
Received 5 October 2023, accepted 17 October 2023, date of publication 27 October 2023, date of current version 8 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3328173

Accelerating Super-Resolution Network Inference
via Sensitivity-Based Weight Sparsity Allocation
TUAN NGHIA NGUYEN 1, (Graduate Student Member, IEEE),
XUAN TRUONG NGUYEN 2, (Member, IEEE), KYUJOONG LEE 3, (Member, IEEE),
AND HYUK-JAE LEE 1, (Member, IEEE)
1Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
2Department of Next-Generation Semiconductor Convergence and Open Sharing Systems (COSS), Seoul National University, Seoul 08826, Republic of Korea
3School of AI Convergence, Sungshin Women’s University, Seoul 02844, Republic of Korea

Corresponding author: Kyujoong Lee (kyujoonglee@sungshin.ac.kr)

This work was supported in part by the Technology Innovation Program (or Industrial Strategic Technology Development Program,
Development of Technology for Commercializing Lv. 4 Self-Driving Computing Platform Based on Centralized Architecture)
funded by the Ministry of Trade, Industry and Energy (MOTIE), South Korea, under Grant 20014490; and in part by the
Sungshin Women’s University Research Grant of 2023.

ABSTRACT Weight sparsification has been extensively studied in image classification and object detection
to accelerate network inference. However, for image generation tasks, such as image super-resolution,
forcing some weights to zeros is a non-trivial task that typically causes significant degradation in restoration
quality, that is, peak signal-to-noise (PSNR). In this study, we first introduce a sensitivity metric to measure
PSNR degradation for layer-wise sparsity changes and observe that the sensitivities vary significantly across
network layers. We demonstrate that a uniform sparsity allocation method generally causes a non-negligible
decrease in accuracy, that is, approximately 0.17 dB, for 65% of the zero weights. In addition, finding an
optimal solution to the sparsity allocation problem is not feasible because the design space is exponential with
respect to the number of weights and layers. To address this problem, we proposed a simple yet effective
sparsity allocation method based on layer-wise sensitivity. The experimental results demonstrate that the
proposed method achieves up to 35% computation reduction with an average accuracy drop of 0.02 dB
varying between 0.01 to 0.04 dB across thewell-known datasets Set5, Set14, B100, andUrban100.Moreover,
when integrated with the activation sparsity SMSR, the proposed method reduced the computation by 46%
on average.

INDEX TERMS Computational reduction, efficient neural network, sparsity.

I. INTRODUCTION
Transforming a low-resolution image into a high-resolution
one, super-resolution (SR) has a wide range of applications
such as improving medical image clarity [1], refining remote
sensing imaginary for environmental monitoring [2], [3],
and enhancing facial recognition systems [4]. The primary
challenge in SR is to generate a realistic image from an image
with limited detail. With the advent of convolutional neural
networks (CNNs), solutions to this problem have consistently
improved. One class of solutions utilizes subpixel adjustment
on top of bicubic images to correct artifacts. To bridge the gap

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Sharif .

between theoretical and practical applications, the next step
is to increase the processing speed of SR CNNs.

However, the processing speed of SR CNNs is restricted
by their high computational costs. As the resolution demand
for images continues to increase from high definition (HD)
to full high definition (FHD), quad high definition (QHD),
2K, and 4K, the cost scales at a quadratic rate. For instance,
scaling a 640 × 360 image to HD (at 1280 × 720) adds
four times more information, whereas scaling the same image
to QHD (at 2560 × 1440) adds 16 times more information.
However, several details such as texture or smooth-colored
regions can be duplicated from the corresponding pixels
without additional calculations. This network can be designed
to ignore components that are computationally unnecessary.

122962

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-2130-4364
https://orcid.org/0000-0002-7527-6971
https://orcid.org/0000-0002-3080-3010
https://orcid.org/0000-0001-8895-9117
https://orcid.org/0000-0002-1355-2168


T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

FIGURE 1. Sparsity allocation strategies on low, medium, and
high-sensitive layers.

A computation involving zeros is potentially skippable,
particularly multiplication, because it is predictable, for
instance, multiplication with zero operands results in a
zero value, regardless of the other operand. State-of-the-
art architectures integrate a computational guide module to
identify regions where the computations would result in
zeros. Computation skipping can omit all or part of the
computations of a feature, depending on the information
provided by the guide. Nevertheless, the effort was reduced,
resulting in improved overall processing speed.

Our work builds on the concept of skippable computation
by exploiting the sparsity of model parameters, which repre-
sents the proportion of weights with zero values. We propose
a simple yet effective method for increasing sparsity. Setting
extremely small weights to zero increases the number of
computations that can be ignored, ultimately enhancing the
processing speed of the network. Performance degradation is
unavoidable because of network modifications. To minimize
this, we propose a sparsity allocation strategy based on
a measurable sensitivity of each layer. As illustrated in
Figure 1, while the uniform method applies the same amount
for every layer, our sensitivity-based method suggests the
exact sparsity that a layer should have. For instance, layers
can be high (layers 1 and 11), medium (layers 13 and 18),
or low (layers 4 and 8), depending on the extent to which the
sparsification procedure affects the model performance, and
sparsity is allocated accordingly. For the same target overall
sparsity, the proposed method is better than the uniform
solution, which does not consider the characteristics of each
layer. Specifically, in terms of performance, the proposed
model achieved 35.053 dB peak signal-to-noise (PSNR),
which is higher than 34.888 dB on the DIV2K validation set.
The visual difference can even be noticed in some cases as
illustrated in Figure 2, where the detail of a sharp edge is well
preserved by our proposed model while being mistakenly
blurred out by another one. The proposed method incurs no
overhead during inference because weight sparsification is
performed during the training phase.

