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ABSTRACT Artificial Intelligence (AI)-supported healthcare has seen a substantial rise in development in
recent years. The health economic impact is a crucial factor in the decision-making process regarding Al
adoption. This study aimed to analyze the latest research progress and evidence on the cost-effectiveness
and clinical efficiency of healthcare Al software from various perspectives, as well as to identify future
opportunities and remaining challenges. A review of global literature was conducted using two key databases,
PubMed and Embase, along with other related bibliographic resources. The literature search yielded 1,178
unique articles, of which 31 were included in our analysis. These studies covered a wide variety of clinical
use cases and healthcare domains, including disease diagnosis (n=13, 41.9%), risk analysis (n=6, 19.4%),
screening or patient triage (n=6, 19.4%), treatment delivery (n=5, 16.1%), and patient engagement or
follow-up (n=1, 3.2%). Among the included studies, 24 (77.4%) examined the cost-effectiveness of Al
compared to standard human-based practices from the perspectives of patients, healthcare systems, payors,
or society. The remaining 7 studies, including 5 clinical trials, concluded that Al can enhance clinical
efficiency by shortening labor time or patient journey in the clinic. The findings of this targeted literature
review demonstrated that leveraging Al in human decision-making has the potential to improve multilevel
health outcomes. However, there is a shortage of prospective health economic studies, particularly long-
term evaluations, highlighting the disparity between the rapid progress of Al and its lagging utilization in
real-world practices.

INDEX TERMS Artificial intelligence, cost analysis, cost-benefit analysis, cost-effectiveness, health
informatics, machine learning, smart healthcare.

I. INTRODUCTION

During the past decade, technological advancements in
healthcare have accelerated with increasing emphasis on
remote care, digital health, and high-tech dependence [1].
Analytic software based on artificial intelligence (Al) is
capable of drawing inferences from large data sets and
has influenced how care is personalized and delivered to
patients [2], [3], [4]. In today’s era of exponential increases
in large health data sets and computing power, Al is now
growing in a wide variety of healthcare domains, such as
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medical diagnosis [5], patient monitoring [6], treatment [7],
and drug discovery [8]. In many cases, intelligent soft-
ware has already demonstrated its capability to outperform
traditional methods in terms of accuracy and effective-
ness [9]. Consequently, Al carries potential in improving
certain patient outcomes and cost savings for healthcare
providers and payors [10], [11], [12], [13]. For instance,
risk stratification algorithms were shown to reduce misdiag-
nosis, and unnecessary treatments and medications, saving
associated costs for providers and payors [14]. Al has also
been developed to solve costly back-office inefficiencies
by streamlining administrative workflows and eliminat-
ing tedious non-patient-care activities [15]. Additionally,
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TABLE 1. Search keywords, queries, and boolean operators.

Database

Search query

Number of
studies

Embase

'(‘artificial intelligence': ti,ab,kw OR 'ai": ti,ab,kw OR 'machine
learning':ti,ab,kw OR 'deep learning':ti,ab,kw OR 'computer aided
design/computer aided manufacturing':ti,ab,kw OR 'natural language
processing':ti,ab,kw OR 'nlp": ti,ab,kw) AND ('health eff*':ti,ab,kw OR
'economic aspect':ti,ab,kw OR cost:ti,ab,kw OR budget:ti,ab,kw OR
revenue:ti,ab,kw OR productivity:ti,ab,kw OR 'cost benefit analysis':ti,ab,kw
OR 'return on investment':ti,ab,kw) AND ('healthcare':ti,ab,kw OR
'health':ti,ab,kw) AND [2016-3000]/py

1,220

PubMed

(("artificial intelligence"[Title/Abstract] OR AlI[Title/Abstract] OR "machine
learning"[Title/Abstract] OR "deep learning"[Title/Abstract] OR "computer
aided"[Title/Abstract] OR CADJ[Title/Abstract] OR "natural language
processing"[Title/Abstract] OR NLP[Title/Abstract]) AND ("health
eff*"[Title/Abstract] OR "econom*"[Title/Abstract] OR cost*[Title/Abstract]
OR budget*[Title/Abstract] OR revenue*[Title/Abstract] OR
ROI[Title/Abstract] OR efficiency*[Title/Abstract] OR
productivit*[Title/Abstract] OR “cost benefit analysis”’[MeSH Terms]) AND
(health[Title/Abstract] OR healthcare[Title/Abstract]) AND
2016/01/01:3000/12/31[Date - Publication]

751

Total

1,971

technology adoption is also driven by a paradigm shift the
healthcare industry is making from a traditional fee-for-
service model to a system of value-based care [16], [17].
As the Centers for Medicare & Medicaid Services (CMS)
has instituted many value-based purchasing and bundling
programs together with incentive payments, hospitals are
encouraged to improve the quality and efficiency of their
services [18].

Despite that the medical community is being overwhelmed
by reports on the accomplishments of Al applications in
laboratory settings, evidence supporting the value Al can
and will deliver in the real world is still limited owing
to its lagging adoption in clinical practice [2]. The adop-
tion of Al can be hindered by a lack of clear return on
investment, making it difficult for healthcare providers to
justify the implementation spending [19]. As such, the health
economic impact of Al has become a crucial considera-
tion in decision-making [20]. Health economic evaluations
(HEESs) play a vital role in helping stakeholders allocate their
finite resources optimally by measuring the cost-effectiveness
of novel technologies [21], [22]. Importantly, the value of
Al applications varies among different stakeholders (e.g.,
patients, care providers, researchers, and policymakers) [23].
However, the majority of existing literature assessing Al
algorithms [2], [9] tends to remain broad and general. There-
fore, this study attempted to address this gap by reviewing
contemporary studies that compare the financial and effi-
ciency impact of Al applications with standard of care (SoC)
or other types of care at various levels, including individ-
ual, healthcare system, payor, and the society. Additionally,
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we sought to explore the challenges and future possibilities of
state-of-the-art technologies. To the best of our knowledge,
this article is one among very scarcely available reviews
that comprehensively examine the impact of healthcare Al
from multiple stakeholder perspectives. The findings of this
study will provide valuable insights for future research in
this promising area and support informed decision-making
regarding the adoption and implementation of Al

Il. METHODS

A scoping review was conducted to address the research
question: how does the use of Al-based software impact
health economics and clinical efficiency? The results
were reported according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension
for Scoping Reviews (PRISMA-ScR) checklist when
applicable [24].

A. LITERATURE SEARCH STRATEGY

Although Al applications are currently developing at an
accelerated speed, the adoption of Al in clinical practice is
still obstructed by the limited published real-world research.
Therefore, this scoping literature search focused on stud-
ies published within the recent 6 years between January 1,
2016, and August 20, 2022. The studies were extracted from
two databases, PubMed and Embase separately using the
search keywords and Medical Subject Headings terms com-
bined with Boolean operators detailed in Table 1. Additional
articles were also retrieved from the reference lists of the
included full-text articles.
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B. INCLUSION AND EXCLUSION CRITERIA

After removing duplicate articles, titles and abstracts were
screened by W.J. for inclusion eligibility. Articles were
included if they focused on: (1) a comprehensive description
of an Al functionality; (2) concrete health economic effi-
ciency and/or outcomes evaluation of an Al functionality,
which is based on a comparison with contemporary SoC,
other types of care, or another Al application within the
same healthcare setting; or (3) quantitative clinical outcomes
of an Al functionality in at least one healthcare system.
Articles were excluded if they were: (1) not specific to Al
(e.g., general eHealth or mobile health); (2) not a description
of or elaborating on any quantitative cost-effective analysis
or health-related outcomes of Al applications; (3) focused on
physical Al technology (i.e., robotics) instead of software-
based technology; (4) opinion papers, conference abstracts,
commentaries, letters to the editor, or editorial types of stud-
ies; and (5) not presented in the English language. In total,
89 full-text articles were screened independently by W.J.

C. DATA EXTRACTION

Relevant data of the included articles were extracted indepen-
dently by W.J. using Microsoft Excel (version 16). A data
extraction form was designed and included several general
aspects of the publications: author(s), year of publication,
title, type of publication, patient population, and country.
Specific information extracted with regard to the subject Al
included description of Al application, technology features,
medical field, and application domain (i.e., disease diagnosis,
risk analysis, screening or triage, treatment, patient engage-
ment, or follow-up). Finally, extracted information related
to health economics involved study analysis perspectives,
intervention, and comparator, clinical or economic outcomes,
conclusions, and study limitations.

Ill. RESULTS

A. SEARCH RESULTS

In total, 1,971 articles were retrieved from the initial search.
After removing duplicate articles, 59.8% (1,178/1,971) of
titles and abstracts were screened, and 92.4% (1,089/1,178)
of the records were excluded based on the exclusion criteria.
Out of the remaining 7.6% (89/1,178) eligible for full-text
screening, 65.2% (58/89) did not meet the inclusion criteria
and were excluded. The detailed database search, screening,
and selection process with corresponding inclusion/exclusion
criteria are shown in Fig 1. A total of 2.6% (31/1,178) of
articles were included in this study and read in full text.

B. GENERAL OVERVIEW OF THE INCLUDED STUDIES AND
THE EVALUATED Al TECHNOLOGIES

An overview of the characteristics of the included studies
and the Al application domains they investigated is summa-
rized in Table 2. The majority of the studies were published
in 2020 or later and originated from various countries/regions.
The United States produced the most health economic
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evaluations, whereas China generated the most prospective
studies. Of the 31 included studies, 24 (77.4%) adopted
a health economic methodology to assess the economic
outcomes of using Al products at different stages of devel-
opment. These studies covered a wide range of healthcare
domains, which were categorized into five different cate-
gories based on the function and use-case of Al technol-
ogy — disease diagnosis, risk analysis, screening or triage,
treatment, and patient engagement or follow-up. Each of
these application domains was supported by Al in at least
one included study. Unsurprisingly, disease diagnosis was
the dominant field with a total of 13 (41.9%) of articles
investigating the use of Al in feature classification, event
detection, and prediction. Additionally, 6 (19.4%) studies
evaluated Al in risk analysis, which utilized data analytics
to predict and stratify risks of undesirable patient outcomes.
Another 6 (19.4%) studies focused on Al in population
screening and patient triage, with deep learning (DL)-based
image analysis being the primary technology used.

C. HEALTH ECONOMIC OUTCOME ANALYSIS OF Al
APPLICATIONS

Among all the included studies, HEEs on the use of Al
in healthcare were specifically highlighted in our findings
(n=24, 77.4%). Table 3 summarizes the study design details,
and health economic evidence based on stakeholder per-
spectives (i.e., patient, healthcare system, payor, or societal),
whose judgment or capability was supported, enhanced,
or even replaced by Al In general, there is considerable
heterogeneity in the health economic methodology of the
included HEEs. The primary health economic analysis was
cost-minimization analysis (CMA), comparing two or more
alternative interventions assumed to have an equivalent medi-
cal effect, with the cost per case as the outcome (n=9, 37.5%)
[20]. Most CMAs adopted a healthcare system/provider
perspective (n=5, 55.6%), represented by hospital charges
and/or opportunistic costs (e.g., potential savings derived
from new diagnostic approaches [25], [26]). The other studies
incorporated a payor perspective which was reflected through
reimbursement from a government or commercial payor, or a
societal perspective which varied among studies — such as
costs of healthcare utilization, productivity loss, and value
of reimbursement for patient care to represent the interest of
society and all other stakeholder groups [2], [27]. However,
only one study explicitly elaborated on its definition of anal-
ysis perspective [26].

