermore, Di,k should be
updated dynamically to capture the changes in the network
environment over time.

It is essential to continuously update Di,k to capture
changes in the network environment, such as UAV mobility
and variations in obstacle density. Incorporating the blockage
model allows us to more accurately evaluate the performance
of the UAV network, considering the potential impact of
blockages on the UAV-to-user links and overall system
performance. In our study, we used a predefined blockage
factor to make sure that our framework was flexible enough to
accommodate a variety of different blockage scenarios. The
details of blockage factor measurement are out of scope of
this paper and can be a topic for future research.

C. SIGNAL MODEL
In our study, we incorporate both line-of-sight (LOS) and
nonline-of-sight (NLOS) channel components, consistent
with prevailing literature [39], [40], [41]. Our model assumes
that the channel gain remains consistent throughout a given
time slot. Let’s define Hn

i,j(t) the channel gain from i to
j in time slot t on subcarrier n. It’s essential to note that
the channels are not necessarily reciprocal, i.e., Hn

i,j(t) ̸=

Hn
j,i(t). Then the channel power gain over subcarrier n can

be expressed as:

Hn
i,j(t) = 8n

i,j(t)
∣∣gn(t)∣∣2 (5)

where 8n
i,j(t) = PLfreespace denote the large-scale fading

from i to j during time slot t , PLfreespace = DtDr
(

λ
4πdi,j(t)

)α

denotes the free space pathloss and α ≥ 2 being the pathloss
coefficient which ranges from 2 to 6. Dt = 0 dBi and
Dr = 0 dBi is the directivity of the transmitting antenna
and the directivity of the receiving antenna, respectively.
λ is the signal wavelength. gn(t) represents the independent
and identically distributed Rayleigh freqency-selected small
scale fading due to multipath propagation and satisfies
gn(t) ∼ CN (0, 1).
While our current system focuses on frequency-selective

Rayleigh fading, each subcarrier in OFDMA is narrow
enough to be considered as undergoing flat fading [26]. For
future research endeavors, exploring other fading models like
Rician [40] or Nakagami [39] might offer additional insights
into the channel characteristics.

For the sake of tractability, we follow existing works which
broadly assume perfect channel-state information (CSI).
To evaluate the performance of the system, we consider the
achievable sum rate for each MUE k in cell i. The sum rate is
calculated as the logarithm of the signal-to-interference-plus-
noise ratio (SINR) and is given by:

Ri,k

=B
∑
n∈N

log

1+ qni,kp
n
i (t)

∣∣∣Hn
i,k (t)

∣∣∣2∑
∀j∈U ,j̸=i

∑
∀m∈�j

qnj,mp
n
j (t)

∣∣∣Hn
j,k (t)

∣∣∣2+σ 2


(6)

where pni (t) represents the power allocated by UAV i on
subcarrier n in time slot t , σ 2 and B are the noise power and
subcarrier bandwidth, respectively.
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The sum-rate of cell i, denoted as Ri, is the sum of the
achievable sum-rates of all the MUEs in that cell and is given
by:

Ri =

∑
k∈�i

Ri,k (7)

III. JOINT OPTIMIZATION PROBLEM FORMULATION
We formulate the optimization problem for resource alloca-
tion in a multi-UAV network with coordinated mobile user
equipments (MUEs). The objective is to maximize the sum
rate of all MUEs in the network while considering various
constraints.

DPSA: max
P,Q

∑
i∈U

Ri (8)

s.t. Ri,k ≥ Rk ∀i ∈ U , k ∈ �i (9)
C∑
j=1

qni,j(t) ≤ 1 j ∈ �i, ∀i ∈ U, (10)

qni,j(t) = {0, 1} ∀n ∈ N , ∀i ∈ U, ∀j ∈ �i

(11)
N∑
n=1

Pni (t) ≤ PmaxUAV ∀i ∈ U (12)

Pni (t) ∈ 4, ∀i ∈ U
4 ≜ {0, ρPmax , 2ρPmax · · · ,Pmax} (13)

The optimization problem involves maximizing the overall
network throughput, defined as the sum rate of all MUEs,
while considering the following constraints:

QoS Constraint (9): For each UAV i and its associated
MUEs in�i, the achieved data rate should satisfy a minimum
rate requirement Rk . This constraint ensures that each MUE
experiences a satisfactory service level.

Subcarrier Allocation Constraint (10): The total number of
subcarriers allocated to a UAV i for communication with its
associated MUEs in �i should not exceed 1. This constraint
ensures that only one MUE exists on a specific subcarrier at
time t .

Binary Variable Constraint (11): The subcarrier allocation
variables qni,j(t) are binary and can only take values of 0 or
1. This constraint enforces the discrete nature of subcarrier
allocation.

Maximum UAV Power Constraint (12): The total power
used by each UAV i for communication with its associated
MUEs should not exceed a predefined maximum power
PmaxUAV . This constraint ensures that UAVs operate within their
power limits.

Discrete Power Allocation Constraint(13): The transmit
power Pni (t) used by each UAV i on subcarrier n at time
slot t should be selected from a predefined set 4 =

{0, ρPmax , 2ρPmax , . . . ,Pmax}, where ρ is a power level
factor, and Pmax is the maximum transmit power. This
constraint enforces discrete power allocation to enhance
power efficiency. We consider two types of discrete power

level sets: exponential power level set and uniform power
level set as in [28].
In summary, this joint optimization problem aims to

maximize the sum rate of the network while satisfying the
minimum rate requirements forMUEs, subcarrier assignment
constraints, and power allocation limitations. The solution
to this problem will provide efficient resource allocation
strategies for the multi-cell OFDMA network, optimizing the
performance in terms of achievable rates and overall network
capacity.

The joint optimization problem (8) is mixed-integer
nonlinear programming (MINP) and is known to be NP-hard
in general [29] which is very challenging to solve as the
complexity increases at least exponentially with the problem
size.