In the next section, several related topics are reviewed. Our
proposed method and associated problems are discussed in
Section III, along with our solutions. Experimental setup and
results are presented in Section IV to support our claims.
Finally, conclusions are presented in the last section.

FIGURE 2. Visual difference between upscaled images generated by
sparse models using uniform allocation and sensitivity-based allocation.

II. RELATED WORK
In this section, we review major studies on efficient SR
networks and acceleration techniques.

A. GENERAL AND EFFICIENT SR NEURAL NETWORKS
SR neural networks are used to increase the resolution of
an image and are useful in various applications such as
image processing, video compression, and computer vision.
The VDSR [5] was one of the first high-performance SR
networks introduced. It utilizes an extremely deep network
to achieve state-of-the-art results. The enhanced version,
EDSR [6], improves image quality by increasing the depth
of the network. The authors showed that increasing the
depth of the network further improved the performance.
Following this trend, HDN [7] uses very dense connections
to promote the feature representation and RDN [8] goes
beyond 100 layers with residual and dense connections.
The attention mechanism was also applied to SR with
the introduction of a very deep network, RCAN [9],
followed by ENLCA [10]. ESRT [11] harnessed the power
of Transformer [12] architectures, originally developed for
natural language processing, for the task of single image SR.
Several papers are leaning towards the application of SR on
satellite imagery. EEGAN [13], which employs the popular
Generative Adversarial Network (GAN) [14] technique, and
D2U [15], which incorporated contrastive learning, are two
notable works proposed to improve low-resolution remote
sensing images.

Considering the exploding computational cost, a branch of
SR network design focuses on the tradeoff between perfor-
mance and efficiency. The early FSRCNN [16] modified the
original SRCNN [17] to speed up the network 40 times while
also improving the output quality. LapSRN [18] increases the
computational cost but improves the PSNR by 0.5 dB which
is significant for SR tasks. Recently, CARN and CARN-M
[19] proposed a cascading architecture to utilize multilevel
features to achieve efficiency across multiple scaling factors.
There are a few other well-known names for lightweight SR
networks such as DRCN [20], MemNet [21], SRFBN-S [22],
IDN [23], and FALSR-A [24]. All the previously mentioned
networks utilize their unique architectures to achieve a good
balance between performance and computational efficiency.

Our work is related to the recent design of tiny and low-cost
neural networks [25], [26], [27], [28]. These studies propose
methods that have the potential to enhance the application

VOLUME 11, 2023 122963



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

of lightweight neural networks. By leveraging the sparsity
of neural networks, our approach enhances the accuracy and
efficiency of these networks. Therefore, our study represents
an important step towards advancing the state-of-the-art in
computation reduction.

B. DYNAMIC INFERENCE
By switching between shallow and deep subnetworks, the
computational cost depends on the characteristics of the
input instances and is reduced on average. BlockDrop [30]
and Branchynet [31] addressed instance-specific difficulties
and introduced dynamic network architectures. Instances
were analyzed by a controller in the network and fed
through a specific path formed by a set of pre-trained
modules. Adaptive architectures also exist for SR tasks. The
spatially adaptive computation time (SACT) mechanism [32]
stops computing when the features are sufficiently accurate.
Dynamic inference requires careful design choices owing to
the additional overhead incurred.

C. SPARSITY EXPLOITATION
Because of the large input and output sizes, the computational
cost of an SR neural network is significant. Exploiting
sparsity (i.e., zero-value operands and features), a highly
sparse feature map is a frequent result of using ReLU
activation because the feature is zero if its intermediate
value computed via a multiply-accumulate operation is non-
positive. Based on this observation, CSM [33] proposed
using an additional module to predict the sparsity of the
output feature maps and identify those to compute, thereby
effectively reducing costs. SMSR [34] shares the same
idea, but with a better mask-generation scheme that further
improves efficiency. This is based on the fact that not all
regions of an image require the same level of detail and that
the architecture can be far more efficient by focusing on some
important regions. SMSR uses a two-stage architecture. The
first stage generates a sparse mask that indicates the regions
of the image that require computing. The second stage is an
SR network that uses sparse masks to selectively perform
computations on the features of these regions. This reduces
the overall computational cost while maintaining high-
quality results. The results of the experiments demonstrate
that SMSR outperforms state-of-the-art methods on various
datasets and scales while reducing the computational cost by
up to 50%.

D. PRUNING AND QUANTIZATION
In addition to directly incorporating computation reduction
enhancements in architectures, general techniques that can
be applied to general networks are also considered in SR.
Quantization and pruning are popular techniques used for this
purpose. Pruning directly modifies architecture by removing
unimportant parameters. However, quantization reduces the
model size and enhances the processing speed of the model
on hardware. Weight sparsification is a general technique
complementing these methods. We targeted unimportant

parameters and ignored the corresponding computations.
Unlike pruning, there is no modification of the architec-
ture, only to the parameters. A pruned and/or quantized
model can be sparsified to further enhance inference
speed.