In addition to CMA, other types of HEEs were also
identified. There were 7 (29.2%) cost-effectiveness analyses
(CEA), which aimed to compare the relative costs and health
outcomes of different interventions to determine the most
cost-effective option [11], [12], [28], [29], [30], [31], [32].
Three studies (12.5%) conducted cost-utility analyses (CUA)
assessing the relative cost and outcomes which consider
both mortality and morbidity (e.g., quality-adjusted life-years
(QALYs) and disability-adjusted life-years (DALYs)) [13],
[33], [34]. Two studies (8.3%) performed budget-impact
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FIGURE 1. PRISMA-ScR (Preferred Reporting Item for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews) flow diagram describing study selection and reasons for exclusion during full-text screening.

analyses (BIA), which examined the financial impact of
adopting a new intervention within a healthcare system or
organization [35], [36]. Finally, one study (4.2%) conducted
a cost-consequence analysis (CCA), which evaluated multi-
ple outcomes of interest and costs associated with different
interventions [37].

Apart from the conventional HEEs, this review also iden-
tified a randomized clinical trial (RCT) and a chart review
that evaluated the cost-saving potential of Al interven-
tions [19], [38]. While these studies did not employ standard
health economic analysis methods, their focus on the finan-
cial implications of Al closely aligned with the goal of
HEEs — to assess the value proposition of Al in healthcare.

123448

Their inclusion has provided a more comprehensive view of
the existing evidence.

D. ECONOMIC VALUE FOR HEALTHCARE SYSTEMS

In all, 58.3% (14/24) of studies investigated whether Al algo-
rithms can outperform traditional clinical practice in terms of
healthcare service delivery [11], [12], [13], [14], [19], [25],
[26], [29], [32], [36], [37], [39], as well as population-based
risk prediction and screening [30], [40]. These studies found
that Al could achieve positive financial impacts on service
delivery by enhancing disease screening efficiency [14], [25],
[29], enabling earlier diagnosis and intervention through risk
prediction-enabled [26], [32], [36], [39], reducing healthcare
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TABLE 2. Summary of study characteristics (N=31).

Study Characteristics Value, n (%)
Publication year
2021 11 (35.5)
2022 9(29.0)
2020 8(25.8)
2019 309.7)
2018 1(3.2)
Country”
United States 11 (35.5)
China 5(16.1)
United Kingdom 4(12.9)
Sweden 1(3.2)
India 1(3.2)
Netherlands 1(3.2)
Spain 1(3.2)
Singapore 1(3.2)
Canada 1(3.2)
Malawi 1(3.2)
Germany 1(3.2)
United States, Germany, Brazil 1(3.2)
Japan, United States, United Kingdom, Norway 1(3.2)
Study design
Retrospective observational 22 (71.0)
Clinical trial 5(16.1)
Prospective 4(12.9)
Artificial intelligence application domain in healthcare
Disease diagnosis 13 (41.9)
Risk analysis 6 (19.4)
Screening or triage 6(19.4)
Treatment 5(16.1)
Patient engagement or follow-up 1(3.2)

resource utilization [37], as well as preventing prescription
errors and adverse events [11], [19]. Whereas the focus of Al
in service delivery is still on the detection, characterization,
and prediction of a certain condition, there is also an emerging
trend of using Al in actual treatment planning and delivery.
For instance, a machine learning (ML)-based personalized
psychology treatment recommendation system, as evaluated
in an RCT, showed improved patient outcomes compared
to usual care, yet at a modest additional cost (£139.83 ver-
sus £104.5 per patient in usual care) because more patients
accessed treatments [12]. Another Al algorithm designed to
decide the antibiotic use for sepsis and lower respiratory
tract infections patients was expected to save $25,611 (49%
reduction from SoC) for sepsis and $3,630 (23% reduction)
for lower respiratory tract infections (LRTI), per patient in a
CEA [11].

The potential of Al algorithms to efficiently improve epi-
demic detection and surveillance has been shown in 3 (12.5%)
studies through precise risk stratification [13], [30], [40].
They involved use cases in population-based screening of
atrial fibrillation [13], human immunodeficiency virus infec-
tion and tuberculosis [30], and glaucoma management [40].
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The clinical superiority of Al-based screening over current
standard approaches (e.g., opportunistic or health worker-
directed screening) was proved in all three studies, in terms of
reducing screening volume, undiagnosed or untreated cases,
and progression risks [13], [30], [40]. One UK study demon-
strated the cost-effectiveness of Al screening strategy versus
standard strategies at an incremental cost-effectiveness ratio
(ICER) threshold of £20,000 per QALY-gained, with ICERs
of £4,847 and £5,544, respectively, despite the increased
treatment costs due to longer life expectancy of partici-
pants [13]. However, Al algorithms were not found to be
cost-effective in the other two studies due to excessive imple-
mentation and treatment costs, which may take a larger
number of participants or a longer study/modeling period to
offset [30], [40].

E. ECONOMIC VALUE FOR PRIVATE AND PUBLIC PAYORS
5 of the 24 studies, (20.8%) highlighted the health eco-
nomic impact of Al from a payor’s perspective [10], [28],
[31], [35], [41]. Among them, 4 (80%) studies supported
the cost-saving potential of AI algorithms over the cur-
rent standard practice based on modeling national health
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TABLE 3. Economic outcomes of using artificial intelligence (Al) in healthcare from health economic evaluations (N=24).