IV. DISTRIBUTED TRANSFORMATION
A. CONSTRAINED POTENTIAL GAME MODEL
We formulated the problem (8) within the framework of game
theory. Specifically, we consider a strategic non-cooperative
game, in which each player is a UAV, competes against
the others and selfishness maximizes its own cell sum rate
by choosing the power allocation and subcarrier assignment
(i.e., its strategy), while satisfying the QoS constraints of its
own cell. However, as the feasibility of QoS constraints of a
particular UAV-cell also depends on the strategies selected by
the other UAVs, the traditional potential game approach such
as [9] and [23] does not apply here, because the strategies
chosen by the other UAVs can affect the feasibility of its
QoS constraints and make them unfeasible, thus equilibrium
can not be achieved thereafter. Here we provide some new
definitions and solve this problem by using a constrained
potential game approach.

We denote the set of players U = {1, 2, . . . ,M}, which
represents the M UAVs. For each UAV i, its available
strategy Qi = {Pi, Si} is a feasible assignment of power and
subcarriers to its MUEs. Then, an eligible sub-strategy Pi and
Si of UAV imay be represented byN×|�i|matrix as follows:

Si =



s1,1 s1,2 . . . s1,|�i|

s1,1 . . . . . . s2,|�i|

...
...

...
...

. . . . . .
. . . . . .

sn,1 sn,2 . . . sn,|�i|

 (14)

where si,j ∈ {0, 1}, i ∈ N , j ∈ �i indicates the subcarrier
i is assigned to j-th MUE of cell i (not the j-th MUE of the
system). Similarly, the Pi can be defined as follows:

Pi =



p1,1 p1,2 . . . p1,|�i|

p1,1 . . . . . . p2,|�i|

...
...

...
...

. . . . . .
. . . . . .

pn,1 pn,2 . . . pn,|�i|

 (15)
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where pi,j ∈ 4, i ∈ N , j ∈ �i indicates the subcarrier i
is assigned to j-th MUE of cell i (not the j-th MUE of the
system). Let the strategy set Qi denote the set of all possible
combinations that Qi can take, that is Qi ⊆ Qi. Moreover,
a strategy profileQ can be understood as the joint strategy of
all players, that is, Q = (Qi,Q−i), where Q−i ⊆ Q−i. The
domain of Q is called the strategy space and is defined by
Q = Q1 × . . . × QM .

There are multiple definitions of NE exist according
to [30], such as Satisfaction Equilibrium, social equilibrium,
and generalized Nash equilibrium, in order to make our
manuscript more strict, we give a rigorous definition of NE
and GNE as follows:
Definition 1: A strategy profile Q∗

=
(
Q∗

1,Q
∗

2, . . . ,Q
∗
M

)
is a NE if and only if

Um
(
Q∗
m,Q∗

−m
)

≥ Um
(
Qm,Q∗

−m
)
, ∀m ∈ U ,

where M = |U | denotes the cardinality of U , Q∗
−m =(

Q∗

1,Q
∗

2, . . . ,Q
∗

m−1,Q
∗

m+1, . . . ,Q
∗
M

)
are the strategies

selected by all the other players except m. NE indicates no
one has the intention to change its strategy since it cannot
increase its utility unilaterally [23].

A NE of the game is reached when each UAV, given
the strategy profile of the others, does not get any sum
rate increase by unilaterally changing its own strategy, still
keeping the QoS constraints satisfied. Stated in mathematical
terms, the game has the following structure:

Pi and Si are the power and subcarrier strategy sets of
user i, and Ui(·) is the i th user utility function. Each user
selects a power level Pi such that Pi ∈ Pi and a subcarrier
assignment Si such that Si ∈ Si. Let the power vector P =

(P1, . . . ,PN ) ∈
−→
P denote the outcome of the game in terms

of the selected power levels for all users, where
−→
P is the set

of all feasible power vectors. Furthermore, let the subcarrier
vector S = (W1, . . . ,WN ) ∈

−→
S denote the outcome of

the game in terms of the selected subcarrier shares of all
users, where

−→
S is the set of all feasible subcarrier vectors.

The resulting utility for the i th user is Ui (P,S; (5P, 5W )).
An alternative notation Ui (Pi,Si,P−i,S−i; (5P, 5W )) can
also be used to emphasize that the i th user has control
only over its own power and subcarrier strategies Pi and
Si, respectively. In this sense, S−i and P−i denote vectors
consisting of elements of the power P and the subcarrier S
excluding the i th element.
Definition 2: A constrained potential game G is the N

players non-cooperative game with payoff vector

G =
[
U, {Qk}k∈U , {Uk}k∈U , {fk}k∈U

]
(16)

where U = {1, 2, . . . ,m, . . . ,M} is the set of players
(i.e., UAVs), Ql = Sl ⊗ Pl is the set of available joint
power and subcarrier allocation strategy for player l, and
Ul is the utility function of player l. where Sk = {0, 1}
is the available subcarrier switching strategy for player k ,
Uk is the utility function of player k , and fk represents a
correspondence function for satisfaction of the constraint.

An strategy profile of all the players is a vector, denoted by
Q = (Q1,Q2, . . . ,QK ) ∈ Q, whereQ = Q1⊗Q2⊗· · ·⊗QK
represents the joint strategy space for all the players. Besides,
the strategy profile of all the players excluding k is denoted
by Q−k = (Q1, . . . ,Qk−1,Qk+1 . . . ,QK ) ∈ Q−k , where
Q−k = Q1⊗ · · · ⊗Qk−1 ⊗Qk+1 ⊗ · · · ⊗QK .

fi (Q−i) ≜ {Qi ⊆ 9, Ri(Qi,Q−i) ≽ Ri}

where 9 is the feasible space which satisfy the con-
straints (10)-(13), obviously 9 ⊆ R2MN

+ . Ri is the QoS
minimum rate requirement vector in cell i whereRi ⊆ R�i

+ .
As in the mmWave network, we can assume the interfer-

ence from other UAVs is negligible owing to the distance
and blockages. So we can assume SINR ≫ 1 (Specifically
when the SNIR is low, the following approximation obtained
by Taylor expansion holds [31] : log2(1 + SNIR) ≈