III. PROPOSED METHOD
A. WEIGHT SPARSIFICATION
The parameters of a layer, also known as weights W,
participate in the computation of the output features. The
multiplication of one weight and the input feature contributed
to the feature value. However, because an output feature is
computed as an accumulation of several of these results,
weight values close to zero contribute little to the final value.
In other words, there is no or minimal alteration to the feature
being computed even if an approximately zero-multiplication
result is treated as exactly zero. In this case, the entire
procedure can be safely omitted.

We propose weight sparsification as a technique that forces
the value of a number to zero, with negligible performance
degradation. The basic idea is that a threshold is selected
for each set of weights, and all weights with absolute
values lower than the threshold are rounded to zero. The
sparsification process follows Equation 1, where wli denotes
ith parameter of layer l and t l denotes the threshold.
We propose layer-wise weight sparsification in which the
parameters of the same layer share a single threshold.

wli =

{
wli if |wli | ≥ t l

0 if |wli | < t l
(1)

We formulated the optimization problem by maximizing
the model performance (or minimizing the performance
degradation) while achieving the target sparsity S using a
weight sparsification technique. The model performance P
is a function of the layer weights Wl and sparsification
threshold, which is indirectly represented by index value ki.
The constraint of this objective function was the overall
sparsity of the model.

maximize
x

P = f (W, k1, . . . , kM )

subject to

∑
ki

M × N
= S, i = 1, . . . ,M . (2)

The number of weights is finite and static during the
inference. Therefore, according to Eq. 1, the threshold can
be selected from the absolute weight values. This reduces
the number of candidates and search time for an optimal
threshold. However, with M target layers and N weights
per layer, there are still NM candidate solutions. The size
of candidates is considered to be significant. A heuristic
algorithm is necessary to efficiently explore the design
space.

B. SENSITIVITY MEASUREMENT
The selection of a threshold for a layer forces a number
of weights to zeros and increases the sparsity of that layer

122964 VOLUME 11, 2023



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

Algorithm 1Measuring Sensitivity of a Layer
Data: Layer weightsW with N elements, training

data D
1 We set the overall performance boundary Pb
2 W̄ = sorted(|W|) = {w̄k} // sorted in

ascending order of absolute
values, where the index
k ∈ [0,N − 1]

3 kl = 0 // left boundary
4 kr = N − 1 // right boundary
5 kc = (kl + kr )/2
6 kbest = 0
7 while kl ̸= kr do

// binary search for threshold
8 t = w̄kc // the threshold value is

the kc-index element of the
sorted weights

9 Sparsify the weightsW with threshold t
10 Check performance P of the new model for D
11 if P < Pb then
12 kr = kc
13 end
14 else
15 kl = kc
16 kbest = kc
17 end
18 kc = (kl + kr )/2
19 end

Result: kbest

(parameters). To achieve the target sparsity S, this act
allocates sparsity from the budget to the aforementioned
layer. An optimal allocation to every target layer is required
for our problem. One of the simplest allocation strategies is
to uniformly sparsify every layer with the same sparsity S.
However, in this study, we argue and prove that uniform
allocation is a naive approach that completely ignores
characteristic differences among layers, and thus degrades the
overall performance non-negligibly.

We used a metric known as sensitivity to represent the
characteristics and allocate sparsity to a layer. Sensitivity
is inversely proportional to the maximum percentage of
weights that can be sparsified without lowering performance.
It is possible to force more weights to zeros with a low-
sensitivity layer, and vice versa. For instance, we can sparsify
20% of the weights of layer 1 and obtain a model with
35 dB PSNR for the SR task. Simultaneously, 40% of the
weights of layer 2 can be sparsified and we also obtain a
model with 35 dB PSNR. Therefore, we can assume that
Layer 1 is more sensitive than Layer 2. In other words,
the model performance was significantly affected when its
highly sensitive layers were modified. The determination of
an appropriate threshold was based on the sensitivity of each
layer.

Algorithm 1 describes sensitivity measurement for a single
layer. First, we set a performance boundary Pb (line 1), which
was measured using the PSNR. Performance degradation is
expected to occur after sparsification, which is a post-training
modification of model parameters. The algorithm determines
the highest possible sparsity that can be achieved without
lowering the performance beyond this boundary. In the next
step, the absolute values of the weights W are sorted in
ascending order as W̄ = {w̄k}. As discussed, the threshold
was selected from among all absolute weight values (line 2).
Because the number of parameters N is often considerably
large (thousands per layer), linear searching for the threshold
is as expensive as making N model inferences on the training
setD, which isO(N ). Therefore, a binary search was applied,
which significantly reduced the time complexity toO(logN ).
The search begins by setting the left and right bounds of the
binary search (lines 3 and 4) and calculating the search point
at the center of the bounds (line 5). The best threshold was
initialized as kbest = 0. The primary loop of the binary search
begins by setting a threshold for the sparsification process.
As mentioned previously, the threshold value t is equal to the
kc-indexed value of the sorted weights (line 8). We sparsify
the original model with t and check the performance of the
newmodel on datasetD. With a low search duration, owing to
the binary search, we can use sufficiently large training dataD
to avoid noisy and biased performance on several samples.
If the performance P of the sparse model is lower than the
boundary, then the right bound is reduced to kc (lines 11–13).
Otherwise, we increase the left bound to kc and record the
new best threshold (lines 14–17): The output of Algorithm 1
is kbest , indicating that, at most, kbest of N parameters can
be sparsified to achieve a performance no lower than the
boundary Pb. The equivalent sparsity converted from the
value kbest is s = kbest/N .

