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ABSTRACT Accurate and efficient forecast of PM2.5 concentration is the primary prerequisite for
promoting urban green development and improving residents’ well-being. In this study, a hybrid model based
on secondary decomposition ensemble andweight combination optimization is presented tomaterialize exact
PM2.5 concentration prediction. First, the empirical wavelet transform (EWT) is adopted to disassemble
the primeval PM2.5 concentration sequence to get high and low-frequency components. Considering
the intricacy of high-frequency components and the difficulty of direct prediction. Therefore, it is
further decomposed into a collection of modes with significant discrepancies by adaptive variational
mode decomposition (AVMD). Second, the prediction network and meteorological data are determined
respectively according to Hurst exponent. Then support vector regression (SVR) model and bidirectional
long short-term memory (BILSTM) network are used to model each sequence separately. In addition, the
weights of each forecast network were optimized by improved sparrow search algorithm (ISSA) to correct
decomposition errors. Finally, all prediction results were weighted and integrated to receive the ultimate
prediction values. The test results show that whether it is 1-step prediction, 3-step prediction or 5-step
prediction, the proposed model has the best prediction effect in Beijing, Handan and additional Shanghai
cases.

INDEX TERMS Adaptive variational mode decomposition (AVMD), hurst exponent, improved sparrow
search algorithm (ISSA), PM2.5 concentration prediction, weighted combination model.

I. INTRODUCTION
With the accelerating process of urbanization and industri-
alization, contaminants are discharged unscrupulously, and
the problem of air contamination is turning out to be
increasingly serious [1], [2]. As the statistics of the World
Health Organization, about 13 million people lose their
precious lives due to environmental pollution every year, and
about 1/2 of them die from respiratory diseases caused by
air pollution [3]. The survey shows that the PM2.5 is the
chief culprit of the tragedy. In order to control air pollution,
many automatic monitoring systems of particulate matter
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have been established all over the world, which are used
to monitor urban pollution in real time. However, some
monitoring points are easily affected by external factors,
resulting in biases in the obtained data, which in turn affect
the judgment and decision-making of relevant departments
[4]. For another, real-time monitoring stations are difficult
to meet the human desire to predict future weather changes,
as they can only provide real-time weather information [5].
In contrast, multi-step prediction can provide more long-term
and comprehensive information, which can help us better
plan outdoor travel and ensure the health of ourselves and
our families. Therefore, the multi-step accurate prediction
of PM2.5 concentration is of great purpose for preserving
the ecological environment, improving the efficiency of
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government decision-making, and ensuring residents’ travel
safety.

Currently, a great quantity of PM2.5 concentration fore-
cast methods and models have been proposed. The early
numerical methods used pollution sources and contaminant
discharge data to imitate the generation, accumulation, pro-
liferation and transformation of air pollution, which promoted
the development of atmospheric science to a great extent [6].
However, the numerical method depends on the researchers’
understanding of the polluter and the portrayal of tanglesome
physical-chemical procedures [7]. Besides, the method has
the characteristics of time-consuming and low accuracy.
Therefore, numerical methods are not up to par in terms of
accuracy and practicality. Subsequently, statistical learning
methods gradually entered our vision due to their powerful
linear approximation ability. However, the statistical learning
methods can only capture the linear relationship, and have
some limitations in the face of nonlinear time series data.
Meanwhile, PM2.5 time series data generally reflect the
characteristics of nonlinearity, volatility, and complexity.
Therefore, the prediction performance of statistical learning
methods is difficult to meet expectations.

In contrast, machine learning methods, like artificial
neural networks [8], hidden markov models, random forests
[9] and support vector regression (SVR), have strong
nonlinear fitting ability and feature extraction performance.
Lai et al. [10] proposed a SVR model based on causal
characteristics analysis and particle swarm optimization for
PM2.5 concentration prediction, and test results show that
SVR is significantly superior to other machine learning
methods. By introducing kernel function, SVRmaps samples
from low to high-dimensional space, which not only ensures
computational efficiency, but also effectively avoids a series
of consequences caused by dimensional disaster. As an
offshoot of machine learning, deep learning has also been
generally utilized in air quality forecasts. Zhai et al. [11]
developed a long short-term memory (LSTM) model that
combines meteorological-social factors, and achieved fine
prediction results. However, LSTM only has one-way feature
extraction capability, ignoring the influence of the future on
the present. To this end, a PM2.5 concentration prediction
model based on feature reduction and bidirectional long
short-term memory (BILSTM) network is advanced by
Zhang et al. [12]. A multivariable BILSTMmodel combining
meteorological factors is presented by Zhang et al. [13],
with a prediction accuracy of up to 95%. From the
above literature, we can draw a conclusion that SVR and
BILSTM networks are promising and outstanding prediction
techniques.

In recent years, the hybrid prediction model based on
‘‘decomposition and ensemble’’ is generally verified to be
better than the above single prediction model [14], [15],
[16], [17]. A two-channel air quality index (AQI) prediction
model based on variational mode decomposition (VMD) and
wavelet transform is established by Wu et al. [18]. A urban

AQI daily forecasting system based on VMD and LSTM has
been developed by Wu et al. [19]. The results demonstrate
that VMD can diminish the difficulty of forecasting to a
great extent. VMD decomposes time series data according to
the frequency domain, but the problem is how to certainly
the optimum number of modes and penalty parameters [20].
To conquer this difficulty, many scholars have improved
VMD in terms of evaluation indicators and search strategies.
Cui et al. [21] first used curvature as an important indicator
for quantitative curve analysis. A grid search method based
on kurtosis and energy loss coefficient is proposed by
Zhang et al. [22] to seek the optimum hyperparameters of the
VMD algorithm, and the results are satisfactory. However,
the characteristic analysis ability of a single evaluation
indicator is limited, which may lead to the deviation of the
results. Furthermore, simple search will inevitably fall into
local optimization. Therefore, the reasonable selection of
evaluation indicators and the effective formulation of search
strategies are crucial for the VMD model.

When using the ‘‘decomposition and ensemble’’ method
to forecast air quality, two key problems must be considered,
one is the selection of forecast network and meteorological
data, the other is the error correction of decomposition results
[23]. On the one hand, there are significant differences in
the instantaneous frequency and characteristics of different
subsignals, and selecting an appropriate prediction network
for these signals is a topic worth discussing. Additionally,
the addition of meteorological data can enhance the forecast
precision of the model, but it also introduces noise [24]. So,
shouldwe addmeteorological data to all prediction networks?
On the other hand, any form of decomposition can not achieve
the real sense of decomposition, if not controlled, there
will be a serious bias effects. For this purpose, an optimal
combination forecasting model based on cuckoo search
(CS) algorithm and grey wolf optimizer (GWO) is proposed
by Zhu et al. [25]. An error correction model based on
general regression neural network (GRNN) and SVR is
presented by Zhu et al. [26]. Luo et al. [27] combines VMD
with extreme learning machine (ELM) optimized by CS
to correct the initial prediction sequence. Liu et al. [28]
proposed a three channel PM2.5 concentration prediction
model that combines deep neural networks and imperial
competition algorithm (ICP). Sun et al. [29] introduces
stacking-driven ensemble model (SDEM) to realize the
double improvement of information utilization and feature
extraction. Fan et al. [30] used LSTM and autoregressive
integrated moving average (ARIMA) to predict the trend
and residual components of PM2.5 sequences, and achieves
remarkable results. Table 1 summarizes the above decompo-
sition and ensemble methods. Although the above methods
are sanguine in terms of prediction accuracy, they only focus
on a one-sided perspective, which is obviously insufficient.
Therefore, there is an urgent need for a robust, stable, and
comprehensive hybrid prediction model to overcome the
shortcomings of existing models and achieve synchronous
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TABLE 1. Summary of related prediction work based on decomposition ensemble method.

improvement of prediction accuracy and convergence
speed [31].

In this context, this article presents a novel weighted
combination forecast model based on empirical wavelet
transform (EWT), adaptive variational mode decomposition
(AVMD), Hurst exponent and improved sparrow search
algorithm (ISSA), which aims to upgrade the accuracy of
PM2.5 concentration prediction. In our model, SVR and
BILSTM are selected as candidate prediction networks.
Hence, the proposed model is called EWT-AVMD-Hurst-
SVR-BILSTM-ISSA.

The predominant contributions of the research are provided
as blew:

1) Adaptive variational mode decomposition: The
proposed EOS comprehensive evaluation indicator
and a novel grid search strategy realize the adaptive
acquisition of the VMD parameters.

2) Novel division mechanism: The complexity of each
subsignal is analyzed by Hurst exponent, and a signal
divider is designed to simultaneously determine the
prediction network and meteorological data. Moreover,
it is worth mentioning that meteorological data is not
considered in [32]

3) Improved sparrow search algorithm: In contrast
with particle swarm optimization (PSO), fruit fly
optimization algorithm (FOA) and sparrow search
algorithm (SSA), the proposed ISSA has the best
convergence precision and the fastest convergence rate.
Moreover, the ISSA is utilized to optimize the weights
of each prediction network, so as to correct the errors

generated in the decomposition process and improve
the forecast precision.