Ll piudyiDesien Lo Kl Intervention Comparator Perspective Outcome Conclusion SuPE oL slEorable
Author and HEE Type Method Implementation' -omp P Economic Outcomes’
E:Sne%o;?szoresl- Annual national savings $1.19
Retrospective Not model- stratification Developed risk billion for diabetes and US$960 The ML model
Boutilier et al P No q scores from U.S.  Health care system  million for hypertension by outperformed the US Yes
€ based algorithm for N N .
5 and U.K. reducing the false negative and UK risk scores.
diabetes and P
i screenings.
hypertension
Retrospective Not model- ?l::sr:ief:l:ggixfff Annual national savings USS1 Z?fzrzrli?‘ﬁ[;::i:;gg ;
Brisimi et al P No ] ) Not specified Health care system  billion as 17% of hospitalizations gh accuracy Yes
CMA based diabetes-associated and cost-saving
P can be averted. N
hospitalization risk potential.
B3 5-year savings for 100,000 Al-based early
RemEie el APEIEIVE ST o0 e A patients were $1.052 billion, identification and
Datar et al 3 Yes diabetic kidney s Payor R P P Yes
impact model di q algorithm) attributed mostly to slowed intervention is
lisease progression . 3
disease progression. preferred.
Al-instructed care was associated
with additional cost per patient
Prognosis ML-based ~ Stepped care (£104.5 vs. $139.83 in _stepped
. ; § . care) because more patients . .
. N Logistic personalized (patients seeking S f Al-instructed care is
Delgadilloet ~ Prospective . Lo accessed high-intensity .
regression Yes P P Health care system . B more costly but more Mixed
al RCT and CEA treatments. The probability of it N
models treatment treatment from bei ffecti 0% if effective.
recommendations guided self-help) eing cost-effective was 0%
the WTP threshold is greater than
£1,320 per additional case of
reliable improvement.
ICER was €18,507/QALY; The
Al prediction model likelihood that AT will be cost- Predictive model
o Vas il Retrospective Markov No for risk of SoC (without AT Societal effective was 71% at a WTP et Y
CUA model readmission and algorithm) threshold of €30 000/QALY over standard care.
mortality driven by reduced ICU length of :
stay.
Cost saving was €1,009/ICU
Standard patient and aggregated yearly
diagnosis b saving for the healtheare system Predictive model has
) Retrospective - Al prediction 810sis by was €2,798,915. Additionally, the ! h
Ericson et al Decision tree ~ Yes . . physical Health care system - . cost- and life-saving Yes
CEA algorithm for sepsis . algorithm can detect sepsis 3 N
examination and . impact over SoC.
laboratory data hours than current practice,
potentially resulting in 356 lives
saved per year.
ﬁ::)?:::: r:ilsmal At 5 years, Al screening showed Pri care-based Al
Retrospective - 8CANASIS - SoC (without AT similar utility as the SoC but mary care-
Fuller et al Decision tree ~ Yes system for diabetic a Payor P prescreening is more Yes
CEA retinopath: prescreening) reduced costs by 23.3% with cost-offective than SoC
pathy $258,721.8 ICUR. .
prescreening
In base case where the algorithm
had a 50% prediction sensitivity,
Traditional its cost-effectiveness vs. Al risk prediction has
. Decision tree ML predictive methods systematic and opportunistic pre
. Retrospective . . . . . the potential to enhance
Hill et al and Markov No algorithm for AFib (systematic and Health care system screening strategies was 5 Yes
CUA . e the cost-effectiveness of
model risk opportunistic demonstrated, at an [ICER AFib screenin
screening) threshold of £20,000 per QALY- s
gained, with ICERs of £4,847 and
£5,544, respectively.
Gradient boosting- Linear regression
Retrospective based risk prediction model fm-g AT model reduced misestimation Al outperformed
Irvin et al P Decision tree  No and adjustment Payor of cost by $3.5MM/10,000 p Yes
CMA payment current models.
model for plan A members.
adjustment
payments
Diagnostic Al resulted in shorter time to
Retrospecti algorithm for SoC (next treatment (<1d vs. 12d for SoC) Al can reduce both time
Kacew et al C:/[rszec e Decision tree  No inferring genetic generation Health care system and $400MM (12.9%) annual to treatment and costs Yes
features for sequencing) savings for new colorectal cancer  compared to SoC alone.
colorectal cancer in the U.S.
Cost prevention for top 1% of
DDirisk patients was 30110 (vs: 15%in ng;ZTijdli‘:Sve
. Retrospective Not model- stratification for Traditional traditional model); Cost P P
Lewis et al No . L . Health care system . 5 . performance over Yes
CCA based heart failure logistic regression prevention for top 5% patients o oo
D i~ fa traditional statistical
outcomes was 30% (vs.15.6% in traditional
methods.
model).
Average colonoscopy cost and the
gross annual reimbursement for
Binary Al prediction colonoscopies were reduced by Al enabled the
Mori et al Prospective Not model- Yes mode:lyfor Seo lastic Resect-all-polyps Societal US$149.2MM (18.9%) in Japan, diagnose-and-leave Yes
CMA based colorectal olp s strategy US$12.3MM (6.9%) in England,  strategy and reduced
POIYPS USS$1.IMM (7.6%) in Norway, ~ costs.
and US$85.2MM (10.9%) in the
us.
q Al red{ctwn Cost of adverse events potentially Al system was
Retrospective application for a ; P q
Rozenblum et . Not model- P Before the use of p inan setting for use in
Chart review Yes prescription errors Health care system e L. Yes
al 3 based Al system ‘was more than $60 per drug alert  clinical decision
analysis and adverse drug illion fo 5
effects and $1.3 million for all patients. support systems.
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TABLE 3. (Continued.) Economic outcomes of using artificial intelligence (Al) in healthcare from health economic evaluations (N=24).

ML monitoring
system for OSA

Al significantly increased
intervention effectiveness
(treatment compliance) without

Al-based monitoring
increased patient

Turino et al Prospective Not model- Yes com[:ull?nce SoC Patient inflicting higher treatment and compliance and Yes
RCT based prediction and e . . S
treatment follow-up costs per patient (SoC:  satisfaction but not
US$105.76 vs. AL: US$112.70, costs.
recommendation
P=.70)
Incremental cost was —$156,
incremental efficacy was +0.0095
Al-based CT SoC (CT QALYs which translated to $244 Al tools demonstrated
q Markov 5 q 5 p 3
Van Leeuwen  Retrospective el el No angiography evaluated by Societal per patient using a reference value  the potential to improve Yes
etal CUA decisi software for stroke radiologist or of $25,662 per QALY Annual clinical radiology
ecision tree A R A 5 3 A
diagnosis neurologist) national saving was $11MM and  practices and outcomes.
QALY gain was 682 ($17.5MM)
in the UK.
Decision algorithm Average cost savings of $25,611 Al decisi Jorithy
Voermanset  Retrospective . to guide antibiotic ~ Before Al Health care system  (49% reduction from SoC) for Al decision algoriiim
Decision tree ~ Yes L N B . : . intervention was Yes
al CEA prescription sepsis implementation and societal sepsis and $3,630 (23% ferred SoC.
and LRTI patients reduction) for LRTI, per patient. preferred over S0t
The semi-automated screening
DL retinal image model was the least expensive of
R - stenf e Semi-automated the three models (USS$62 per DL systems are an
Xie et al P Decision tree ~ Yes nalysis sys model; Human Health care system  patient per year). The annual economic assistive tool  Yes
CMA diabetic retinopathy 3 3
escreening assessment savings for Singapore health to screen.
pr system was $489,000 (20% of
current screening cost).
In dermatology, Al showed
similar 86.5 QALY's but lower
costs of $750 vs control ($759). .
. Current economic
DLi Iysi In dentistry, AT accumulated costs benefit of Al
Gomez Rossi  Retrospective Markov L IMAge ANAYSIS g dard of of €320 (vs. €342 in control). In cnclit of AL as )
No diagnosis support . Health care system decision support tool Mixed
ctal CUA model system screening ophthalmology, Al accrued costs 1/ * 5 B0 oy
Y of $1321 at 8.4 QALYs, while the vatuatec
: a case-specific basis
control was less expensive
($1260) and associated with
similar QALYs.
SoC (routine The 3-year NHS budget impact of  Implementation of a
diagnosis and SoC would be £45.32 million, prediction algorithm
Szymanski et Retrospective Al risk prediction opportunistic ; £3.63 million (difference -92.0%) alongside standard
al BIA B R® algorithm for AFib screening), SoC Flaibacsen with Al and £46.34 million opportunistic screening Vs
and AI combined (difference 2.2%) in combined prevented the most
use use. cases and reduced cost
Decision support A 19.3% reduction in the total
. Advanced cloud application for cost of care (P<0.001) yielded a ¢\ cianially
Retrospective 3 S Before Al- savings of $554 PMPM;
Kessler et al regression No medication and . . Payor o0 decreased government  Yes
CMA del . implementation medication costs showed a 17.4% health dit
models ::r:’;?e:mem reduction (P<0.001) which ealth care expenditres
s yielded a savings of $192 PMPM.
CAD screening reduced
undiagnosed or untreated HIV
from 10 in the SOC arm to 2 in
the HIV screening z.irm, and 1 in DCXR-CAD with
the HIV-TB screening arm. -
universal HIV and TB
. . SoC; Oral HIV Incremental costs were US$3.58 i q
MacPherson  Prospective Not model- DCXR screening 2 A s screening has potential
Yes N testing + linkage Health care system and US$19.92 per participant . S No
etal RCT and CEA based with CAD to improve timeliness
to care screened for HIV and HIV-TB; N
P and efficiency of
the probabilities of cost- diagnosis and treatment
effectiveness at a US$1,200/ ¢!
QALY threshold (adjusted based
on Malawi GDP) were 83.9% and
0%.
Al-based Al-supported detection was Higher accuracy of Al
radiographic significantly more sensitive than did not lead to higher
Schwendicke ~ Prospective Markov Yes viewing software for  SoC (without AT Payor detection without Al but showed cost-effectiveness, as Mixed
etal RCT and CEA model dental caries algorithm) Y identical effectiveness and nearly ~ more invasive treatment
detecting and identical costs (Al: 330 Euro, no approaches generated
classifying Al 330 Euro). costs.
The 5-, 10-, and 15-year . .
A Population screening
accumulated incremental costs of 5 A 5
screening vs. no screening were il Al ATty ity
Retrospective Markov DL fundus image Without Al-based estimated to be $396,362.8, :’eﬁlfci dwi:Z:: oo
Xiao et al P Yes analysis system for g Health care system $424,907.9, and $434,903.2, q 5 q No
CMA model q 4 screening q progression risks which
PACG diagnosis respectively. As a result, the
a could not offset the
incremental cost per PACG of N .
excessive screening
any stages prevented was cost
$1464.3. .
Autonomous point- ICER of $31 for TID and $95 for Al screening is
Retrospective L of-care diabetic Clinician-based N T2D for each additional diabetic effective and cost-
Wolf et al Decision tree  No . ; Patient . P R . Yes
CMA retinopathy screening retinopathy were identified saving for the patient
screening compared with standard practice.  and family
AFib, atrial fibrillation; BIA, budget-impact analysis; CCA, cost-cc analysis; CEA, cost-effectiveness analysis; CMA, cost-minimization analysis; CT, computed tomography; CUA, cost-utility analysis; DCXR,

digital chest X-ray; DL, deep learning; GDP, gross domestic product; ICER, incremental cost-effectiveness ratio; ICU, intensive care unit; ICUR, incremental cost-utility ratio; LRTI, lower respiratory tract infection; OSA,
obstructive sleep apnea; PACG, primary angle-closure glaucoma; PMPM, per member per month; QALY, quality-adjusted life-year; SoC, standard of care; TB, tuberculosis; WTP, willingness-to-pay.

A “Yes” or “No” indicates whether or not an Al product has been implemented/experimented in the real-world practice, regardless of the data collection methods of the study.

2 A “Yes” or “No” indicates whether or not the study concluded AT was found to be more cost-effective than the comparator. If a study found Al to be equally cost-effective with the comparator, or provided uncertain

conclusion therein, it is labeled as “Mixed”.
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plan, claims, or previous prospective study data [10], [34],
[35], [41]. By implementing AI platforms that can iden-
tify members at high risk and provide decision support to
clinicians in performing interventions on them, costs and
utilizations were substantially attenuated [28], [35]. Inter-
estingly, Al algorithms were also utilized to automate plan
payment adjustments, reducing payment misestimation [10].
Al-assisted medication and regimen management for govern-
ment payors yielded a 19.3% reduction in the total cost of care
and savings of $554 per member per month [41]. In contrast,
one RCT conducted in Germany found that despite the higher
accuracy of Al in lesion detection, it led to nearly identical
effectiveness or costs with dentist-only assessments as more
invasive treatment approaches diminished the possible effec-
tiveness advantages of Al [31]. The same study suggested
that the cost-effectiveness of Al could be improved by sup-
porting subsequent patient management and being applied in
high-risk populations [31].

F. ECONOMIC VALUE FOR DIFFERENT STAKEHOLDERS IN
A SOCIETY

Overall, 3 (12.5%) studies discussed the potential of Al to
be cost-effective compared with the SoC from a societal
perspective. These studies showed superior performance of
Al in terms of improving healthcare outcomes and cost sav-
ings across different medical fields and cost components [5],
[33], [34]. In a critical care setting, an Al-based decision
support tool resulted in more health gains (0.002 incremen-
tal QALYs) but slightly incremental costs (€34) (including
healthcare costs, informal care costs, and productivity losses)
per patient compared with SoC, resulting in an ICER of
€18 507 per QALY per patient. Nonetheless, the cost can
be compensated for by the reduction in intensive care unit
(ICU) stays and fewer readmissions in one year [40]. The
cost-effectiveness of this Al-based tool was also assessed
through probabilistic sensitivity analysis which showed that
when applying a willingness-to-pay (WTP) threshold of
€80,000 per QALY (considered the maximum reference
value in The Netherlands), the Al tool had a 92% proba-
bility of being cost-effective compared with SoC, indicating
the potential cost-effectiveness of the tool in real world.
Another study assessed the value of Al prediction in radi-
ology by modeling both the short-term healthcare costs and
long-term personal social service costs, and showed that
Al could potentially help to save $244 per patient and
$11 million nationwide each year [34]. While estimated
cost savings for the society can be significant, it is equally
important to consider the various stakeholders involved to
achieve a more balanced assessment of the implication of
Al applications. An add-on health economic analysis of a
clinical trial showed that using Al prediction in colonoscopy
diagnosis was estimated to reduce the exam cost and the
gross annual reimbursement by US$149.2 million in Japan,
US$12.3 million in England, US$1.1 million in Norway,
and US$85.2 million in the United States, respectively [5].
However, healthcare providers may face challenges such as a
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decline in profits due to reduced reimbursement, which could
lead to difficult decisions regarding resource allocation and
discourage financial investment in Al technology.

G. ECONOMIC VALUE FOR PATIENTS

Out of the 24 studies, 2 (8.3%) studies evaluated the
health economic outcomes of utilizing Al compared with
human-based standard practices for patients [38], [42]. One
study used decision analysis to model the health economic
impact of autonomous Al point-of-care diabetic retinopathy
screening in a clinic setting. The findings showed that Al
screening detected more cases than clinician screening and
was associated with reduced out-of-pocket payments when
at least 23% of patients adhered to the Al strategy [42].
Another RCT demonstrated a favorable economic outcome
of an intelligent obstructive sleep apnea monitoring system
which significantly increased treatment compliance without
incurring additional costs for patients compared with usual
care (US$112.70 vs. US$105.76, p=0.70) [38].

H. IMPROVED CLINICAL EFFICIENCY OR EFFECTIVENESS
BY USING Al

Besides the direct HEEs on the use of Al in health-
care, 7 (22.6%) additional studies measured the impact of
Al-supported interventions on clinical efficiency by measur-
ing physician time [43], [44], [45], [46], [47] or the length
of hospitalization, which could translate into potential finan-
cial and operational benefits for both patients and healthcare
providers [48], [49]. Detailed study design information and
findings were also summarized, incorporating stakeholder
perspectives, as shown in Table 4. Among them, 5 (71.4%)
studies have shown that Al software can reduce time spent by
providers at multiple stages throughout the care pathway from
disease screening [47], diagnosis [43], [45], to intervention
[46], and to follow-up [44], compared with manual prac-
tice. Three of the five studies evaluated DL-powered image
analysis systems which significantly shortened the reading
and diagnosis time for clinicians, allowing them to treat
more patients [43], [45], [47]. In terms of patient experience,
a prospective study and a retrospective clinical trial showed
that image-analytic DL systems can reduce the length of
stay at the hospital [48] and emergency department [49],
leading to accelerated patient turnaround, lower expenses on
hospitalization, and most importantly, improved quality of
life after timely treatment (e.g., energy level, social function,
general health condition as measured by 36-item short form
survey [SF-36] scale).

IV. DISCUSSION

Given the potential benefits Al has for the healthcare indus-
try, our work sought to identify and summarize the existing
evidence regarding the comparative outcomes that healthcare
Al can confer. Through an analysis of the 31 studies we
identified, an overall positive answer is revealed to the overar-
ching research question of the economic impact and clinical
effectiveness Al applications have on patients, healthcare
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TABLE 4. Clinical efficiency outcomes of using artificial intelligence (Al) in healthcare (N=7).

AI Application

Study Design  Intervention Comparator 5 Perspective Outcome Conclusion
- Function
5L s Al segmentatlon saved
p algorithm for Radiologist 25.12.m1n/§can COPEIET . .
Chart review ) . . Health care to radiologist assessment ~ Al-based diagnostic
Wang et al 3 spontaneous assessment; Diagnosis q
analysis . system (P<0.001) and had higher system was preferred
intracerebral ABC/2 scores
accuracy than ABC/2
hemorrhage volume
sores
Al-assisted follow-up The time spent on 100
system via speech patients was close to 87.7  The effectiveness of
. . recognition and : : Health care seconds in Al-assisted Al-assisted follow-up
Bian etal Prospective human voice Manual follow-up - Follow-up system follow-up vs. 9.3 hours in  was comparable to that
simulation the manual follow-up of manual follow-up
technology group
DL-based discases The mean diagnosis ‘t)lme AI platform has greatly
. Before the was reduced by 37.5% improved the patient
. . detection and . . . . Health care . .
Liu et al Prospective . X implementation of Diagnosis for each patient, leading  rate and the resource
classification of ) system . o
A — Al dentist system to an increase of treated utlhzatlo_n _rate at 10
patients by 18.4% dental clinics
The time required to
order investigations
Al algorithm for . (P=0.049), contact senior Al softw'a T¢ program
. ? SoC (without Al . Health care . _ can facilitate best
Burns et al Prospective acute illness . Intervention medical staff (P=0.040) .. .
. algorithm) system . . clinical practices and
detection and senior medical staff reduce staff workloads
intervention (P=0.045)
was reduced
Average hospitalization Echocardiographic
i DL-based Routine ; ) i cost was s1gr.nﬁcantly' detecpon l?ased on DL
Chen et al Prospective echocardiograph cchocardiogranh Diagnosis Patient lower in the intervention  algorithm is worthy of
graphy graphy group than SoC group further clinical
(¥9220 vs. ¥12522) promotion and use
For patients with a final
Image diagnosis of ICH, DL Al system accelerated
Chien et al Retrospective NCCT image analytic in teg retation b Diagnosis Health care system significantly patient flow and
clinical trial DL algorithm system h :li)cians y & system shortened their LOS improved  quality of
Py (560.67min vs. 780.83  care
min without DL)
o p
A()§i9ti<‘/)ecslec:2iirs§alnefsgre1 Al can decrease false-
DL-based, CAD P P 8 g positive recalls in
DL-based CAD as .
. software for FDA-approved . Health care . screening
Mayo et al Retrospective ; : Screening compared to CAD, which
mammography image conventional CAD system ; o mammography,
3 could result in a 17% 3 ;
analysis . . . generating potential
decrease in radiologist p
o economic benefits
reading time per case

CAD, computer-aided design; DL, deep learning; ICH, intra-cranial hemorrhage; LOS, length of stay; NCCT, non-contrast head computed tomography; SoC, standard of care.

systems, payors, and society. Among the 31 studies ana-
lyzed, 24 examined the cost-saving potential of Al compared
to current standard practices, focusing on potential direct
cost savings or efficiency improvements for corresponding
stakeholders. Remarkably, 19 of these studies demonstrated
favorable findings for the economic benefits of using Al,
whereas 3 studies reported either no difference or inconclu-
sive results [12], [29], [31], and 2 studies yielded results that
did not substantiate its cost-effectiveness [30], [40], as labeled
in Table 3. These variations highlight the need for further
research to assess Al’s applicability on a case-specific basis
and explore strategies to effectively control the incremental

VOLUME 11, 2023

cost inflicted by the application of Al. Moreover, we identi-
fied 7 additional studies, including 5 clinical trials, compared
Al applications with human-based SoC and concluded that Al
is more clinically effective by shortening labor time or patient
journey in the clinic. The most popular Al technique was
neural network-based image analysis systems. We also found
that the investigated Al applications have been primarily
implemented to provide decision support in disease diagnosis
(n=13), followed by risk analysis (n=6), screening or patient
triage (n=6), and treatment (n=>5).

In the past 10 years, the world has seen significant
growth in Al research and development as the number of
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Al patents filed in 2021 was more than 21 times higher
than in 2015, showing a compound annual growth rate
of 76.9% [50]. Although AI adoption is expected to be
more widespread, evidence ascribing the cost-effectiveness
of Al is still scarce. Considering the tremendous number of
English-language publications related to Al development or
application in 2021 (over 334,497 globally), 31 articles is a
surprisingly limited number [51]. Particularly, many of the
31 included studies adopted a retrospective design projecting
future cost based on real-world data, without actually imple-
menting Al in the clinic. Additionally, as previous systematic
reviews have reported, the limited number of assessments
are often of suboptimal study quality considering the model
reliability, and the transparency of their assumptions and ana-
lytical methods [2], [21]. Device implementation investment
(e.g., device acquisition, training, consumables) was not
accounted for in the cost-saving estimates in most stud-
ies. This could still allow for payer-providers to determine
the savings by subtracting costs from predicted values,
but the significance of AI’s cost-saving impact would be
undermined. Moreover, with the involvement of Al algo-
rithms, healthcare systems and regulation agencies are facing
a significant challenge in preserving privacy and security,
of which the violation can result in the compromise of
patient privacy, erosion of trust in the healthcare system,
and have legal and financial repercussions [51]. Although
it is hard to monetize the harm of data breaches accu-
rately, failing to account for potential security violations
in economic evaluations may lead to an overestimation of
the benefits of AI since the possibility of data breaches
and exploitation increases day by day as a result of ris-
ing demand and dependence on digital technology in this
Al age [51]. These observations, combined, point to the
need for more qualitatively solid scientific evidence in a real
clinical environment, which would require more coopera-
tion between healthcare providers and the Al development
community.

This review found that healthcare Al is able to achieve
economic advantages for a variety of stakeholders, with
a healthcare system’s perspective adopted by more than
half of the identified HEEs (n=14, 58.3%). This can be
partially attributed to the surging healthcare demand that
has particularly taken a toll on global healthcare systems
since the outbreak of the global coronavirus disease 2019
(COVID-19) pandemic [1]. Novel technology that holds the
promise to solve the incapacity to manage sudden and per-
sistent pressures on providers’ workload and provisions has
thus gained increasing attention from healthcare systems,
especially regarding their financial implications. However,
the limited evidence of HEEs of Al for other stakeholders
(i.e., patients, payors, and society) is insufficient to inform
long-term decision-making. Potential challenges and con-
flicts may arise between different stakeholders as far as
the financial implication is concerned. For example, while
healthcare systems may benefit from cost savings and
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increased efficiency with the implementation of Al, pay-
ors and society may have different concerns and priorities
[52]. Given the rapidly emerging Al applications in the
areas of point-of-care diagnostics, remote patient monitoring,
reimbursement, and price tiering [53], we encourage future
research to include more diverse perspectives in the design
and evaluation of state-of-the-art Al products, along with
considerations on the unintended consequences and the need
for ongoing monitoring.

In addition to the original research, we have identi-
fied 19 systematic and scoping reviews carried out in
the healthcare AI area. Some reviews focused on the
utility and cost-effectiveness of Al technologies in spe-
cific clinical domains, such as the cardiovascular disease
diagnosis [54], oncology diagnosis and precision medicine
[55], [56], [57], anesthesia and perioperative care [58], oper-
ating room management [15], ICU management [59], and
orthognathic surgery planning [60]. Under these specific
clinical contexts, studies indicated that a hybrid model,
where Al systems undertake an assistive role alongside
human decision-makers, is more effective than relying solely
on manual interventions. Furthermore, the joint forces of
Al and IoT technologies might allow humans to harvest
the economies of scale by not only streamlining clinical
processes but also reducing fixed infrastructure costs and
overhead expenditures [54]. Another stream of reviews com-
prehensively characterized existing Al tools in healthcare
with differing technology focuses [3], [61], [62], [63], [64],
[65], [66]. They provided a fundamental reference to inform
the understanding of main Al functionalities and related
outcomes. Nevertheless, most studies discussed some sub-
stantial problems that have delayed a broad adoption of Al in
healthcare, including AI’s transparency and interpretability,
intrinsic bias against underrepresented persons [56], massive
investment and personnel training [62], as well as challenges
in overseeing and regulating complex software products [3].
Whether or not reliance on such technologies may exacerbate
health inequity is difficult to assess using currently available
data in the literature. In this regard, Chew et al conducted a
systematic review to describe how Al developers and users
perceive these trade-offs and suggested several mitigation
strategies, such as enhancing empathy and personification
of Al, interconnecting with other devices, and educating the
public on Al capabilities [9].

In alignment with previously published review articles on
the topic of healthcare Al [2], [66], we found that nearly
two-thirds of the identified studies were based in developed
economics, of which more than half were from the United
States. The United States has held the lead in the number
of Al publications (n=11, 35.5%), which is twice as many
as China (n=5, 16.1%) or the UK (n=4, 12.9%), the next
two countries on the ranking. Corporate investment in Al,
from private investment, mergers, and acquisitions, to public
offerings, is a key contributor to Al technology develop-
ment [50]. Our finding is consistent with the fact that the
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industrialization of healthcare Al is dominated by developed
countries, with the United States leading the world in both
total private investment and the number of newly funded com-
panies in medicine and healthcare [50]. The disproportionate
distribution of study countries in our search indicated that
researchers from low- and middle-income economies with
limited resources might have a relatively low publication rate.
Additionally, low-resource contexts have different patient
populations and limited resources available (e.g., low-quality
data collection systems and digital infrastructure) than high-
resource environments, which will likely result in predictable
decreases in the quality of algorithmic recommendations
for care, limiting the promise of healthcare Al to democ-
ratize superiority [67]. Furthermore, since the Al systems
investigated in the included studies were all concentrated
on English-language data sets, it is possible for us to miss
research published in non-English writing. Hence, we would
like to see more studies that cover the real-world influence
should AI underperforms on non-English-based data and
minority identities.

A. LIMITATIONS

This study has several limitations. First of all, many arti-
cles in our review did not implement all the requirements
outlined in commonly used checklists for HEEs; thus, they
could be methodologically fallible. However, since it is not
a requirement for scoping reviews and our main intention
was to conduct a broad-spectrum review of contemporary
evidence, we did not conduct a formal quality assessment,
evaluate the risk of bias across studies, or perform additional
analysis to uniform study outcomes beyond the scope of our
review [24]. Additionally, this work is subject to limitations
that are inherent to literature reviews in general. Since only
PubMed and Embase online databases were searched, rele-
vant articles published exclusively by other databases could
have been missed. Although academic publications on this
subject have been growing faster and faster in recent years,
we only focused on studies published within the last 6 years.
However, studies qualified for our assessment were concen-
trated in the last 3 years, which justifies the time frame of
our search. Nevertheless, it is possible that relevant articles
not written in English, or the latest findings published in the
forms of conference abstracts or professional comments were
missed. Lastly, as we discussed above, our findings might
not be fully applicable to other geographies as the majority
of included studies were from the United States or other
developed countries/regions.

V. CONCLUSION

This scoping review has provided an overview of the cur-
rent state of the literature concerning the economic and
clinical implications of Al applications for patients, health-
care systems, payors, and society as a whole. Al holds
potential within the healthcare industry, surpassing human
capacity in terms of care delivery timeliness and com-
pleteness and supporting stakeholders in decision-making.
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These advancements could potentially lead to improvements
in multilevel health outcomes. However, the existing body of
studies on the cost-saving potential and clinical efficiency
of Al, though promising, is limited with lack of empirical
evidence and rigorous evaluation methodologies that account
for real-world complexities. The journey towards widespread
healthcare practices remains complex and evolving, of which
the potential biases, information privacy, and ethical consid-
erations should not be underestimated. Although navigating
those uncertainties associated with novel technology is chal-
lenging for researchers and decision-makers, the potential
benefits of Al warrant a responsible and patient-centered
approach which could be achieved by continued investments,
interdisciplinary collaborations, and meticulous research
efforts.
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