Algorithm 1 is applied to each target layer. To compare
the sensitivity of each layer fairly, the same performance
boundary was used. Searching for the layer that has a greater
impact on the overall performance once modified is the
first important step in our sparsity allocation strategy. The
threshold is thereafter determined using this metric.

C. ALLOCATION OF SPARSITY
Because each layer has its own sensitivity, it is preferable for
each layer to have its own sparsity level. The target sparsity
is distributed strategically among layers such that highly
sensitive layers have slightly modified weights, whereas the
others have much sparser weights. To achieve S, the number
of parameters to be sparsified is S × M × N , assuming
that we target M layers having N parameters each. The
allocation strategy follows the rule described in 3. In this
equation, for each layer i, the number of parameters to be
sparsified, k ′

i , scales linearly with the sensitivity, represented
by ki. Therefore, the calculation of k ′

i can be derived from
Equation 3 to Equation 4 because the budget of sparseweights
is divided intoM parts by the allocation ratio ki/

∑
ki. Using

this formula, the thresholds and allocations to each layer can

VOLUME 11, 2023 122965



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

be calculated directly rather than using a greedy search.

k ′
i

S ×M × N
=

ki∑
ki

(3)

k ′
i = S ×M × N ×

ki∑
ki

(4)

D. INTEGRATE WEIGHT SPARSIFICATION INTO SMSR
Weight sparsification alone reduces the number of com-
putations based on the amount of target sparsity, offering
a significant advantage over the inference speed of SR
networks. In this section, we present the integration of this
technique into SMSR [34] to prove that it complements other
state-of-the-art techniques.

The original version of SMSR has computation guide
modules known as sparse mask modules (SMMs) integrated
into its architecture. The modules compute several sparse
masks that contain the sparsity information of all feature
maps computed in the network. Knowing the features that
are sparse allows the network to ignore all the corresponding
computations. We refer to this technique as output-skipping.
The second is input skipping, which aims to skip all
multiplications with zero-value input features. Input skipping
is similar to exploiting sparse weights for computational
reduction because the input feature and weight are the two
operands of an operation. Our sparsification method makes
the weights sparse, thus enabling their exploitation to skip
computations.

IV. EVALUATION
A. EXPERIMENT SETTINGS
1) TARGET NETWORK
Enhanced versions of the SMSR were used in the exper-
iments. We used weight sparsification to further reduce
the computational cost of this network, proving the benefit
offered by the proposed method as well as its complement
to other state-of-the-art techniques. The proposed method
was applied to five SMMs of an SMSR. There are M =

20 layers to be considered and each layer has N =

36864 parameters (3×3×64×64). For fairness, the original
published 2x-scaling model was used. In the case of the
4x-scaling one, we retrained the model using the exact
settings presented in the original paper and verified its
performance with the published results provided by the
authors. All the implementations were performed using
PyTorch [35]. All model modifications were performed
without additional retraining or fine-tuning phases.

2) DATASET
The SMSR is trained using the DIV2K dataset [36]. A total
of 800 images were used to train, and 100 images were
used for validation. The PSNR and structural similarity index
measure (SSIM) were used as the SR performance metrics.
The evaluation was performed on the luminance channel
(Y channel) of each image with cropped borders. The DIV2K
valid set was used to monitor the performance of the network

TABLE 1. Measurement of sensitivity for 20 core layers of SMSR.

during weight sparsification. The final results were tested
using Set5 [37], Set14 [38], B100 [39], and Urban100 [40],
which are popular test sets for SR tasks.

3) TRAINING SERVER
The experiments were conducted on a server with an Intel
Xeon E3-1245 v5 CPU, two NVIDIA GPUs, Titan X and
RTX 2080Ti, and 32 GBs of memory. It took up to four hours
to measure the sensitivity of 20 layers. The sparse model can
thereafter be generated instantly and reused during inference
without incurring any overhead.

B. ANALYZE WEIGHT SPARSIFICATION
Table 1 lists the sensitivity of each layer, represented by
the maximum sparsity (in percentage) achieved without
degrading the performance by more than 1P. The table can
be interpreted such that, for instance, at 1P = 0.04, 80.66%
of the weights of Layer 4 can be forced to zeros, whereas only
48.60%of Layer 11 can be sparsifiedwithout causing 0.04 dB
degradation of the overall performance. This indicates that
Layer 11 is more sensitive than Layer 4. The sensitivity
measured at this boundarywas used to calculate the allocation
ratio.

The proposed method was compared to uniform sparsity
allocation. The uniform allocation method sparsifies the
weights of each layer to the same level as the overall target
sparsity S. The results are summarized in Table 2. We cal-
culated the PSNR changes between the models before and
after sparsification. A model is better than the others if it has
lower degradation. It can be observed that at the same target
sparsity, the proposed method yields better performance than
the others most of the time. At 5% overall sparsity, the sparse
model had an approximately similar PSNR to the original
one. The degradation is typically 0.002—0.165 dB lower
when using our method than uniform allocation. At 35%
target sparsity, the degradation is approximately 0.1 dB,

122966 VOLUME 11, 2023



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

TABLE 2. Sensitivity-based allocation vs. uniform allocation. The metric is
PSNR (perturbation, in dB). Lower degradation is better.

FIGURE 3. Trade-off between sparsity and PSNR/SSIM degradation.
Lower degradation is better.

which is considered non-negligible. Beyond this point, the
model collapses exponentially, as illustrated in Figure 3.
Therefore, we can conclude that the proposed method can
ignore up to 35% of the weights with negligible degradation,
which is equivalent to 35% of the computations in the target
layers.

C. SPARER SMSR (SPARSMSR)
A comparison of different versions of SMSR is summarized
in Table 3. Three techniques, namely output skipping, input
skipping, and weight sparsification, are considered to reduce
the computational cost of the target layer. The number of

computations in Giga floating-points operations (GFLOPs)
can be calculated based on the network settings, including
the layer filter and input sizes. Specifically, the input size
was 640 × 360 for the 2x-scaling models and 320 ×

180 for the 4x-scaling ones. The total cost is considered for
each layer. We also calculated the computational reduction
benefit for only the 20 main layers following the design
of SMSR. Without the SMMs, the total computational
cost was approximately 212.44 GFLOPs to scale 2× and
generate a high-definition image (1280 × 720). Applying
output skipping and input skipping saves 53.4% of the
computations in the 20 layers, and this model has a total
cost of 133.03 GFLOPs. The Sparser SMSR (SparSMSR)
1a model, which has weights sparsified by 6.5%, can
perform a similar task; however, the reduction rate is slightly
lower at 52.7%. Therefore, sparsifying weights offers fewer
benefits. However, skipping computations that use sparse
weights can be applied in conjunction with an input-skipping
scheme of SMSR. This was proven using the SparSMSR
1b model. This version applies all three techniques, and the
rate increases to 56.4% without sacrificing the performance.
Each technique, input skipping and exploiting sparse weights,
offers fairly high benefits if used alone. However, the benefits
do not simply add up because multiplication with both zero
weight and zero input as operands is ignored in the same
way as multiplication with either weight or input being zero.
This explains why the improvement was minor (from 53.4%
to 56.4%) when the two were combined.

When a minimal performance degradation of up to 0.1 dB
is acceptable, we can consider four other versions, SparSMSR
2a, 2b, 3a, and 3b, with higher weight sparsity. At 24%
and 35% sparse weights, we ignored 13.7% and 21.0%
more computations, respectively, compared with the original
SMSR. Exploiting sparse weights is a significant advantage
because no overhead is incurred during inference. This
implies that our method can provide additional benefits at a
minimal cost. In the case of the SparSMSR 1a and 1b models,
no performance degradation was observed.

Extensive experimental results on 4x-scaling models also
prove the benefits of weight sparsification on the computation
cost. Our enhanced models, SparSMSR 4 × 1b, 2b, and 3b
achieved 39.4%, 50.7%, and 58.4% computation reduction in
the target layers, respectively. Considering the entire model,
these numbers can be converted to 25.6%, 34.4%, and 40.5%
of the total reduction in GFLOPs, respectively. Of the three
proposed models, SparSMSR 4 × 2b performs remarkably
well with almost no degradation to the PNSRs on all four test
sets.

The allocation of sparsity for 2x-scaling models can
be found in Figure 4 with high-sensitive layers sparsified
at a lower rate than those with lower sensitivities. For
instance, to achieve 35% overall weight sparsity, we sparsify
Layer 4 at 42.6% and Layer 11 at 25.70% because their
sensitivities were 80.66 and 48.60%, respectively. The ratios
were approximately equal at 42.66 / 80.66 and 25.70 / 48.60.
The allocation difference between the layers becomes evident

VOLUME 11, 2023 122967



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

TABLE 3. Comparison between the original and enhanced versions of SMSR with weight sparsification.

FIGURE 4. Allocation of sparsity to each layer following a ratio calculated
by the sensitivities.

as the target sparsity increases. As summarized in Table 2, the
PSNR improvement achieved with our proposed method is
clearly higher than that of uniform allocation when the model
is heavily modified via sparsification.

The measurement of inference time for various models
on a CPU is presented in Table 4, proving the positive
impact of sparse weights on inference efficiency. Notably,
the incorporation of sparse weights unlocks the potential for
an efficient use of loop unrolling. Even without optimizing
the implementation of sparse inference, the results reveal that
SparSMSR 2b and 3b still manifest a substantial reduction
in inference time, with 22% and 32% improvements,
respectively, thanks to that only 808K and 727K parameters
out of 985K are involved in all the computations. Remarkably,
when considering comparable levels of performance in
PSNR and SSIM, SparSMSR 3b emerges as superior in
comparison to the state-of-the-art efficient SRmodels such as
FALSR-A [24], CARN [19], and IDN [23].

While it is worth noting that the relative reduction in
floating-point operations may not directly align with the same
percentage of time saved, it nevertheless presents a significant
advantage in terms of power consumption. This aspect bears
particular relevance for the implementation of these models
in edge devices, where power efficiency is a paramount

TABLE 4. Comparative results achieved on Set14 by SparSMSR and other
architectures for 2× SR.

consideration. In essence, our findings highlight the potential
of sparse weight structures to enhance inference efficiency,
offering both performance gains and energy-saving benefits
that hold promise for practical deployment in resource-
constrained environments.