The remainder of this article is arranged like this: Section II
shortly introduces the relevant methods and the general
architecture of the proposed model. The relevant content
of AVMD algorithm and Hurst exponent are depicted in
Section III. Section IV supplies a detailed explanation of the
ISSA algorithm. Section V is the experimental part. Finally,
the conclusion is put forward in Section VI.

II. METHODOLOGY
A. EMPIRICAL WAVELET TRANSFORM (EWT)
EWT is a signal extraction technique advanced by J. Gilles
[33] to tackle nonlinear and unsmooth data. This method
combines empirical mode decomposition with wavelet trans-
form and overcomes the modal aliasing problem of the
empirical mode decomposition. It divides the primeval time
series data f (t) into several consecutive regions on the
frequency domain, and constructs a band-pass filter bank on
each region for filtration, and then reconstructs the signal
to obtain a collection of mode components. The signal
reconstruction expression is given by:

f (t) = W ε
f (0, t)× δ1(t) +

N∑
n=1

W ε
f (n, t)× ϕn(t), (1)

where W ε
f (n, t) and W

ε
f (0, t) represent the detail coefficient

and the approximation coefficient, respectively. ϕn(t) and
δ1(t) signify the empirical wavelet and scaling function,
respectively.
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B. VARIATIONAL MODE DECOMPOSITION (VMD)
VMD is a disintegration technique advanced by Dragomiret-
skiy et al. [34], whose overall framework is essentially a
procedure of constructing and settling variational problems.
For eachmodal component uk , the analytical signal is attained
using the Hilbert transform, and the spectrum of the modal
component is modulated to the corresponding baseband by
multiplying the operator e−jwk t , and then the bandwidth
is estimated utilizing H1 Gaussian smoothness [34]. The
construction results are as follows:

min
{

K∑
k=1

∥∥∥∂t [(φ(t) +
j
π t

)
⊗ uk (t)

]
e−jwk t

∥∥∥2
2

}
s.t.

K∑
k=1

uk = f (t),
(2)

where φ(t) stands for Dirac distribution, ⊗ denotes convolu-
tion operation.

By introducing the punishment factor and lagrange mul-
tiplier, the above restraint problem is converted into an
unrestraint problem, which can be indicated as follows:

L({uk}, {wk}, λ) = α

K∑
k=1

∥∥∥∥∂t [(φ(t) +
j
π t

)
⊗ uk (t)

]
e−jwk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t) −

K∑
k=1

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t) −

K∑
k=1

uk (t)

〉
. (3)

VMD solves the above unrestrained problem by alternate
direction method of multipliers and ultimately realizes the
disintegration of the original signal.

C. FORECASTING NETWORKS
1) SUPPORT VECTOR REGRESSION (SVR)
SVR is a method of applying support vector machine to
regression problems [4]. It has been generally utilized in air
quality forecast [35], ultra-short-term wind speed prediction
[32], rolling bearing fault diagnosis [36] and so on. The core
of SVR is to utilize structural risk minimization theory to find
the optimum fitting function: f (x) so that as many training
sets as possible fall near it [4]. The problem can be defined
as:

min
1
2
∥w∥

2
+ P

N∑
i=1

(
ξi + ξ̂i

)
s.t. yi − wTψ(xi) − b ≤ ε + ξi

wTψ(xi) + b− yi ≤ ε + ξ̂i (4)

ξi ≥ 0

ξ̂i ≥ 0,

where P represents the penalty coefficient, ξi and ξ̂i are the
relaxation variables, ε stands for tolerance width of the fitting

function f (x), whichmeans that if the training set is within the
width, the error will not be calculated.

The introduction of kernel function can realize the trans-
formation from low-dimensional to high-dimensional. In this
paper, gaussian kernel function K (xi, xj) = exp(−||xi −

xj||2/2γ 2) is utilized, in which γ denotes the bandwidth.

2) BIDIRECTIONAL LONG SHORT-TERM MEMORY (BILSTM)
BILSTM network can be regarded as the stack of LSTM in
different directions, which is made up of two independent
LSTM. Each LSTM unit contains three gates internally:
forget gate ft , input gate it and output gate ot . These three
gates perform their duties to achieve the regulation and
control of the network, and the specific formulas are as
below:

ft = σ (uf zt−1 + vf xt + bf ) (5)

it = σ (uizt−1 + vixt + bi) (6)

ot = σ (uozt−1 + voxt + bo) (7)

ct = ft ