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ABSTRACT Optimization challenges are becoming more complex as the world advances. Since determin-
istic and heuristic approaches are no longer sufficient to deal with such complex problems, metaheuristics
have recently emerged as a viable option to address optimization difficulties. Since Sand Cat Swarm
Optimization (SCSO) is a famous meta-heuristic algorithm, SCSO has a weak ability to balance search
between exploration and exploitation and slow convergence, so it may not be effective in finding the
global optima, particularly for complex problems. Hence, this paper proposes an intensified SCSO with
multiple strategies (IMSCSO). The performance of the IMSCSO algorithm was evaluated on 23 standard
test functions and test suites of CEC 2017, CEC 2019, and CEC 2020. Experimental results show that the
IMSCSO algorithm performs significantly better than or is on par with other state-of-the-art optimizers.
The statistical results obtained from the Wilcoxon signed-rank test and the Friedman test also indicate that
the IMSCSO algorithm has a high ability to significantly outperform and rank first among all methods.
Moreover, seven typical engineering issues were employed to estimate the efficacy of IMSCSO in optimizing
constrained problems. The experimental findings show that the suggested IMSCSO method can efficiently
handle real-world application issues.

INDEX TERMS Sand cat swarm optimization, hybrid opposition-based learning, joint opposite selection,
benchmark functions.

I. INTRODUCTION
In real life, several optimization issues have evolved in
numerous industries and scientific and technological disci-
plines, such as asset allocation [1], batch processingmachines
[2], photovoltaic power prediction [3], and tourism trips [4].
These optimization challenges get increasingly difficult and
diverse as humans and industries progress. The greater and
more intricate the problem, the more difficult it is to tackle.
As a result, academics are eager to create better optimization
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approaches for handling these difficult issues. At themoment,
deterministic and stochastic approximation approaches are
useful for solving complicated issues. Deterministic algo-
rithms [5] use specified mathematical functions to provide
the same solution for different inputs to a given issue. For
example, gradient descent method [6], Quasi-Newtonmethod
[7], Levenberg-Marquardt method [8], etc. Although the
deterministic techniques ensure the optimal solution of the
optimization issue, they have the premature convergence
and are prone to falling into the local traps, particularly
for high-dimensional and large-scale multimodal situations.
The metaheuristic algorithm, as one of the most common
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branches of approximation algorithms, is not guaranteed to
discover the optimal solution, but the produced answer may
be closer to the ideal solution. It has the advantages of sim-
plicity, efficiency, and low complexity, and it can solve the
flaws of deterministic approaches such as premature conver-
gence and local stagnation by using random operators. Many
metaheuristic algorithms are utilized to tackle challenging
issues due to their superior properties. On the other hand,
the No Free Lunch (NFL) theorems [9] show that no specific
metaheuristic approach is capable of providing the optimum
solution to every optimization problem. As a result, it is still
essential to focus on developing sophisticated metaheuristic
algorithms to address various optimization challenges.

There are many kinds of classification methods for meta-
heuristic algorithms, but there is no standard and gen-
eral classification method [10]. Generally, metaphor-inspired
approaches divide them into these categories: evolutionary-
based algorithms (EBAs), swarm-based algorithms (SBAs),
human-based algorithms (HBAs), physics-based algorithms
(PBAs), math-based algorithms (MBAs), and game-based
algorithms (GBAs).

EBAs are essentially population-based methods that use
the population’s interaction to seek out the global optimal
solution in the entire search space. Genetic algorithm (GA)
[11], a common algorithm in the EBAs class, is inspired by
generational reproduction and employs imitation crossover,
mutation, and elitism to produce new generations to find
the global optimum. Differential evolution (DE) [12] is
another algorithm inspired by natural evolution that differs
from GA in generating next-generation selection operations.
The FACDE algorithm integrates Fuzzy C-means clustering,
adaptive crossover and cluster-specific mutation strategies to
enhance the performance of the DE algorithm [13] and solve
the complex water distribution network (WDN) problems
[14]. Popular EBAs include the cooperative co-evolutionary
algorithm (CCA) [15], the tabu search (TS) [16], and the
black widow optimizer algorithm (BWO) [17], among others.
In addition, the SBAs allow social organisms such as

insects, animals, and birds to exchange information between
several search agents by constructing a multi-agent system in
order to discover the global optimal solution. Particle swarm
optimization (PSO) [18], the most well-known algorithm in
the SBAs category, is modeled after the social behavior and
movement of birds in nature. It appears to employ mutual
communication and learning among particles to discover
the optimal solution within the search space. Phasor parti-
cle swarm optimization (PPSO), inspired by phasor theory,
is based on modeling the particle control parameters with a
phase angle to improve the performance of the PSO algorithm
[19]. Ant colony optimization (ACO) [20] primarily simu-
lates ant foraging behavior by having one ant use the soil
to demonstrate how to produce pheromones, which other
ants then copy in order to find the optimal solution. In
recent years, a variety of this type of algorithms have been
widely proposed, such as the grey wolf optimizer (GWO)

[21], whale optimization algorithm (WOA) [22], salp swarm
algorithm (SSA) [23], harris hawks optimization (HHO) [24],
moth-flame optimization (MFO) [25], golden eagle optimizer
(GEO) [26], slime mould algorithm (SMA) [27], seagull
optimization algorithm (SOA) [28], sooty tern optimization
algorithm (STOA) [29], sand cat swarm optimization (SCSO)
[30], rat swarm optimizer (RSO) [31], and dung beetle opti-
mizer (DBO) [32].

The PBAs usually simulate the physical laws underly-
ing a wide range of natural phenomena, including electro-
magnetic force, inertial force, light diffraction, reflection,
and so on. The few of the famed PBAs are gravitational
search algorithm (GSA) [33], specular reflection optimiza-
tion algorithm (SRA) [34], chaotic multi-specular reflection
optimization algorithm considering shared nodes (CMSRAS)
[35], equilibrium optimizer (EO) [36], Young’s double-slit
experiment optimizer (YSDE) [37], Kepler optimization
algorithm (KOA) [38], light spectrum optimizer (LSO) [39],
Fick’s Law Algorithm (FLA) [40], and multi-verse optimizer
(MVO) [41], and Turbulent Flow of Water-based Optimiza-
tion (TFWO) [42].

Humans are widely regarded as the most intelligent crea-
tures, employing a wide range of behaviors and activi-
ties, such as teaching, learning, and cooking, to provide
optimal solutions to various problems. Many researchers
have proposed HBAs inspired by various human behaviors,
such as teaching-learning-based optimization (TLBO) [43],
socio evolution learning optimization (SELO) [44], poor
and rich optimization (PRO) [45], chef-based optimization
algorithm (CBOA) [46], teamwork optimization algorithm
(TOA) [47], city councils evolution (CCE) [48], and sewing
training-based optimization (STBO) [49].

MBAs, which are inspired by mathematical concepts and
principles, and GBAs, which are inspired by game rules,
player, coach, and referee behavior, are the latter two types of
algorithms. Table 1 lists a variety of these MBAs and GBAs.
Exploration and exploitation are the two core elements

of metaheuristic algorithms [62], [63]. The exploration is
known as global optimization or diversification. Meanwhile,
the exploitation is called local optimization or intensification.
Metaheuristic algorithms can use the exploration to identify
new search space regions and avoid being trapped in local
solutions. The exploitation enables metaheuristic algorithms
to focus on a specific area in order to discover the optimal
solution.

Every metaheuristic algorithm should discover the optimal
balance between diversification and intensification; other-
wise, the quality of the identified solutions drops. Too many
exploration implementations might waste a lot of time and
energy. The algorithm simply jumps from one location to
another without focusing on searching for higher-quality
solutions. The algorithm may be trapped in local optimums
and converge prematurely by using excessive exploitation
implementations. The sensitivity to fine-tuning of govern-
ing parameters is the primary shortcoming of metaheuristic
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TABLE 1. Summarization of various MBAs and GBAs.

algorithms. Additionally, convergence to the global optimum
isn’t always a given.

As a popular meta-heuristic algorithm, the SCSO
algorithm is widely used to solve various optimization
problems, such as the feedback controller design [64], the
multi-label classification [65], and the process parameter
optimization design of the melt-blown [66]. However, The
SCSO algorithm has several drawbacks: (i) During the search
process, the quality and diversity of sand cat individuals are
low, and there is a lack of mutual communication among sand
cat individuals. And the local stagnation appears in the late
search period to reduce the global search performance of the
SCSO algorithm. (ii) The random angle is used to realize
the conversion between exploration and exploitation, but the
exploitation may begin late, resulting in low convergence
efficiency, especially for large-scale high-dimensional multi-
mode problems. (iii) The global optimization accuracy and
efficiency is weak due to the weakness balance between
exploration and exploitation of the SCSO algorithm.

For these existing issues, scholars have really been engaged
in enhancing the search ability of the SCSO algorithm.
To improve global optimization capability and search effi-
ciency, the modified sand cat swarm optimization (MSCSO)
approach, incorporated in the wandering strategy and lens
opposition-based learning strategy [67], was presented. The
nonlinear periodic adjustment, the pseudo-opposition and
pseudo-reflection learning, and elite collaborative mecha-
nisms were introduced into the SCSO algorithm to improve
the global convergence ability [68]. The discretized and mod-
ified SCSO algorithm based on the mutation concept of the
GA was proposed to improve the quality of clustering for the
software module system [69]. The PSCSOmethod, simulated
by the political system, was presented to solve complex issues
[70]. Combined with the exploration strategy, the hybrid

SCSO algorithm was used to solve feature selection [71].
The SCSO algorithm’s search capability was improved using
the reinforcement learning mechanism [72]. Obviously, only
one of these shortcomings is addressed by the techniques
presently employed in the literature.

Despite the effectiveness of traditional and newer variants
of the SCSO algorithm, none of them can ensure that the
global optimum will be found for all optimization situa-
tions. The No Free Lunch (NFL) theory [9] has rationally
demonstrated this. Numerous scholars were inspired by this
theorem to create a new algorithm and develop more effec-
tive solutions for new types of problems. Motivated by the
above discussions, this paper proposes an intensified SCSO
with multiple strategies (IMSCSO) to address some com-
plex optimization problems. In the IMSCSO algorithm, the
dynamic random search strategy is initially implemented to
increase the algorithm’s convergence efficiency. Addition-
ally, a hybrid opposition-based learning strategy is developed
to boost population diversity and avoid premature conver-
gence of the algorithm. Lastly, the joint opposite selection
strategy is produced to strike a balance between exploration
and exploitation of the algorithm. Correspondingly, the main
contributions of this paper are outlined below:

(1) A new hybrid opposition-based learning technique
is created based on the lens opposition-based learning and
quasi-oppositional learning to improve the exploitation abil-
ity of the IMSCSO algorithm.

(2) An intensified SCSO with multi-strategies (IMSCSO)
is proposed that contains the dynamic random search mecha-
nism, hybrid opposition-based learning mechanism, and joint
opposite selection mechanism.

(3) The IMSCSO algorithm is comprehensively evaluated
through a series of mathematical test functions (including
both 23 benchmark functions, 29 CEC 2017 benchmark
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functions, 10 CEC 2019 benchmark functions, and 10 CEC
2020 benchmark functions), and the experimental results
indicate that the IMSCSO algorithm has a more competitive
performance compared with other state-of-the-art optimizers.

(4) TheMSCSO algorithm has been used effectively in var-
ious practical engineering design issues, demonstrating that it
is promising for solving real-world application difficulties.

The rest of this paper is arranged as follows. Section II
briefly presents the SCSO algorithm. Section III introduces
the developed IMSCSO in detail. Section IV displays the
experiments and discussion. Section V provides the results on
seven engineering optimization scenarios. Conclusions and
future works are listed in the last section.

II. SCSO ALGORITHM
A. INITIALIZATION PHASE
In the initial phase of the SCSO algorithm, the population
size of sand cats and the dimension size of the optimization
problem are defined as N and D, respectively. As seen in
Figure 1, a sand cat is a 1×D array representing the fitness
of the optimization problem. The sand cat population is
described by Eq. (1), and the position of each sand cat in all
dimensions can be represented by Eq. (2). In addition, the
fitness function of the problem is evaluated on Eq. (3). In
each iteration, this fitness function evaluation is carried out
for each cat and continually updates to obtain the best fitness
value in the following iteration.

X iSand cats = {SC1, SC2, · · · , SCN } , 1 ≤ i ≤ N (1)

X ij Sand cats = {SC1, SC2, · · · , SCN } ,

1 ≤ i ≤ N , 1 ≤ j ≤ D (2)

Fitness(X iSand cats) = f (SC1, SC2, · · · , SCN ),

∀Xi(is evaluatedfor mtime) (3)

FIGURE 1. Initialization phase of the SCSO algorithm.

B. PREY-SEEKING STRATEGY (EXPLORATION)
The prey-seeking strategy of sand cats uses low-frequency
noise emission to continuously update the location of sand
cats to explore the prey in the search space, which improves
the exploration ability of the SCSO algorithm. It is proven
mathematically as indicated in Eqs. (4)-(7).

−→rc = S −
(
S × m
Mmax

)
(4)

R⃗ = 2×−→rc × rand(0, 1)−−→rc (5)
−→rb =

−→rc × rand(0, 1) (6)

where, r⃗c is a linearly decreasing sensitivity factor within
[2,0]; S is set to 2; m and Mmax are the current iterations and
the maximum iterations, respectively. r⃗c is a control factor; r⃗b
is sensitivity range; R⃗ is balanced factor between exploration
and exploitation.

−→
X (m+ 1) = −→rb · (

−→
Xb(m)− rand(0, 1) ·

−→
Xs (m)) (7)

where, X⃗b and X⃗s are the best position of sand cats and the
current position of sand cats, respectively.

C. PREY-ATTACKING STRATEGY (EXPLOITATION)
In the SCSO algorithm, the sand cat attacks prey by moving
randomly according to its own sensitivity range. Their posi-
tion is continually updated by utilizing the adaptive attack
angle α to approach the position of the prey. Conveniently,
the prey-attacking strategy is demonstrated mathematically
as stated in Eqs. (8) and (9). The SCSO algorithm exhibits a
noteworthy balanced search behavior by utilizing the adaptive
parameter R to effectively coordinate both exploration and
exploitation, as demonstrated in Equation (10).

−−→
Xrand =

∣∣∣rand(0, 1) · −→Xb(m)−−→Xs (m)∣∣∣ (8)
−→
X (m+ 1) =

−→
Xb(m)−

−→rb ·
−−→
Xrand · cos(α) (9)

−→
X (m+ 1) =

{−→
Xb(m)−

−→rb ·
−−→
Xrand · cos(α) |R| ≤ 1(a)

−→rb ·(
−→
Xb(m)−rand(0, 1) ·

−→
Xs (m)) |R| > 1(b)

(10)

where,
−−→
Xrand is the random position of sand cats; α is a

random angle of the movement direction within [0,2π]. The
pseudocode of SCSO is summarized in Algorithm 1.

Algorithm 1 SCSO Pseudocode
1. Initialize the population (sand cats).
2. Calculate the fitness function according to the objective
function.
3.While (m<=Mmax)
4. Calculate the −→rc ,

−→
R , r⃗b by Eqs. (4), (5), and (6),

respectively.
5. Determine the random angle α by the Roulette Wheel
Selection method.
6. For each sand cat
7. If (abs (R⃗) <=1)
8. Update the position of sand cats by Eq. 10a.
9. Else
10. Update the position of sand cats by Eq. 10b.
11. End if
12. End for
13. m = m++
14. End while
15. Returnthe best fitness.
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Algorithm 2 Dynamic Random Search Strategy
1. Initialization parameters: the termination criteria E , maximum number of iterations T , the step factor α0, epoch=0, j = 0,
Xcurrent = Xb, the fitness function F(X ).
2. Set t = 0.
3. Generate a random vector dx within [-αj, αj].
4. Let epoch= epoch+1.
5. FNew = F (Xcurrent + dx).
6. If FNew < FBest
7. Xb = Xcurrent + dx,FBest = FNew, t = t + 1. Return to step 19.
8. End if
9. If FNew < FCurrent
10. Xcurrent = Xcurrent + dx,FCurrent = FNew, t = t + 1. Return to step 19.
11. End if
12. FNew = F (Xcurrent − dx).
13. If FNew < FBest
14. Xb = Xcurrent − dx,FBest = FNew, t = t + 1. Return to step 19.
15. End if
16. If FNew < FCurrent
17. Xcurrent = Xcurrent − dx,FCurrent = FNew, t = t + 1. Return to step 19.
18. End if
19. Ift < T and then return to step 3.
20. j = j+ 1, αj = αj−1 ∗ 0.5.
21. If epoch = E , and then stop the iteration. Otherwise, return to step 2.

III. THE PROPOSED IMSCSO ALGORITHM
A. DYNAMIC RANDOM SEARCH STRATEGY
Based on the general search stage and the local search stage,
the dynamic random search technique (DRST) can find the
global optima only when given enough time [73]. DRST
obtains the current optimal solution by using the general
search (GS) strategy, followed by the local search (LS) strat-
egy to conduct a fine search around the current optimal
solution to obtain a better solution, effectively avoiding the
adaptive random search technique [74] from falling into a
local optimum. As a result, the LS technology in the DRST
is used to perform perturbation and mutation of the present
global optimal solution (Xb), as well as to improve the
exploitation ability, search accuracy, and search efficiency of
the SCSO algorithm at the late iteration. The pseudocode of
the LS technology in the DRST is listed in Algorithm 2.

B. HYBRID OPPOSITION-BASED LEARING STRATEGY
By allowing search agents to search in the opposite way,
opposition-based learning (OBL) [75] increases the num-
ber of candidate solutions, boosts the probability that
the algorithm will discover the global best solution, and
essentially strengthens the algorithm’s search capabilities.
However, OBL can only produce the opposite solutions at
specific locations, making it difficult to adequately boost
the algorithm’s search efficiency for complex optimization
problems. Abundant OBL variants have been suggested
in recent years, including lens opposition-based learning
(LOBL) [76] and quasi-oppositional learning (QOL) [77].
LOBL, inspired by the lens imaging principle, is proposed

to enrich the population diversity and search efficiency of
the algorithm, as shown in Figure 2a. Based on the OBL, the
QOL is proposed to broaden the search range of the algorithm
to obtain the best solution among candidate solutions and
quasi-opposite solutions [78], [79], as illustrated in Figure 2b.
Combining the advantages of LOBL and QOL, a hybrid
opposition-based learning (HOBL) strategy is proposed to
improve the search performance of the SCSO algorithm,
as shown in Figure 2c. As displayed in Figure 2, the LOBL,
QOL, and HOBL are described first below in detail.

1) LOBL MECHANISM
In Figure 2a, the cardinal pointO is the midpoint of the search
range [LB, UB]. The object P2 is generated by the object P1
through a convex lens.H1 andH2 are the heights of the objects
P1 and P2, respectively. Meanwhile, the xi (i = 1,2,. . . , N )
(i.e., the i-th solution of the search agents) and xLOBLi (the i-th
opposite solution of the search agents) are the projections of
the objects P1 and P2 at the axis, respectively. Consequently,
Eq. (11) is calculated as follows.

(LB+ UB)/2− xi
xLOBLi − (LB+ UB)/2

=
H1

H2
(11)

Let, l = H1/H2, obviously, the opposite solution xLOBL is
obtained by Eq. (12).

xLOBLi =
(LB+ UB)

2
+

(LB+ UB)
2l

−
xi
l

(12)

2) QOL MECHANISM
In Figure 2b, the point S1 (xi) is located between [LB, UB],
and the points S2 (xo) and S3 (xqo) are the opposite point and
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FIGURE 2. Hybrid opposition-based learning.

quasi-opposite point of the point S1 based on the midpoint O
between [LB,UB], respectively. Therefore, the opposite point
xo and the quasi-opposite point xqo are completely obtained
by Eqs. (13) and (14), respectively.

xOi = (LB+ UB)− xi (13)

xqoi = rand
[(

LB+ UB
2

)
, (LB+ UB− xi)

]
(14)

3) HOBL MECHANISM
Based on the LOBL and QOL mechanism, the HOBL mech-
anism is proposed by a random switching probability (s). The
HOBL is given as follows.

xHOBL i =


(LB+ UB)

2
+

(LB+ UB)
2l

−
xi
l

if s < 0.5

rand
[(

LB+ UB
2

)
, (LB+ UB− xi)

]
else

(15)

where, xi represents the i-th solution of the search agents,
xHOBL represents the i-th opposite solution of xi obtained
by HOBL, l represents the distance factor, s represents the
random switching probability within [0, 1], LB and UB are
the lower and upper boundary of the search agents.

Generally, the HOBL can also be generalized to the
D-dimensional space as follows.

xHOBLi,j =


(LBj + UBj)

2
+

(LBj + UBj)
2l

−
xi,j
l
if s < 0.5

rand
[(

LBj + UBj
2

)
,
(
LBj + UBj − xi,j

)]
else,

j = 1, 2, · · · ,D

(16)

where, xi,j and xHOBLi,j represents the j-dimensional compo-
nents of xi and xHOBLi, respectively. LBj andUBj are the lower
and upper boundary of the search agents in j-dimensional
space.

In the SCSO algorithm, because the search information
of sand cats is not effectively shared with other sand cats
when near the optimal solution, it can lead to a decrease in
population diversity and be prone to falling into a local opti-
mum. The HOBL mechanism is introduced into the SCSO
algorithm to expand the population’s diversity in the explo-
ration and exploitation phases (as seen in Figure 2c) and
strengthen the search ability of the algorithm. In Figure 2c,
based on the HOBL mechanism, sand cats can expand the
search area and enrich the number of search agents to dis-
cover prey with faster search efficiency, so as to enhance
the exploration ability of the algorithm. When the sand cats
discover the prey, they frequently change their attack position
using the HOBLmechanism to capture the prey and boost the
exploitation ability of the algorithm.

C. JOINT OPPOSITE SELETION
Joint Opposite Selection (JOS) is a learning technology
based on joint opposition, which combines the advantages
of dynamic opposition (DO) and selective leading opposition
(SLO), effectively balancing exploration and exploration, and
improving the performance and efficiency of algorithms in
the search space [80], [81].

1) DO MECHANISM
DO mechanism [82] is proposed by combing the QOL with
quasi-reflection-based learning (QRBL) [83] to dynamically
expand search space by using the opposite strategy, which
prevents the algorithm from falling into a local optimum. The
specific calculation is as follows.

xoi,j = rand×
(
LB+ UB− xi,j

)
, i = 1, 2, . . . ,N ,

j = 1, 2, . . . ,D (17)

xDOi,j = xi,j + rand ×
(
xOi,j − xi,j

)
, if rand < jr

i = 1, 2, . . . ,N , j = 1, 2, . . . ,D (18)
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FIGURE 3. The opposite movement of SLO in 2D and 3D environment.

FIGURE 4. The flowchart of the IMSCSO algorithm.

where, xOi,j is the opposite solution and dynamic opposite
solution of xi,j, respectively. jr is the jump rate.

2) SLO MECHANISM
Inspired by Selective Opposition (SO), the SLO strategy idea
[84] is to calculate the difference distance (ds) between the
current solution and the optimal solution in each dimen-
sion and compare it with the set threshold. When ds >

threshold, the dimension is regarded as the faraway distance
dimension (df). Conversely, the dimension is regarded as the
close distance dimension (dc) Further, the Spearman’s Rank

Correlation Coefficient (src) between the current solution and
the optimal solution can be calculated. If dc > df , src ≤ 0,
the SLO strategy is executed.

The opposite movement of SLO in 2D and 3D environment
is illustrated in Figure 3. In Figure 3a, the point B (X ’, Y ’, Z ’)
is the exact opposite point of the leading point of the search
agent E(X , Y , Z ), and the distances between the points E and
B to the solution are l1 and l3 in turn. Additionally, the last
two dimensions of E (X , Y , Z) are opposed to C (X , Y ’, Z ’)
with the distance l2. The distance l2 is close to the solution.
In Figure 3b, the coordinate X and Y are the first and second
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dimension, successively. E1, E2 and E3 represent the coor-
dinate position of sand cats, and S represent the coordinate
position of a frog. The difference distances between E2 and S
are 1 and 4 at the first and second dimension respectively.
Let the threshold is equal to 3, this difference distance is
less than 3. That means the coordinate X of this sand cat is
closer to the frog than other sand cats. In addition, this closer
sand cat is selected as the leader for preying. Lastly, the SLO
strategy will implement at the first dimension. However, the
difference distance of the second dimension is greater than
3; it means the SLO strategy will not apply. Similarly, for
the coordinate position E1, SLO strategy should be applied to
the second dimension. For the coordinate position E3, SLO
strategy should be applied to the first and second dimensions.
The SLO strategy is calculated as follows.

ddi,j(m) =
∣∣xb,j(m)− xi,j(m)∣∣ (19)

src =
6×

∑
j=1

(
ddi,j

)2
ddi,j ×

(
dd2i,j − 1

) (20)

x ′i,d c = LB+ UB− xi,d c, if src ≤ 0 and dc > df (21)

where, xi,dc is the closer dimension of the i-th solution. x ′i,dc
is the opposite solution of xi,dc. src represents the Spearman’s
Rank Correlation Coefficient. dd i,j is the difference distance.

In the SCSO algorithm, when the sand cats adopt the JOS
strategy, the SLO strategy assists the sand cats to succeed in
exploitation phase by changing their close distance dimen-
sion, and the DO strategy tries to diverse the search space
range of the sand cats in the exploration phase. The SCSO
with JOS strategy can boost efficiency and balance between
exploration and exploitation.

D. THE PSEUDOCODE AND FLOWCHART OF IMSCSO
Pseudocode and flowchart of IMSCSO are shown in
Algorithm 3 and Figure 4, respectively.

IV. COMPUTATIONAL COMPLEXITY OF IMSCSO
The main three components of SCSO are initialization, fit-
ness assessment, and updating of sand cats. The computa-
tional complexity of SCSO is O(N×(Mmax +Mmax×D+1)),
that is, O(N ). Where N is the number of sand cats,
Mmax is the maximum number of iterations, and D
is the dimension of specific problems. The computa-
tional complexity of JOS is O(SLO)+O(DO), which is
O(N×Mmax×DC )+O(N×Mmax×D×jr). The computational
complexity of HOBL is O(2N×Mmax×D). The computa-
tional complexity of DRST is O(E×Mmax×D). Where DC
is the close distance dimension, jr is jumping rate, E is
the maximum number of iterations by LS. Therefore, the
computational time of IMSCSO is O(N×Mmax(2+DC +
D(Mmax+jr))+E×Mmax×D), that is, O(N ). Hence, the com-
putational complexity of IMSCSO has the same order-time
complexity as that of SCSO.

Algorithm 3 IMSCSO Pseudocode
1. Initialize the population size N , the maximum itera-
tions Mmax .
2. Initialize the random population Xsandcat .
3. Generate initial random population of XDO based on
Xsandcat .
4. Xsandcat ← XDO.
5.While (m<=Mmax)
6. Checked boundary Xsandcat , calculate the fitness value of
each sand cat, and obtain the best solution.
7. Update Position of Xsandcat .
8. Set selective boundary and r⃗c as the threshold for SLO.
9. Perform SLO for each sand cat by Eq. (21).
10. Update r⃗c, R⃗, r⃗b by Eqs. (4), (5), and (6), respectively.
11. Determine the random angle α by the Roulette Wheel
Selection method.
12. For each sand cat
13. If (abs (R⃗) <=1)
14. Update the position of sand cats by Eq. 10a.
15. Update the position of sand cats by Eq. (16).
16. Else
17. Update the position of sand cats by Eq. 10b.
18. Update the position of sand cats by Eq. (16).
19. End if
20. End for
21. Ifrand<jr
22. Perform DO position XDO by Eq. (18), Xsandcat ← XDO.
23. End if
24. Evaluate the fitness values of each sand cat.
25. If(mmodT ) = 0
26. Generate a new solution by dynamic random search strat-
egy.
27. Else
28. Update the best fitness.
29. End if
30. m = m+1.
31. End while
32. Returnthe best fitness.

V. EXPERIMENTS AND DISCUSSIONS
This section evaluates the performance of the IMSCSO
algorithm by employing five recent challengeable mathe-
matical test suites: 23 classical test functions (as seen in
Table 16), CEC 2017 (as seen in Table 17) [85], CEC 2019
(as seen in Table 18) [86], and CEC 2020 (as seen in Table 19)
[87]. We chose eleven of the most widely used metaheuristic
algorithms currently available as comparison objects: GWO
[21], WOA [22], HHO [24], SCSO [30], KOA [38], SCA
[50], AOA [52], PSO [18], DBO [32], SOA [28], MVO [41],
DO [99], and SWO [102].

Table 2 displays the parameter settings for the aforemen-
tioned algorithms. All experiments are run with MATLAB
2020a, Intel Xeon Silver 4110 2.1 GHz, RAM 32GB, and
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64-bit Windows 10 professor. Since the algorithms under
investigation are all stochastic, in this paper, the maximum
number of iterations is set to be 1000, each function is
repeated 30 times, and the population size of all algorithms is
set to be 50. The mean value and standard deviation (SD) are
selected as an evaluation metric. Additionally, the Friedman
test [100] and Wilcoxon rank-sum test [101] are utilized
to determine whether there is a difference and superiority
between the IMSCSO’s outcomes and those of the competing
optimizers.

TABLE 2. Parameter settings of the compared optimizers and proposed
IMSCSO.

A. PARAMETER SENSITIVITY ANALYSIS
The proposed IMSCSO algorithm employs four parameters,
i.e., number of sand cats (N ), maximum number of iterations
(Mmax), jumping rate (Jr), and parameter T . By changing
these parameters’ values while holding the other parameters
constant, the sensitivity analysis of the proposed IMSCSO
algorithm has been examined.

(1) Number of sand cats (N ): IMSCSO algorithm was
simulated for different values N , The values of N used in
experimentation are 50, 100, 150, and 200. Figure 5a shows
the variations of different number of sand cats on benchmark
test functions. As the number of sand cats (N) increases, it can
be seen from Figure 5a that the fitness function’s value drops.
(2) Maximum number of iterations (Mmax): IMSCSO

algorithmwas run for by different values ofMmax . The values
of Mmax are set to 200, 400, 800, and 1200. The impact of
Mmax on benchmark test functions is depicted in Figure 5b.
The findings demonstrate that as the number of iterations is
increased, IMSCSO converges towards the best solution.

(3) Variation in parameter Jr: The IMSCSO algorithm was
performed for various values of Jr while keeping the other
parameters constant in order to explore the effect of the
parameter Jr. The parameter Jr is run from 0.05 to 0.95 with
a 0.05 increment. Figure 6a show the variation of Jr on UF7,
MF12, andMF13 functions, respectively. The results indicate
that IMSCSO produces better optimal outcomes when the
value of Jr is set to 0.2.

(4) Variation in parameter T : To investigate the impact of
the parameter T , the IMSCSO algorithm was run for a range
of T values while holding the other parameters constant.
Here, the Dim is the dimension of benchmark test functions.
The parameter Tis varied from 1∗Dim to ∗Dim with a 1∗Dim
increment. Figure 6b show the variation of T on UF7, MF12,
andMF13 functions. Obviously, for the purpose of simplicity,
all optimization problems in our studies use 3∗Dim as the size
of T .

B. EXPLOITATION ANALYSIS OF IMSCSO
In this section, we evaluate the exploitation ability of the
IMSCSO algorithm on unimodal test functions (UF1-UF7).
Table 3 provides IMSCSO and other algorithms’ results on
unimodal functions. The obtained values demonstrate the
IMSCSO’s superiority, as it outperforms its competitors in
reaching the lowest values of the mean values with excellent
reliability and consistency (minimum SD) for six functions
(i.e., UF1, UF2, UF3, and UF4) in this collection. For func-
tion UF5, the mean and SD values of the IMSCSO are supe-
rior to GWO,WOA, SCSO, AOA, SCA, KOA, DO, and SOA.
For function UF7, IMSCSO can provide the second-best
results compared to other algorithms. For function UF6,
the mean value of the IMSCSO is less than WOA, HHO,
DO, PSO, DBO, and MVO. The SD value of IMSCSO is
superior to KOA, SWO, SOA, and SCSO. This observation
demonstrates the substantial exploitation capability of the
IMSCSO in the intensification. This is due to the fact that
IMSCSO adopts the DRST and HOBL strategies to be pri-
marily focused on increasing the diversity of the sand cats
and widening the local search area. This promotes the search
engine’s optimization process to narrowly and broadly target
the local area.

C. EXPLORATION ANALYSIS OF IMSCSO
In this section, the exploration capability of the IMSCSO is
examined using sixteen multimodal functions (MF8-MF23).
The results obtained for the multimodal function between
IMSCSO and the other methods are illustrated in Table 4.
IMSCSO obtains minimum values of mean and SD for eight
functions, as demonstrated in the functions MF9, MF10,
MF11, MF12, MF15, MF18, MF20, and MF21. In addition,
for functions MF14, MF16, MF17, and MF19, IMSCSO
achieves the minimum or same mean value compared to
the other methods. It can be seen that IMSCSO algorithm
has a better exploration capability and competitive on most
multimodal functions. The reason is that IMSCSO has the
prey-seeking strategy of sand cats with the HOBLmechanism
and JOS strategy, which are helpful in expanding the explo-
ration search area and narrowing the exploitation search area.

D. PERFORMANCE EVALUATION ON CEC-2017 TEST
FUNCTIONS
In Appendix A (Table 17), popular and challenging CEC-
2017 benchmark issues were employed to further analyze
the performance of the IMSCSO algorithm. These challenges
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FIGURE 5. Sensitivity analysis of IMSCSO algorithm: (a) N , and (b) Mmax.

FIGURE 6. Sensitivity analysis of IMSCSO algorithm: (a) Jr, and (b) T.

included rotated and shifted unimodal, multimodal, hybrid,
and composite test functions [85]. The results obtained by

INFO and the other well-known methods are reported in
Table 5. In Table 5, compared to other algorithms, it is showed
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TABLE 3. Results of unimodal functions.

that the IMSCSO algorithm gets the best results (the mini-
mum mean and SD values) on eight functions (i.e., MF17-5,
MF17-8, MF17-10, HF17-12, HF17-13, HF17-14, HF17-19,
and CF17-22). The IMSCSO algorithm attains the minimum
SD value on functions MF17-3 and HF17-11. For functions
MF17-7 and HF17-17, the mean value of IMSCSO is better
than other algorithms. It has been concluded that the IMSCSO
algorithm attains prominent results for the majority of CEC
2017 test functions. IMSCSO has superior performance com-
pared with other well-known optimizers (i.e., GWO, WOA,
SCSO, AOA, HHO, SCA, KOA, DO, PSO, DBO, SWO,
SOA, and MVO) when dealing with complicated optimiza-
tion issues.

E. PERFORMANCE EVALUATION ON CEC 2019 TEST
FUNCTIONS
In this section, additional tests are performed on the CEC
2019 test suite to verify the performance of the proposed
IMSCSO as well as the performance of the competing

algorithms. Table 6 presents the mean and SD values attained
by analyzing the results of IMSCSO and other methods.
As it can be seen from Table 6, for functions C19-1 and
C19-8, the mean and SD values of IMSCSO are superior
to others methods. The IMSCSO gets the minimum SD
value on functions C19-2, C19-4, and C19-6. For other CEC
2019 test functions, the IMSCSO algorithm also can provide
some competitive results. These results demonstrate that the
IMSCSO algorithm has a reliable and accurate efficiency for
solving CEC 2019, compared to the other optimizers.

F. PERFORMANCE EVALUATION ON CEC 2020 TEST
FUNCTIONS
In this section, for proper exploration and exploitation, the
IMSCSO algorithm is tested on ten CEC 2020 test functions.
The obtained outcomes of the CEC 2020 test functions are
provided in Table 7. The results in Table 7 show that IMSCSO
achieves the global optimum in eight functions (i.e., UF20-1,
HF20-4, HF20-5, HF20-6, HF20-7, CF20-8, CF20-9, and
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TABLE 4. Results of multimodal functions.
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TABLE 5. Results of CEC 2017 functions.
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TABLE 5. (Continued.) Results of CEC 2017 functions.
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TABLE 5. (Continued.) Results of CEC 2017 functions.

CF20-10). Additionally, IMSCSO obtains the samemean and
SDvalues compared to SCSO,AOA, SOA, andHHOon func-
tions UF20-1, HF20-2, HF20-3, and HF20-4. For functions
CF20-8, and CF20-9, IMSCSO obtains the same mean and
SD values compared to SCSO, AOA, and HHO. For functions
CF20-8, and CF20-9, IMSCSO obtains the same mean and
SD values compared to SCSO, AOA, SOA, DBO, and HHO.
For functions HF20-6, HF20-7, and CF20-10, the obtained
results by IMSCSO are better than SCA, GWO, HHO,WOA,
KOA, DO, PSO, DBO, SOA, SWO, and MVO. Hence, the
results demonstrated that the IMSCSO algorithm performs
well in solving CEC 2020 test problem. Additionally, it is
evidence that IMSCSO belongs to the strong optimizer class
by this section experiment.

G. STATISTICAL TEST ANALYSIS
To access the significant difference between the outcomes of
IMSCSO and those of the other methods, the Wilcoxon rank-
sum (WSR) statistical test under a significant level of 5%
and the Friedman test are utilized on all test functions. The
statistical comparison results of the WSR test are shown in
Table 8, where the symbol ’+’ indicates that IMSCSO ismore
efficient than its competitor optimizers; ’-’ indicates that the
competitor optimizer is more efficient than IMSCSO; and
’=’ indicates that the competitor optimizer’s performance is
similar to that of IMSCSO. All algorithms’ average (AVE)
ranks by Friedman test are presented in Figure 7. Table 8
demonstrates that the IMSCSO algorithm performs signifi-
cantly better than its competitors. Furthermore, the IMSCSO

method has the minimum AVE value (5.0347) and performed
significantly better than the other algorithms (as shown in
Figure 7).

H. CONVERGENCE SPEED ANALYSIS OF IMSCSO
The proposed IMSCSO’s convergence curves against those of
the other 13 algorithms on various test functions are shown
in this section (see Figure 8). From Figure 8, it is clear
that IMSCSO’s performance for the unimodal test functions
UF1 and UF2 is much better than other competing algo-
rithms since it was able to obtain the lowest fitness value
far faster than any of them. On the more challenging mul-
timodal test functions (MF8, MF19, and MF21), IMSCSO
could be clearly distinguished from all opponent algorithms,
which could not compete with the proposed IMSCSO even
after the optimization process was completed. On the hybrid
and composition test functions (C19-1, HF17-4, C19-6, and
C19-8), IMSCSO’s convergence accuracy soon diverges from
the other methods. These results demonstrate that IMSCSO
is effective not just for convergence speed but also for ulti-
mate quality. This is due to its ability to balance exploration
and exploitation operators, which aids in avoiding stagnation
into local minima while speeding convergence speed in the
proper direction of the most promising areas acquired so far,
particularly in the second half of the optimization process.

I. WALL-CLOCK TIME ANALYSIS
In this section of the experiments, IMSCSO is compared with
the other 13 optimizers in the calculation of time-consuming
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TABLE 6. Results of CEC 2019 functions.

tests in the 72 test functions (i.e., 23 classical test func-
tions, CEC2017, CEC2019, and CEC2020)mentioned above.
The time-consuming calculation is that all participants run
each function independently 30 times and record the time
percentage results in Figures 9 to 12. As can be observed
from the data in these figures, the computation of IMSCSO
takes relatively more extended time, because the HOBL,
DRST, and JOS mechanisms require more computing power.
In general, even though it takes a lot of time, IMSCSO still

outperforms other algorithms in terms of efficacy, therefore
the time results are to be expected.

VI. THE PERFORMANCE OF IMSCSO ON CLASSICAL
ENGINEERING PROBLEMS
This section considers seven well-known practical engi-
neering challenges (namely the three-bar truss (TBR) case,
the tension/compression spring (TCS) case, the cantilever
beam (CB) case, the pressure vessel (PV) case, the speed
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TABLE 7. Results of CEC 2020 functions.

reducer (SR) case, the I-beam vertical deflection (IBVD)
case, and the piston lever (PL) case) to further demon-
strate the applicability of IMSCSO in dealing with practical

engineering problems. Numerous non-linear and complex
constraints that are based on design criteria, resource
limitations, and security needs are frequently present in
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TABLE 8. Statistical results of Wilcoxon rank-sum test of IMSCSO.

FIGURE 7. The AVE ranks by Friedman test for all algorithms.

these issues. Additionally, a method for simultaneously
handling constraints and objective functions is to add
a penalty component to the objective functions, which
will turn these problems into unconstrained optimization
problems [88].

A. TBR CASE
The TBR case is a typical engineering optimization problem.
Figure 13 shows the components of the TBR (W1 (= c1),W2
(= c2), and W3 (= c3)) under the restrictions of buckling,
stress, and deflection. The objective of this case is to obtain
the lightest weight with the optimal values of the two bars

(W1 = W3, W2). Additionally, the mathematical formulation
of the TBR situation is provided by Eq. (22).



Fmin(C) = 100× (2
√
2 c1 + c2)

S.t. g1(C) = 2

√
2 c1 + c2

√
2c21 + 2c1c2

− 2 ≤ 0

g2(C) = 2
c2

√
2 c21 + 2c1c2

− 2 ≤ 0

g3(C) =
1

√
2 c2 + c1

− 2 ≤ 0

0 ≤ c1, c2 ≤ 1

(22)
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FIGURE 8. Convergence curves of the IMSCSO and other 8 optimizers algorithm on some test functions.

FIGURE 9. Time percentage results of 23 classical test functions.

Numerous metaheuristic algorithms, including MFO
[25], YDSE [37], INFO [54], CS [89], ALO [90], MBA
[91], and DEDS [92], were used to optimize this situ-
ation. Table 9 demonstrated that the IMSCSO achieved

a very promising result with the best objective func-
tion. The collected findings again demonstrated that
IMSCSO is capable of handling difficult constraint situations
effectively.

VOLUME 11, 2023 122333



X. Li et al.: IMSCSO: An Intensified SCSO With Multi-Strategy

FIGURE 10. Time percentage results of CEC 2017 test functions.

FIGURE 11. Time percentage results of CEC 2019 test functions.

FIGURE 12. Time percentage results of CEC 2020 test functions.

B. TCS CASE
Figure 14 depicts the TCS’s organizational structure. The
goal of this instance is to decrease the weight of TCS by

optimizing the three parameters (i.e., D(= c1), W (= c2),
LS(= c3)) while taking into account the restrictions of shear
stress, minimum deflection, surge frequency, and limits on
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FIGURE 13. Components of the TBR problem.

TABLE 9. Results of IMSCSO and other algorithms for the TBR problem.

the outside diameter. The TCS situation is mathematically
expressed as follows in Eq. (23). In contrast to previous
metaheuristic algorithms, Table 10 clearly indicates that the
IMSCSO algorithm performs better but is similar to the
YDSE algorithm.

Fmin(C) = (2+ c3)c2c21
S.t. g1(C) = 1−

c32c3
71785c41

≤ 0

g2(C) =
4c22−c1c2

12566(c2c31−c
4
1)
+

1
5108c21

− 1 ≤ 0

g3(C) = 1− 140.45c1
c22c3

≤ 0

g4(C) =
c1+c2
1.5 − 1 ≤ 0

0.05 ≤ c1 ≤ 2, 0.25 ≤ c2 ≤ 1.3, 2 ≤ c3 ≤ 15

(23)

FIGURE 14. The structure of the TCS.

C. CB CASE
As illustrated in Figure 15, this CB typically comprises five
hollow square pieces, each of the same thickness and boosted

from the first one. While the fifth section of the beam is
subject to a vertical force, the goal is to reduce the weight
of the beam. Five decision variables (c1, c2, c3, c4, and c5)
with a single constraint are represented by the lengths of the
five pieces. The equation is written as Eq. (24). By observ-
ing the results in Table 11, compared to other algorithms,
the IMSCSO shows a good performance in solving the CB
problem, with a best beam weight of 1.33995.

Fmin(C) = 0.0624(c1 + c2 + c3 + c4 + c5)

S.t. g(C) =
61

c31
+

37

c32
+

19

c33
+

7

c34
+

1

c35
− 1 ≤ 0

0.1 ≤ c1, c2, c3, c4, c5 ≤ 100

(24)

FIGURE 15. The structure of the TCS.

D. PV CASE
By choosing the best values for four design variables (i.e., the
shell thickness (TS = c1), the head thickness (TH = c2),
the inner radius (R = c3), and the length of the cylindrical
component (l = c4)) while using pressure needs as an opti-
mization constraint, the PV example seeks to lower overall
output. Figure 16 shows the structure of the PV. This case’s
mathematical model is shown in Eq. (25). The simulation
results in Table 12 show that the IMSCSOmethod beats other
commonly used algorithms (except for KOA algorithm) in
terms of determining the optimum cost.

Fmin(C) = 0.6224c1c3c4 + 1.7781c2c23 + 3.1661c21c4

+19.84c21c3

S.t. g1(C) = −c1 + 0.0193c3 ≤ 0

g2(C) = −c2 + 0.00954c3 ≤ 0

g3(C) = −πc23c4 −
4π
3
c33 + 1296000 ≤ 0

g4(C) = c4 − 240 ≤ 0

c1, c2 ∈ {1× 0.0625, 2× 0.0625, · · · , 1600× 0.0625},

10 ≤ c3, c4 ≤ 200
(25)

E. SR CASE
This issue (as seen Figure 17) is a well-known mechanical
system design issue. The SR is one of the critical components
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TABLE 10. Results of IMSCSO and other algorithms for the TCS problem.

TABLE 11. Results of IMSCSO and other algorithms for the CB problem.

TABLE 12. Results of IMSCSO and other algorithms for the PV problem.

of the gearbox in this situation and has a variety of uses.
The weight of the SR is dependent on 11 limitations in this
optimization question, all of which must be minimized [67].
The remaining nine are inequalities with linear constraints,
with seven of them being nonlinear constraints. These four
factors are the surface stress, stresses in the shafts, trans-
verse shaft deflections, and bending stress of the gear teeth.
Additionally, there are seven variables in this problem: face

width RW(c1), module of teeth RM(c2), the number of teeth in
the pinion RN(c3), length of the first shaft between bearings
RL2(c4), length of the second shaft between bearingsRL1(c5),
the diameter of first shafts RD1(c7), and the diameter of
second shafts RD2(c6). The equation of the SR case is given
in Eq. (26). In comparison to other metaheuristic methods, the
findings obtained, which are given in Table 13, demonstrate
that the IMSCSO method finds a least-cost design value and
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TABLE 13. Results of IMSCSO and other algorithms for the SR problem.

TABLE 14. Results of IMSCSO and other algorithms for the PL problem.

closely follows the YDSE algorithm.

Fmin(C) = 0.7854c1c22(3.3333c
2
3 + 14.9334c3 − 43.0934)

−1.508c1(c26 + c
2
7)+ 7.4777(c36 + c

3
7)+ 0.7854

(c4c26 + c5c
2
7)

S.t. g1(C) =
27

c1c22c3
− 1 ≤ 0

g2(C) =
397.5

c1c22c
2
3

− 1 ≤ 0

g3(C) =
1.93c35
c2c46c3

− 1 ≤ 0

g4(C) =

√
(745c4/c2c3)2 + 16.9× 106

110c36
− 1 ≤ 0

g5(C) =

√
(745c5/c2c3)2 + 157.5× 106

85c37
− 1 ≤ 0

g6(C) =
c2c3
40
− 1 ≤ 0

g7(C) =
5c2
c1
− 1 ≤ 0

g8(C) =
1.93c35
c2c47c3

− 1 ≤ 0

g9(C) =
c1
12c2

− 1 ≤ 0

g10(C) =
1.5c6 + 1.9

c4
− 1 ≤ 0

g11(C) =
1.1c7 + 1.9

c5
− 1 ≤ 0

2.6 ≤ c1 ≤ 3.6, 0.7 ≤ c2 ≤ 0.8, 7.3 ≤ c4, c5 ≤ 8.3,
2.9 ≤ c6 ≤ 3.9,
5 ≤ c7 ≤ 5.5, c3 ∈ {17, 18, · · · , 28}

(26)

FIGURE 16. The structure of the PV.

FIGURE 17. The structure of the SR.

F. PL CASE
For the PL case, as shown in Figure 18, we are attempting
to decrease the oil volume while raising the piston lever
from 0 to 45 to identify the four piston elements, H (c1),
B(c2), D(c3), and X (c4). The mathematical equations can
be expressed on Eq. (27). Additionally, Table 14 compiles
an analysis of the algorithms. Simulated findings show that
IMSCSO beats its competitors in determining the minimum
volume of the oil and is less than SCSO algorithm.
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TABLE 15. Results of IMSCSO and other algorithms for the IBVD problem.

G. IBVD CASE
The IBVD case was used to further validate IMSCSO’s
capabilities. The IBVD problem seeks to reduce the verti-
cal deflection of the I-beam shown in Figure 19 as much
as possible. The four variables are the length (c1), height
(c2), thicknesses of the beam web (c4), and flange (c3). The
problem formulation was defined in Eq. (28). The IBVD case
was optimized by ARSM [98], IARSM [98], SOS [95], INFO
[54], and CS [89]. According to Table 15, which summarizes
the outcomes of all optimizers, IMSCSO outperforms CS,
ARSM, and IARSM in terms of minimizing vertical deflec-
tion and is similar to INFO and SOS.

Fmin(C)=
π

4
c23


√
(c4 sin 45

◦
+ c1)2+(c2 − c4 cos 45

◦ )2

−

√
(c4 − c2)2 + c21


S.t. g1(C) = 10000× 240× cos 45

◦

−

1500πc23
∣∣−c4(c4 sin 45◦ + c1)+ c1(c2 − c4 cos 45◦ )∣∣

4
√
(c4 − c2)2 + c21

≤0

g2(C) = 10000× (240− c4)− 1.8× 106 ≤ 0

g3(C) = 1.2


√
(c4 sin 45

◦
+ c1)2 + (c2 − c4 cos 45

◦ )2

−

√
(c4 − c2)2 + c21


−

√
(c4 − c2)2 + c21 ≤ 0

g4(C) =
c3
2
− c2 ≤ 0

0.05 ≤ c1, c2, c4 ≤ 500, 0.05 ≤ c3 ≤ 120

(27)

Fmin(C)=
5000

c3(c2 − 2c4)3/12+(c1c34/6)+ 2c1c4(c2 − c4/2)2

S.t. g1(C) = 2c1c3 + c3(c2 − 2c4) ≤ 300

g2(C) =
18× 104c2

c3(c2 − 2c4)3 + 2c1c3(4c24 + 3c2(c2 − 2c4))

+
15× 103c1

(c2 − 2c4)c23 + 2c3c31
≤ 56

10 ≤ c1 ≤ 50, 10 ≤ c2 ≤ 80, 0.9 ≤ c3, c4 ≤ 5
(28)

FIGURE 18. The structure of the PL.

FIGURE 19. The structure of the IBVD.

VII. CONCLUSION AND FUTURE WORK
In this paper, an intensified SCSO with multiple strategies
(IMSCSO) was proposed. The dynamic random search tech-
nique was originally used in IMSCSO to improve the conver-
gence efficiency of the algorithm. A hybrid opposition-based
learning technique was also created to increase population
variety and avoid the algorithm’s early convergence. Finally,
the joint opposite selection method was developed to strike a
balance between the algorithm’s exploration and exploitation.
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TABLE 16. Details of 23 classical benchmark functions.
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TABLE 17. Details of the CEC-2017 test functions.

The performance of IMSCSOwas validated on 23 classical
benchmark functions, 29 CEC 2017 benchmark functions, 10
CEC 2019 benchmark functions, and 10 CEC 2020 bench-
mark functions. The results obtained by IMSCSO on these
benchmark functions were extensively compared with those
of 13 well-established optimizers to show IMSCSO’s effec-
tiveness. IMSCSO was either better than or roughly sim-
ilar to its rival optimizers. The statistical findings of the
Wilcoxon signed-rank and Friedman tests show that IMSCSO
can obtain superior solutions in comparison to 13 rival
optimizers. The collected numerical results of IMSCSO on

seven constrained engineering design issues also reveal that
IMSCSO can provide outstanding results compared to several
published optimizers.

In future work, various mutation or acceleration techniques
can be used to improve the efficacy of IMSCSO. The binary
and multi-objective versions of IMSCSO can also be devel-
oped for solving complex problems.

APPENDIX A
See Tables 16–19.
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TABLE 18. Details of the CEC 2019 test functions.

TABLE 19. Details of the CEC-2020 test functions.
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