D. USING SSIM IN SENSITIVITY MEASUREMENT
SSIM can be used to measure the sensitivity of each layer
in the same way as using PSNR. We set the performance
degradation threshold in Algorithm 1 to 0.0005 due to that
the change of SSIM is usually more sensitive to the image
quality than that of PSNR. Measuring with SSIM results in
a slightly different allocation. The results are summarized in
Table 3, and they are aligned with the ones obtained when
PSNRwas used. It showed that we have successfully reduced
more computations at a negligible SSIM loss. In addition,
a comparison between uniform allocation and the proposed
method is visualized in Figure 3. In general, it is proven
that our strategic allocation offers a better preservation
of performance under a harsh modification of the model
parameters.

E. SPARSIFICATION OF VERY DEEP NETWORKS
We set out to explore the plug-and-play applicability of
our proposed framework in the context of very deep neural
networks, with a particular focus on the extensive RCAN
architecture [9]. To this end, we conducted an in-depth
investigation involving 400 layers within the RCAN model.
The findings of this comprehensive sparsification process

122968 VOLUME 11, 2023



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

FIGURE 5. Visual comparison on three sample images of the Urban100 dataset. SR results are generated by four
different versions of SMSR.

VOLUME 11, 2023 122969



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

FIGURE 6. Visual comparison on three sample images of the B100 dataset. SR results are generated by four different
versions of RCAN.

122970 VOLUME 11, 2023



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

FIGURE 7. Visual comparison on two real-world sample images.

TABLE 5. Comparison between the original and enhanced versions of RCAN with weight sparsification.

have been compiled in Table 5, offering a clear demonstration
of the potential our approach holds.

These 400 layers, which constitute a substantial 96% of the
overall computational load in the RCAN network, emphasize
a crucial aspect of our work: the sparsity of weights within
these layers leads to almost proportional reductions in
computational requirements. To illustrate this, take the case

of SparRCAN 1, where we successfully achieved a 10.0%
weight sparsity. This accomplishment directly translated into
a 10.0% decrease in computational workload, a trend that was
consistently observed across SparRCAN 2 and 3 (24% and
34%, respectively). Sparsification helps reduce significantly
the number of non-zero parameters from 15.4M to 13.9M,
11.7M, and 10.2M in the three proposed models. In other

VOLUME 11, 2023 122971



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

words, all the computations in which the zero-value parame-
ters involved are skipped. Such results prove the effectiveness
of our framework in enhancing the computational efficiency
of very deep neural networks.

Shifting our attention to the performance aspect, it is worth
noting that the decline in PSNR remains virtually negligible
until the weight sparsity reaches the 35% threshold. While
this sparsity level might typically raise concerns about
performance in conventional settings, it is essential to
consider the substantial reduction in computational demands
that accompanies it. This trade-off, therefore, emerges as
not only reasonable but highly advantageous in scenarios
where computational efficiency is a paramount consideration.
In summary, our findings underscore the adaptability of our
proposed framework and provide valuable insights into the
complex relationship between weight sparsity, computational
efficiency, and performance in deep neural networks, with
implications for the broader field of deep learning and
optimization.

F. QUALITATIVE RESULTS
In addition to the quantitative results demonstrated by the
PSNR, Figure 5 and Figure 6 illustrate four different upscaled
versions of three sample images from the Urban100 dataset
and the B100 dataset respectively. The images in Figure 5
were generated using the original SMSR model and three
sparse 4x-scaling models, 1b, 2b, and 3b. Remarkably,
there were hardly any perceptible differences among these
versions. A similar scenario can be observed in Figure 6.
Moreover, for a diverse qualitative assessment, we present
two upscaled real-world samples, as depicted in Figure 7.
It can be inferred that the marginal variance in PSNR did
not yield any visual disparities, thus preserving the output
image quality effectively. Consequently, it is reasonable to
adopt the proposed method, as it offers significant advantages
at minimal cost.

V. CONCLUSION
This study presents the use of sparse weights to reduce the
computational costs of neural networks. Small-value weights
were forced to zeros, and all computations involving zero
weights were ignored during the inference. A strategy to
measure the sensitivity and allocate sparsity to each layer
was presented to minimize the negative impact on model
performance. The experiments on a state-of-the-art efficient
SR model demonstrate that with all three techniques applied,
we can reduce the overall computational cost from 212.44 to
105.05 GFLOPs, which is equivalent to 50.6%, at a cost of
only 0.1 dB lower PSNR and no visually noticeable quality
change to the output images. This technique is simple and
applicable to various SR neural networks, yet powerful for
deploying a model on hardware and maximizing its benefits.

A significant limitation of our current work lies in its
data dependency. To effectively model the sensitivity of
a target layer and nullify sample bias, we require an
ample amount of data, which can be a constraint in some

scenarios. In light of these challenges, our forthcoming
research will prioritize the reduction of data dependency
through innovative approaches, including the exploration of
techniques such as the utilization of Hessian information
from the model parameters. Our primary objective is to
augment the robustness and consistency of our methodology,
thereby ensuring its continued relevance and popularity in
comparison towell-establishedmethods like quantization and
pruning. By mitigating data dependency, we aim to make our
approach more accessible and adaptable to a wider range of
applications.

REFERENCES
[1] S. Zhang, G. Liang, S. Pan, and L. Zheng, ‘‘A fast medical image super

resolution method based on deep learning network,’’ IEEE Access, vol. 7,
pp. 12319–12327, 2019.

[2] Y. Xiao, X. Su, Q. Yuan, D. Liu, H. Shen, and L. Zhang, ‘‘Satellite
video super-resolution via multiscale deformable convolution alignment
and temporal grouping projection,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5610819.

[3] K. Jiang, Z. Wang, P. Yi, J. Jiang, J. Xiao, and Y. Yao, ‘‘Deep distillation
recursive network for remote sensing imagery super-resolution,’’ Remote
Sens., vol. 10, no. 11, p. 1700, Oct. 2018.

[4] K. Jiang, Z. Wang, P. Yi, T. Lu, J. Jiang, and Z. Xiong, ‘‘Dual-path deep
fusion network for face image hallucination,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 33, no. 1, pp. 378–391, Jan. 2022.

[5] J. Kim, J. K. Lee, and K. M. Lee, ‘‘Accurate image super-resolution using
very deep convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1646–1654.

[6] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, ‘‘Enhanced deep
residual networks for single image super-resolution,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017,
pp. 1132–1140.

[7] K. Jiang, Z. Wang, P. Yi, and J. Jiang, ‘‘Hierarchical dense recursive net-
work for image super-resolution,’’ Pattern Recognit., vol. 107, Nov. 2020,
Art. no. 107475.

[8] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, ‘‘Residual dense
network for image super-resolution,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 2472–2481.

[9] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, ‘‘Image super-
resolution using very deep residual channel attention networks,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 286–301.

[10] B. Xia, Y. Hang, Y. Tian, W. Yang, Q. Liao, and J. Zhou, ‘‘Efficient non-
local contrastive attention for image super-resolution,’’ inProc. AAAI Conf.
Artif. Intell., 2022, vol. 36, no. 3, pp. 2759–2767.

[11] Z. Lu, J. Li, H. Liu, C. Huang, L. Zhang, and T. Zeng, ‘‘Trans-
former for single image super-resolution,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2022,
pp. 456–465.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017.

[13] K. Jiang, Z. Wang, P. Yi, G. Wang, T. Lu, and J. Jiang, ‘‘Edge-enhanced
GAN for remote sensing image superresolution,’’ IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 8, pp. 5799–5812, Aug. 2019.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014.

[15] Y. Xiao, Q. Yuan, K. Jiang, J. He, Y.Wang, and L. Zhang, ‘‘From degrade to
upgrade: Learning a self-supervised degradation guided adaptive network
for blind remote sensing image super-resolution,’’ Inf. Fusion, vol. 96,
pp. 297–311, Aug. 2023.

[16] C. Dong, C. C. Loy, and X. Tang, ‘‘Accelerating the super-resolution
convolutional neural network,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2016, pp. 391–407.

[17] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Learning a deep convolutional
network for image super-resolution,’’ in Proc. Eur. Conf. Comput. Vis.
Cham, Switzerland: Springer, 2014, pp. 184–199.

122972 VOLUME 11, 2023



T. N. Nguyen et al.: Accelerating Super-Resolution Network Inference

[18] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, ‘‘Deep Laplacian
pyramid networks for fast and accurate super-resolution,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5835–5843.

[19] N. Ahn, B. Kang, and K.-A. Sohn, ‘‘Fast, accurate, and lightweight super-
resolution with cascading residual network,’’ in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 252–268.

[20] J. Kim, J. K. Lee, and K.M. Lee, ‘‘Deeply-recursive convolutional network
for image super-resolution,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 1637–1645.

[21] Y. Tai, J. Yang, X. Liu, andC.Xu, ‘‘MemNet: A persistentmemory network
for image restoration,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4539–4547.

[22] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, andW.Wu, ‘‘Feedback network for
image super-resolution,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 3862–3871.

[23] Z. Hui, X. Wang, and X. Gao, ‘‘Fast and accurate single image super-
resolution via information distillation network,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 723–731.

[24] X. Chu, B. Zhang, H.Ma, R. Xu, and Q. Li, ‘‘Fast, accurate and lightweight
super-resolution with neural architecture search,’’ in Proc. 25th Int. Conf.
Pattern Recognit. (ICPR), Jan. 2021, pp. 59–64.

[25] H. Lin and J. Yang, ‘‘Light weight IBP deep residual network for image
super resolution,’’ IEEE Access, vol. 9, pp. 93399–93408, 2021.

[26] X. Chen, J. Chen, X. Han, C. Zhao, D. Zhang, K. Zhu, and Y. Su, ‘‘A light-
weighted CNN model for wafer structural defect detection,’’ IEEE Access,
vol. 8, pp. 24006–24018, 2020.

[27] Z. Huang, X. Zhu, M. Ding, and X. Zhang, ‘‘Medical image classification
using a light-weighted hybrid neural network based on PCANet and
DenseNet,’’ IEEE Access, vol. 8, pp. 24697–24712, 2020.

[28] I. Mukherjee and S. Tallur, ‘‘Light-weight CNN enabled edge-based
framework for machine health diagnosis,’’ IEEE Access, vol. 9,
pp. 84375–84386, 2021.

[29] M. A. Qureshi and A. Munir, ‘‘Sparse-PE: A performance-efficient
processing engine core for sparse convolutional neural networks,’’ IEEE
Access, vol. 9, pp. 151458–151475, 2021.

[30] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and
R. Feris, ‘‘BlockDrop: Dynamic inference paths in residual networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 8817–8826.

[31] S. Teerapittayanon, B. McDanel, and H. T. Kung, ‘‘BranchyNet: Fast
inference via early exiting from deep neural networks,’’ in Proc. 23rd Int.
Conf. Pattern Recognit. (ICPR), Dec. 2016, pp. 2464–2469.

[32] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov,
and R. Salakhutdinov, ‘‘Spatially adaptive computation time for residual
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1790–1799.

[33] T. N. Nguyen, X. T. Nguyen, K. Lee, and H.-J. Lee, ‘‘Computation-
skipping mask generation for super-resolution networks,’’ in Proc. Int.
Conf. Electron., Inf., Commun. (ICEIC), Feb. 2022, pp. 1–3.

[34] L. Wang, X. Dong, Y. Wang, X. Ying, Z. Lin, W. An, and Y. Guo,
‘‘Exploring sparsity in image super-resolution for efficient inference,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 4915–4924.

[35] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
Dec. 2019, pp. 8026–8037.

[36] E. Agustsson and R. Timofte, ‘‘NTIRE 2017 challenge on single image
super-resolution: Dataset and study,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 1122–1131.

[37] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi-Morel, ‘‘Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,’’ in Proc. BMVC, 2012, pp. 1–10.

[38] R. Zeyde, M. Elad, and M. Protter, ‘‘On single image scale-up using
sparse representations,’’ in Proc. Int. Conf. Curves Surf., vol. 6920, 2010,
pp. 711–730.

[39] D. Martin, C. Fowlkes, D. Tal, and J. Malik, ‘‘A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,’’ in Proc. 8th IEEE Int.
Conf. Comput. Vis., Oct. 2001, pp. 416–423.

[40] J.-B. Huang, A. Singh, and N. Ahuja, ‘‘Single image super-resolution from
transformed self-exemplars,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 5197–5206.

TUAN NGHIA NGUYEN (Graduate Student
Member, IEEE) received the B.S. degree in
electronics and computer engineering from the
Hanoi University of Science and Technology,
Hanoi, Vietnam, in 2017, and the M.S. degree in
electrical and computer engineering from Seoul
National University, Seoul, South Korea, in 2020,
where he is currently pursuing the Ph.D. degree in
electrical and computer engineering.

His research interests include computer vision
and machine-learning.

XUAN TRUONG NGUYEN (Member, IEEE)
received the B.S. degree in electrical engineering
from the Hanoi University of Science and Tech-
nology, Hanoi, Vietnam, in 2011, and the M.S.
and Ph.D. degrees in electrical engineering and
computer science from Seoul National University,
Seoul, South Korea, in 2015 and 2019, respec-
tively.

He was a Postdoctoral Fellow with BK21+,
the Department of Electrical and Computer Engi-

neering (ECE), and the Inter-University Semiconductor Research Center
(ISRC), Seoul National University, from April 2019 to August 2021. Since
September 2021, he has been a Research Assistant Professor with the
Department of Next-Generation Semiconductor Convergence and Open
Sharing Systems (COSS). His research interests include hardware-aware
algorithm optimization and system-on-chip (SoC) design for computer
vision and multimedia applications.

KYUJOONG LEE (Member, IEEE) received the
B.S. degree in electrical engineering from Seoul
National University, Seoul, South Korea, in 2002,
the M.S. degree in electrical engineering from the
University of Southern California, Los Angeles,
CA, USA, in 2008, and the Ph.D. degree in
electrical and computer engineering from Seoul
National University, in 2013.

From 2002 to 2005, he was a Developer with
Com2us Corporation, Seoul. From 2013 to 2017,

he was with the S.LSI Division, Samsung Electronics Corporation. In 2017,
he was appointed as anAssistant Professor with the Department of Electronic
Engineering, SunMoonUniversity, Asan-si, South Korea. In 2022, he was an
Associate Professor with the School of AI Convergence, Sungshin Women’s
University. His major research interests include deep learning algorithms and
architectures and image/video compression and processing.

HYUK-JAE LEE (Member, IEEE) received the
B.S. and M.S. degrees in electronics engi-
neering from Seoul National University, Seoul,
South Korea, in 1987 and 1989, respectively, and
the Ph.D. degree in electrical and computer engi-
neering from Purdue University, West Lafayette,
IN, USA, in 1996.

From 1996 to 1998, he was a Faculty Mem-
ber with the Department of Computer Science,
Louisiana Tech University, Ruston, LA, USA.

From 1998 to 2001, he was a Senior Component Design Engineer with the
Server and Workstation Chipset Division, Intel Corporation, Hillsboro, OR,
USA. In 2001, he joined the School of Electrical Engineering and Computer
Science, Seoul National University, where he is currently a Professor. He is
the Founder of Mamurian Design Inc., Seoul, which is a fabless SoC design
house for multimedia applications. His research interests include computer
architecture and SoC designs for multimedia applications.

VOLUME 11, 2023 122973