SNIR
ln 2 .),

then (7) can be transformed to the following:

R̃i = B
∑
k∈�i

∑
N∈N

log

×

 qni,kp
n
i (t)

∣∣∣Hn
i,k (t)

∣∣∣2∑
∀j∈U ,j̸=i

∑
∀m∈�j

qnj,mp
n
j (t)

∣∣∣Hn
j,k (t)

∣∣∣2+σ 2

 (17)

The unity function of cell i is defined as

Ui(Qi,Q−i) = R̃i (18)

= ϕi(Qi) − χi(Q−i) (19)

where ϕi(Qi) = B
∑
k∈�i

∑
N∈N

log(qni,kp
n
i (t)

∣∣∣Hn
i,k (t)

∣∣∣2),
χi(Q−i) = B

∑
k∈�i

∑
N∈N

log(
∑

∀j∈U ,j̸=i
∑

∀m∈�j
qnj,mp

n
j (t)∣∣∣Hn

j,k (t)
∣∣∣2 + σ 2). Qi is the power and subcarrier allocation

strategy of user i, Q−i contains the strategies of all the other
users. Obviously, the game is an identical-interest game.

Then the UAV cooperate sum rate game can be expressed
as:

max
Qi

Ui(Qi,Q−i) (20)

s.t.Qi ⊆ fi (Q−i) (21)

TheGNEunder pure strategy in games of normal formwith
a constrained set of actions can be defined as follows:
Definition 3 (Generalized Nash Equilibrium): AUAVallo-

cation profile Q∗ is a pure strategy GNE of the game if and
only if

∀i ∈ M,Qi ⊆ fi (Q−i) (22)

Ui(Q∗
i ,Q−i) ≥ Ui(Qi,Q−i) (23)

Let us define Fk = {(Qk ,Q−k) : Qk ∈ fk (Q−k)}. The set
Fk determines the action profiles which can be observed as
outcomes of the game G, when only player k is allowed to
play actions belonging to the set fk (Q−k) given any action
profile Q−k . Then, F̂ =

⋃
k∈M Fk contains all possible

unilateral deviations, while F =
⋂

k∈M Fk corresponds to
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the set of all possible (feasible) outcomes of the game G.
Notably, the definition ofF coincides with the constraint (22)
for the GNE.
Definition 4: (Sum Rate Exact Constrained Poten-

tial Game (SRECPG)): The sum rate game G =[
U , {Qk}k∈U , {Uk}k∈U , {fk}k∈U

]
is an exact constrained

potential game if there exists a function 8 : F̂ → R such
that for allQ ∈ F̂ , it holds that, ∀k ∈M, and Qk ⊆ fk (Q−k)

Uk
(
Q′
k ,Q−k

)
−Uk (Qk ,Q−k)=8

(
Q′
k ,Q−k

)
− 8 (Qk ,Q−k)

The function 8 is called an exact potential function for the
constrained game G.
Theorem 1: The sum rate game G =

[
U, {Qk}k∈U ,

{Uk}k∈U , {fk}k∈U
]
is an exact constrained potential game.

Proof 1: First, we construct a potential function as

8 (Qk ,Q−k) =

∑
i∈U

ϕi(Qi)

s.t. (22) (24)

Suppose that an arbitrary player, say k , unilaterally changes
its strategy fromQk toQk ′ ⊆ fk (Q−k), then the change of the
potential function caused by this unilateral change is given by

8 (Qk ′ ,Q−k) − 8 (Qk ,Q−k)

= ϕk (Qk ′) +

∑
j̸=k

ϕj
(
Qj
)
− ϕk (Qk) −

∑
j̸=k

ϕj
(
Qj
)

= ϕk (Qk ′) − ϕk (Qk) (25)

At the same time,

Uk
(
Q′
k ,Q−k

)
− Uk (Qk ,Q−k)

= ϕk (Q′
k ) − χk (Q−k ) − ϕk (Qk ) + χk (Q−k )

= ϕk (Qk ′) − ϕk (Qk) (26)

In other words, the change in individual utility function
caused by any player’s unilateral deviation is equal to
the change in the potential function. Thus, according
to the definition, G is an exact constrained potential game.
This concludes the proof.

B. NASH EQUILIBRIUM ANALYSIS
Theorem 2 (Existence): The exact constrained potential

game G =
[
U, {Qk}k∈U , {Uk}k∈U , {fk}k∈U

]
with potential

function 8 : F̂ → R, has at least one GNE in pure strategy
if the following sufficient conditions satisfied:

N ≥ max |�i| ∀i ∈ M (27)

Pmin(t) ≥
(MPmax |Hmax(t)|2 + σ 2)eRmin

|Hmin(t)|2
(28)

where Hmin(t) = minHn
i,k (t), ∀n ∈ N , i ∈ M, k ∈ 8i,

Hmax(t) = maxHn
i,k (t), ∀n ∈ N , i ∈ M, k /∈ 8i, Hmin(t) ≫

Hmax(t) in high SINR regime. Pmin(t) ∈ 4\{0} is the lowest
power of the total discrete power set 4 excluded the zero
element andRmin = minRk , ∀k ∈ C.

Proof 2: First, we prove there exists at least one the
feasible outcome for the game As we are in high SINR,
we have

∑
N∈N

log

1+

qni,kp
n
i (t)

∣∣∣Hn
i,k (t)

∣∣∣2∑
∀j∈U ,j̸=i

∑
∀m∈�j

qnj,mp
n
j (t)

∣∣∣Hn
j,k (t)

∣∣∣2+σ 2


≥

∑
N∈N

log

 qni,kp
n
i (t)

∣∣∣Hn
i,k (t)

∣∣∣2∑
∀j∈U ,j̸=i

∑
∀m∈�j

qnj,mp
n
j (t)

∣∣∣Hn
j,k (t)

∣∣∣2 + σ 2


≥ log

 qni,kp
n
i (t)

∣∣∣Hn
i,k (t)

∣∣∣2∑
∀j∈U ,j̸=i

∑
∀m∈�j

qnj,mp
n
j (t)

∣∣∣Hn
j,k (t)

∣∣∣2 + σ 2


≥ log

 qni,kp
n
i (t)

∣∣∣Hn
i,k (t)

∣∣∣2
MPmax |Hmax(t)|2 + σ 2


≥ log

(
Pmin(t) |Hmin(t)|2

MPmax |Hmax(t)|2 + σ 2

)
≥ Rmin (29)

After somemath manipulation, (29) can be transformed as:

Pmin(t) |Hmin(t)|2 ≥ (MPmax |Hmax(t)|2 + σ 2)eRmin (30)

Then it is easily seen the following:

Pmin(t) ≥
(MPmax |Hmax(t)|2 + σ 2)eRmin

|Hmin(t)|2
(31)

We can seen Si[j, k] =

{
1, (j = k)
0, otherwise.

,Pi[j, k] ={
Pmin(t), (j = k)
0, otherwise.

is a feasible solution, i.e., {Qi}i∈U =

{Pi, Si} ∈ F . Thus, there exists at least one the feasible
outcome for the game.

Then the first part of theorem is proved. Next, wewill prove
the second part.

Now, ∀k ∈ K, any unilateral deviation of player k from
Q0 leads to an action profile Q′

=
(
Q′
k ,Q−k

)
∈ Fk , i.e.,

Q′
k ∈ fk (Q−k). Because the correspondence function fk is

defined to guarantee that the QoS constraints are satisfied in
its cell, the unilateral deviation from a feasible action profile
Q0 is also a feasible action profile. Thus,Q1

=
(
Q′
k ,Q−k

)
∈

F . Moreover, since Q′
k ∈ fk (Q−k), according to Theorem 1,

we have:

Uk
(
Q′
k ,Q−k

)
− Uk (Qk ,Q−k)

= 8
(
Q′
k ,Q−k

)
− 8 (Qk ,Q−k) (32)

Therefore, Uk
(
s′k , sDk

)
≥ Uk

(
sk , sDk

)
results in

8
(
s′k , s−k

)
≥ 8 (sk , s−k). Furthermore, owing to the nature

of game, player k unilaterally deviates its strategy from
the original strategy sk to s′k only when Uk

(
s′k , sDk

)
≥

Uk
(
sk , sDk

)
. Hence, we have 8

(
s′k , s−k

)
≥ 8 (sk , s−k), i.e.,

8
(
s1
)

≥ 8
(
s0
)
. In this way, unilateral deviations of all

the players would achieve such a feasible improvement path
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{
s0, s1, s2, . . .

}
⊆ F , which conforms to 8

(
s0
)

≤ 8
(
s1
)

≤

8
(
s2
)

≤ · · · .
In addition, because the number of feasible strategy

profiles is finite
(
|F | ≤ 2|K|

)
, the above improvement path

must be finite and terminate in one pure strategy GNE point
s∗, where no player could unilaterally deviate to increase its
utility, still keeping all the system QoS constraints satisfied.
Moreover, each GNE maximizes the potential function 8 in
the feasible region, either locally or globally.
Theorem 3: For the formulated exact constrained potential

games G, each GNE locally or globally maximizes the
network sum rate under the QoS constraints, and the best
GNE is the global optimum for maximizing the network sum
rate.

Proof 3: According to the definition of GNE, for an
arbitrary GNE Q∗, we have Qi∗ ⊆ fi

(
Q∗

−i

)
. Then, based

on the definition of correspondence fi, we know that all the
GNE are in the feasible region. Besides, we have proved in
Theorem 2 that all GNE are the maximizers of the potential
function 8 in the feasible region, either locally or globally.
Furthermore, according to Eq. 17, when GNE is reached,
the sum of all the players’ utility functions is approximately
equal to the sum rate of the network in high SINR regime.
In addition, maximizing the potential function 8 is equal
to maximizing the sum rate of the network. Therefore, each
GNE of the game G locally or globally maximizes the
network sum rate under the QoS constraints and the best GNE
is the global optimum for maximizing the network sum rate.

C. BETTER RESPONSE DYNAMICS BASED ON BR-SSO
Definition 5: For player k , the best response strategyQk is

Qk = argmax
Q∈Qi

Ui(Qi,Q−i) (33)

For one play k , selecting the best strategy requires enumer-
ating all the states in state space Qk . This is formidable
even when k is not large, in the following, we provide some
lemmas and theorems to illustrate the motivation of using
BR-SSObetter response dynamics to decrease the complexity
of best response play.
Definition 6: (ℑ matrix) is a N × |�i| matrix. For all the

MUEs in a UAV cell i, we can compare the elements in the
ℑ matrix to decide which link is most appropriate to increase
the power level among all the other links.
Lemma 1: For player i, give all the other players’ strate-

gies, the best response transmit power vector P∗
i will have at

least one component equal to Pmax if all the other players are
not changing their current feasibility status.

Proof 4: First, we define a level-up operator π as

π (Pk ) =

{
Pk + ρPmax , ∀i ∈ M,Qi ⊆ fi (Q−i)

Pk , otherwise.
. From (7)

we have that, for Pi ∈ P:

Ri(π (Pi))

=

∑
k∈�i

∑
N∈N

× log

1+

qni,kπ (p
n
i (t))

∣∣∣Hn
i,k (t)

∣∣∣2∑
∀j∈U ,j̸=i

∑
∀m∈�j

qnj,mp
n
j (t)

∣∣∣Hn
j,k (t)

∣∣∣2 + σ 2


≥ Ri(Pi) (34)

Thus, we can always increase the sum rate Ri, by increasing
all components of Pi by one level using the level-up operator
π , until one component hits the boundary Pmax or one of the
other player’s strategy feasibility is violated. Hence, the best
response will have at least one component equal to Pmax , if all
the other players are not changing their current feasibility
status as the result of the current player’s strategy change.
Definition 7: (Subcarrier Switch Operator (SSO)): is a

switch operator on the subcarrier assignment vector of a UAV
i which satisfy the following equations:

SSO(Si) = swap(Si[i, k ′], Si[i, k]) (35)∣∣∣Hn
i,k ′ (t)

∣∣∣2∑
∀j∈U ,j̸=i

∑
∀m∈�j

qnj,mp
n
j (t)

∣∣∣Hn
j,k ′ (t)

∣∣∣2 + σ 2

≥

∣∣∣Hn
i,k (t)

∣∣∣2∑
∀j∈U ,j̸=i

∑
∀m∈�j

qnj,mp
n
j (t)

∣∣∣Hn
j,k (t)

∣∣∣2 + σ 2
,

(36)

Si[i, j′] = 0, Si[i, j] = 1,Qi ⊆ fi (Q−i) ∀i, ∀j, (37)

It can be seen the SSO always makes the MUE that has the
best subcarrier gain obtain as many subcarriers as possible
with the other MUEs satisfying QoS constraints.
Proposition 1: With the strategies of other players’ being

fixed, that is, Q−i, the payoff of player i can be improved,
that is, Ui(Q′

i,Q−i′ ) ≥ Ui(Qi,Q−i), if we use SSO on the
subcarrier policy of it, that is, S ′

i = SSO(Si).
Proof 5: Let us assume two subcarriers of MUE j and k

is switched after the SSO, from (17) we can easily derive:

R̃i,k ≥ R̃i,j (38)

then according to (7), we can concluded that R̃k ≥ R̃kj, which
proved the proposition.

Based on the above analysis, we propose our Better
Response algorithm based on SSO(BR-SSO) for player k .
First, we update the subcarrier policy in player k through
SSO, then the ℑ matrix is formed based on the result matrix
of SSO. The algorithm is then iterated through the ℑ matrix
to select the best subcarrier to increase the power level.
If the power does not reach the maximum on the currently
selected subcarrier, we will keep leveling up until it reaches
themaximumor the total power constraint is violated. Finally,
the operated link is deleted from ℑmatrix and the second best
link will be selected to do the same operations, the whole
process will end until all the suitable links are operated or
the violation of power constraint
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D. ITERATIVE ALGORITHM TO FIND NE
We now address the method used to obtain the NE solution.
As stated in theorem 2, convergence for SRECPG is ensured
and can be obtained through a sequential best-response
dynamic among the players. The algorithm 2 summarizes the
steps of the algorithm.

Algorithm 1 Better Response Algorithm Based on SSO(BR-
SSO) for Player k

Require: initial strategy Q0
k ; MUE index h = 0; Subcarrier

index n = 1; Pmax , PmaxUAV
Ensure: feasible Qfk = {S fk ,P

f
k}

1: update the subcarrier policy in player k through SSO:
S0k = SSO(S0k )

2: obtain the ℑ matrix
3: while n! = N do
4: find the index h of the maximum element in ℑ{n}
5: if Pk [n, h] ≤ Pmax then
6: while

∑N
n=1 Pk [n, h] + ρPmax ≤ PmaxUAV do

7: Pk [n, h] = π (Pk [n, h])
8: end while
9: end if

10: if Pk [n, h] > Pmax then
11: break
12: end if
13: n = n+ 1
14: Update ℑ by removing element {n, h}
15: end while

We initialize the game with a random subcarrier assign-
ment and power allocation for each player. This is likely to be
a non-equilibrium state, and the first player will take action
to search for improvement in utility value by looking for a
better response strategy based on SSO after observing the
opponent’s response.
Theorem 4: The iterative process of Algorithm 2 con-

verges to a GNE of the game, namely, a stationary point of
the sum rate maximization problem (8).

Proof 6: The proof is similar to the proof in [32], so is
omitted here.

V. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, we introduce the computational complexities
of both the best response dynamics based on local exhaustive
search (BRLES) and BR-SSO dynamics, followed by a
comparative overview. Subsequently, we delve into an
in-depth analysis of the sequential play algorithm 2 in
the context of these dynamics. To conclude, we provide a
summary and highlight key observations drawn from our
study.

First, we have the following assumption:

• There are N subcarriers.
• |�i| is the number of users in UAV cell i.

Algorithm 2 Sequential Play Algorithm
Require: maximum number of iterations Itermax ; iteration

index i = 0; player index k = 1; PMAX ,PMaxuav , P
Max
BS

Ensure: feasible Qf = {S f ,Pf }
1: select the update order monotonic increasing with player

index k
2: set the initial strategy Q0 according to theorem 2
3: repeat
4: while k! = M do
5: update Qik according to algorithm 1
6: Qi+1

k = Qik
7: k = k + 1
8: end while
9: if Qi+1

== Qi then
10: Convergence=True
11: else
12: Convergence=False
13: i = i+ 1
14: k = 1
15: end if
16: until Convergence=True OR Itermax is reached

• Each subcarrier has discrete power levels taken from the
set 4, and the size of this set is |4| =

Pmax

ρPmax + 1, due to
the increments of ρPmax up to Pmax.

A. COMPLEXITY OF BR-SSO DYNAMICS
First, we analyze the complexity of BR-SSO dynamics
algorithm 1 in detail as follows:

1) Initialization: The initial strategy can be set according
to theorem 2 which has the complexity of O(1).

2) Step 1 (SSO): The complexity of the SSO involves
checking conditions for each potential switch. Each
subcarrier is compared with every other, then the
complexity is O(N 2). Furthermore, SSO should con-
sider the different power levels in 4. In a worst-case
scenario, where each potential switch checks each
power level, the complexity could rise toO

(
N 2

× |4|
)
.

3) Step 2 (Obtaining the ℑ matrix): Based on the SSO
result, we can formulate ℑ matrix with the complexity
of O (N × |�i|).

4) Steps 3-15 (Main Loop):
• The ‘While’ loop’s iterations are determined by the
subcarrier index n. Assuming it iterates N times in
the worst case, its complexity is O (N ).

• Step 4: Finding the index h of the maximum
element can be done in O(N × |�i|).

• Steps 6-8: Given the power levels, the inner while
loop for updating the power might run up to |4|

times in the worst case, making its complexity
O (|4|).

• Steps 10-14: The complexity is O(1).

Combining the loop structures we can compute the
complexity of themain loop as:O (N×(|�i| × N+|4|).
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Based on the above analysis, we can deduce the total
complexity of BR-SSO dynamics as follows:

OBR−SSO = O
(
N 2

× |4|

)
+ O (N × |�i|)

+ O (N × (|�i| × N + |4|)

This is an upper-bound estimate for the worst-case
scenario. Actual run-times might be lesser depending on
specific conditions and optimization measures applied to the
implementation of the algorithm.

B. COMPLEXITY OF BRLES DYNAMICS
Next, we analylize the complexity of BRLES dynamcis.
The BRLES is a local exhausted search method which will
enumerate all local states of current UAV player’s strategy
space. So we can come up with the following two aspects:

• Subcarrier Assignments: Each of the N subcarriers
can be assigned to any of the |�i| users or remain
unassigned. This leads to (|�i| + 1) possibilities for
each subcarrier. So, for all subcarriers, the possibilities
become (|�i| + 1)N .

• Power Assignments: For each subcarrier-user assign-
ment, the power level on that subcarrier can take any
value from the set 4. Given the power level set, there
are |4| possible power levels, so the possibilities for all
subcarriers are |4|

N .
Combining subcarrier and power assignments for each

UAV, the total possibilities are: (|�i| + 1)N × |4|
N .

For exhaustive search, each possibility must be evaluated,
so the complexity for a singleUAV isO

(
(|�i| + 1)N × |4|

N
)
.

However, if there are multiple UAVs, the total complexity
remains the same since each UAV explores its own local
search space exhaustively.

In summary, the BRLES complexity for a single UAV i
is: OBRLES = O

(
(|�i| + 1)N × |4|

N
)
. It’s worth noting that

this complexity can grow very quickly as N or |�i| increases,
making the algorithm computationally demanding.

C. COMPLEXITY COMPARISON
Nowwe give the detailed comparison of BRLES andBR-SSO
complexities from different aspects.

1) Growth with Respect to N (Subcarriers):
• In BR-SSO, the complexity grows polynomial with
the number of subcarriers N . As the number of
subcarriers increases, the time taken by BR-SSO
would increase in a polynomial fashion.

• In BRLES, the growth is exponential with respect
to N . Even a small increase in N can cause
a significant increase in complexity, making the
algorithm computationally very expensive.

2) Growth with Respect to |�i| (Users in UAV cell i):
• In BR-SSO, the complexity grows linearly with
the number of users in the UAV cell. So, the more
users you have in a given cell, the longer it will

take to compute, but the growth is predictable and
manageable.

• In BRLES, the complexity grows exponentially
with the number of users. This means that adding
even a few users can drastically increase the time
taken by the algorithm. If the number of users is
large, this method might not be practical.

3) Growth with Respect to |4| (Power Levels):
• Both algorithms have a similar growth pattern with
respect to |4|. In BR-SSO, it grows linearly, and
in BRLES, it grows exponentially with N , but the
base of the exponential growth is determined by
|4|.

4) Practical Implications:
• Scalability: BR-SSO is much more scalable than
BRLES. As the system parameters like the number
of subcarriers or users increase, BR-SSO remains
computationally feasible, while BRLES quickly
becomes impractical.

• Solution Quality: While BR-SSO is computation-
ally more efficient, it may not always find the
global optimal solution since it uses a heuristic
search. On the other hand, BRLES, being an
exhaustive search, will always find the global
optimal solution if given enough time. This
implies a trade-off between solution quality and
computational efficiency.

• Real-time Applications: For real-time applications
where computational efficiency is crucial, BR-
SSO would be more suitable. BRLES might be
more appropriate for scenarios where obtaining
the global optimum is critical, and computational
resources/time are abundant.

D. COMPLEXITY OF SEQUENTIAL PLAY ALGORITHM
We then analyze the complexity of our sequential play
algorithm 2 when choosing the BR-SSO and BRLES
dynamics, respectively, as follows:
1) Initialization:

• The initialization steps, including setting the
iteration index, player index, and other parameters,
have constant time complexities, represented as
O(1) operations.

• Setting the initial strategy according to theorem 2
has a complexity denoted as O(1).

2) Main Iterative Process:
• The algorithm comprises nested loops: an outer
‘repeat-until’ loop and an inner ‘while’ loop.

3) Inner While Loop:
• This loop iterates over all players (UAVs), totaling
M . Thus, this loop runsM times.

• Inside this loop, the most intensive computa-
tional step is the strategy update using either
the BR-SSO algorithm or BRLES. Depending on
which algorithm is applied, the complexity varies.
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4) Outer Repeat-Until Loop:
• This loop’s iteration count isn’t explicitly detailed,
but it continues until convergence. In a worst-case
scenario, it runs for the maximum iteration count,
represented as Itermax.

5) Aggregated Complexity:
• With the BR-SSO strategy update, the overall
complexity is O(Itermax × M × OBR−SSO), where
OBR−SSO = O

(
N 2

× |4|
)

+ O (N × |�i|) +

O (N × (|�i| × N + |4|)

• Using BRLES for the update, the complexity is
O(Itermax × M × OBRLES), where OBRLES =

O((|�i| + 1)N × |4|
N ).

E. ANALYSIS AND INSIGHTS
This subsection provides a detailed examination of the
computational complexities associated with the BR-SSO
and BRLES strategies, as well as the implications of these
complexities for the operational feasibility of the Sequential
Play algorithm.

• BR-SSO Dependency: When choosing BR-SSO for
the strategy update, the complexity scales polynomial
with Itermax, M , N , |�i|, and |4|. This denotes a
feasible computational growth, potentially fitting for
larger systems.

• BRLES Dependency: Choosing BRLES showcases
an exponential complexity growth concerning N and
possibly M . This makes the Sequential Play algorithm
much more computationally demanding with BRLES,
especially as N or M rise.

• Operational Insight: The algorithm primarily aims
for convergence via sequentially updating players’
strategies. However, the selection between BR-SSO and
BRLES can greatly influence its operational feasibility
in real-time systems. System designers should weigh
the trade-offs between optimality (with BRLES) and
computational efficiency (with BR-SSO) based on their
application and the computational resources at their
disposal.

VI. NUMERICAL RESULTS
In this section, we assess the system’s performance through
simulation studies.

Our simulated environment consists of 5 UAVs and a total
of 50 MUEs. To simplify the representation and focus on
the core aspects of our research, each UAV is paired with a
set of 10 MUEs, thereby forming a distinct UAV cell. It’s
pertinent to note that this association between MUEs and
UAVs is predefined for the purpose of this simulation and
does not reflect a limitation of the proposed system.

The MUEs are considered static and are spread randomly
across a square area measuring 100×100M2. Similarly, while
UAVs operate at a predetermined altitude, their horizontal
positioning follows a random distribution within the same
square region, as depicted in Fig. 2. Blockages, which can

impact the communication, are modeled as described in
section II-B.
For the reader’s sake, the main system parameters are

summarized in Table 1.

FIGURE 2. Simulation Network in a one-shot game (blockages are
omitted).

TABLE 1. Basic simulation settings.

A. CONVERGENCE AND OPTIMALITY
We demonstrate the convergence of the proposed constrained
potential game under two scenarios, the BR-SSO dynamics
and the best response dynamics via a one-shot simulation (see
Fig. 2). The convergence curve of the proposed constrained
potential function is shown in Fig. 6. One iteration indicates
the algorithm 2 finishes one loop where each UAV player
played for one time. It can be observed from the figure that the
potential function satisfies themono-increasing property with
each iteration. The value of the potential function under best
response dynamics has greater increase changes compared
to the BBR-SSO dynamics within each iteration, and the
potential function converges at iteration 24 with a higher
value than the corresponding BBR-SSO dynamics, which
converges at iterations 38 with a lower function value. This
is coherent with the dynamics properties, wherein the best
dynamics, the best response is achieved by an exhaustive
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search of the state space, resulting in a bigger increase in
the utility value, thus leading to the same bigger increase
in the potential function value. The BR-SSO dynamics are
different in that each player only selects a better response
within iteration according to algorithm 1, thus leading to less
increase amount.

FIGURE 3. Convergence of separate player’s utility function under the
BRLES dynamics.

FIGURE 4. Convergence of separate player’s utility function under the
BR-SSO dynamics.

The convergence graph of each UAV player’s utility func-
tion under best response dynamics based on local exhaustive
search (BRLES) and BR-SSO dynamics is illustrated in the
Fig. 3 and Fig. 4, respectively. Each step in the graphs
represent a utility value change caused by each play of its
own or the other players, that is, the UAV player 0 played
at step 0, so the value of the utility function of player 0 is
increasing, while in steps 1 to 4, it does not play and the
value is increasing or decreasing, depending on the other
players’ plays. Note the other player’s actions can lead to
the decrease or increase in UAV player 0 because all players
play in their own interests. Note the fluctuations of UAV
player 0 do not affect the convergence of the algorithm,
although the fluctuations may slow down the convergence

of it. Also, we can notice that the increased amount of
all UAV players in one iteration is equal to the potential
function value increase in the Fig. 6 which is consistent
with the theoretical analysis. We also plot the system sum

FIGURE 5. Convergence of system sum rate under different algorithm
settings.

rate under different algorithm settings, as shown in Fig. 5.
The convergence curves of BR-SSO, the best response local
exhaustive search (BRLES), and the globally optimal solution
are presented for comparison. The results were obtained using
a single simulation trial to capture the convergence behavior.
The globally optimal solution is plotted by an exhaustive
search to evaluate the optimality of our proposed algorithm.
It can be seen both BBR-SSO and the BERLES result
in local optimum, approximately 162Mbps and 151Mbps,
respectively, whereas the global optimum point could only be
found through the global exhaustive search method, which is
approximately 175Mbps, approximately.

Moreover, as shown in Fig. 5, the network sum rate of
the two algorithms is updated in each iteration, and both
significantly improve at the convergence time. Furthermore,
our proposed BR-SSO algorithm converges slower than the
BRLES algorithm, which coincides with the results in Fig. 6,
because the better response dynamics do not need to find
the optimal solution at each play, and hence has lower
complexity.

B. IMPACT OF DIFFERENT BLOCKAGE FACTOR
PARAMETER
In this subsection, we illustrate the effect of blockage factor
parameter Di,k on the performance of the system. First,
we plot the system sum rate of BR-SSO and BRLES under
different blockage factor settings. It can be seen from the
Fig. 7, the greater the blockage factor amount, the higher
the system sum rate. When Di,k = 1, the system has
the lowest sum rate under all dynamics responses. This
is because the interference from neighboring UAV cells
is significant, causing a large degradation of the sum rate
within one UAV cell. This shows that the mmWave UAV
cooperative system is not suitable for dense deployment in
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FIGURE 6. Convergence of potential function.

our network model. Note such result is not contradictive to
other literature, such as [9], [33], and [34], where the cell area
is not crossing with each other. With the increase of decay
rate βblock, the blockage factor increased accordingly, which
indicates the blockage effect becomes more obvious, as can
be seen from the Fig. 7, the system sum-rate increased rapidly
within the first a few increased amount of blockage factor.
When the number reached approximately 160, the system
nearly reached the maximum sum-rate point. Subsequently,
the increasing trend becomes slower, and it converges
after the blockage factor reaches approximately 200, where
the system sum rate no longer increases anymore. This
phenomenon shows that the blockages play a positive role in
the system performance because the interference from nearby
UAVs is almost completely blocked. The whole cooperative
multi-UAV systemwas reduced to an independent multi-UAV
system. Subsequently, the optimization problem becomes
convex where only one optimal point exists.

FIGURE 7. System sum rate under different blockage factor settings.

To shed light on why the system sum rate converges
after the blockage factor reaches a certain threshold, we also
draw the sum-rate and noise power relation graph in

Fig. 8 and Fig. 9. It can be seen that the sum rate under
BR-SSO dynamics as well as the BRLES dynamics all
increase with a decrease in the noise power spectral density
(PSD). In BR-SSO dynamics, with a decrease in noise
PSD from −224dBm/Hz to −274dBm/Hz, the system sum
rate increased from approximately 221Mbps to 252Mbps,
approximately. Similarly, as illustrated in the Fig. 8, the
system sum rate also increased from approximately 226Mbps
to 266Mbps, approximately, as the noise PSD decreased from
−224dBm/Hz to −274dBm/Hz. In both figures, when the
noise PSD reached approximately -124dBm/Hz, the system
reached the noise-limited regime, that is, the system sum
rate do not changes with the change in the blockage factor.
This is because when the noise PSD is dominant, the total
interference suffered by one UAV is negligible compared to
the total noise it receives, thus the system exhibits a very
lower performance, although it is invariant to the interference
it receives.

FIGURE 8. System sum rate under BRLES.

FIGURE 9. System sum rate under BR-SSO.

C. IMPACT OF DIFFERENT POWER LEVELS
We evaluated the performance of our proposed algorithm in
terms of different power levels, and similar to [7] and [35] the
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FIGURE 10. System sum rate under different power level factors.

power level factor are set to {i/20, i = 1, · · · , 10}. As shown
in Fig. 10, with the decrease of power levels, that is, from
the power levels 20 to 2, which corresponds to the power
level factor 0.05 and 0.5, respectively, the system sum rate
decrease too, under all cases, from approximately 220Mbps
to 25Mbps in BR-SSO dynamics. Under the optimal and
BRLES situations, the sum rate also decreased from 261Mpbs
and 225Mbps to nearly 70Mbps and 40Mbps, respectively.

This demonstrates that with more power levels, the
discrete assignment is more similar to the continuous
power assignment counterpart, showing a greater system
performance. In addition, when the power level reaches
nearly 18, the performance gain slowes down and became
nearly stable, which shows a convergence trend. The worst
system performance is under the power level 2, because two
power assignment state are feasible, which cause a very likely
state to be far from optimal.

D. IMPACT OF QOS RATE REQUIREMENT
In this subsection, we evaluate the sum rate of UAV 1 under
a QoS requirement rate 1Mbps. To simplify, we assume that
the QoS requirement rates of all MUEs are equal. As shown
in the Fig. 11, the rate of the non-QoS case significantly
surpasses that of all the other cases for almost all MUEs,
with six MUEs nearly reaching their maximum rate. This
shows that their SINRs are dominant compared with the other
MUEs. It can find that this result is owing to the non-QoS
property that the rate is allocated to the MUE that has the
most channel conditions, whereas theMUE that has the worst
channel condition is allocated the least amount of rate. In the
BR-SSO situation, the performance gap is not as obvious as
in the non-QoS case, but the MUE 8 and 9 still have the
greatest rate allocation, the MUE 2, has less rate allocation
compared to the non-QoS case, but the performance gap is
not as significant compare to the MUE 0 as in the non-
QoS case. This is because although MUE 0 has the worst
channel condition, we still should allocate the minimum rate
to it to satisfy its QoS rate requirement, causing a relatively

lower rate difference. In the BRLES situation, the same
phenomenon occurs, although it can also be seen that nearly
the rate allocated to all MUEs is greater than that in BR-SSO
case, with only a few exceptions.

FIGURE 11. MUE rate comparison within one UAV.

The overall Jain fairness index of the systemwith respect to
different QoS rate requirement is evaluated in Fig. 12. It can
be seen that the system fairness improves with an increase
in the QoS rate requirement. All three cases, that is, optimal,
BR-SSO, and BRLES have the lowest system fairness index
when the QoS rate requirement is zero.

FIGURE 12. Impact of different QoS rate requirements on system fairness
index.

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduced a novel resource alloca-
tion scheme for multi-UAV millimeter-wave cooperative
OFDMA networks to address the challenge of heterogeneous
user data rate QoS requirements. Our formulated nonconvex
and NP-hard joint optimization problem was transformed
into the Subcarrier and Power Resource Efficient Cooperative
Potential Game (SRECPG).

Critically, our introduced BR-SSO algorithm based on bet-
ter response dynamics significantly reduces computational
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efforts compared to exhaustive search best response dynam-
ics, and still ensures convergence to a NE. Specifically,
the results highlight that our BR-SSO approach converges
in fewer iterations and achieves a sum rate closer to that
of the optimal methods with less computational overhead.
Additionally, with varied QoS rate requirements, the fairness
of our system improved notably, emphasizing the adaptability
of our approach.

Through extensive simulations, we underscore the effec-
tiveness of the proposed SRECPG and BR-SSO algorithms.
The obtained results showcase marked improvements in
throughput, fairness, and QoS guarantees compared with the
baseline schemes.

In this study, we did not consider imperfect CSI due to
estimation errors and finite data feedback. This is a limitation
of our study, as the CSI is not usually perfectly perceived in
practice because of the air links between UAVs and ground
users. In a future study, we plan to address this limitation by
considering the following directions:

• CSI acquisition: We will develop new methods for
acquiring CSI in UAV networks, considering the chal-
lenges of air links and finite data feedback.

• Robust optimization: We plan to develop robust opti-
mization frameworks for UAV networks that can tolerate
CSI error.

• Other UAV networks: We will extend our work to
support other types of UAV networks, such as heteroge-
neous UAV networks and UAV networks with dynamic
topologies.
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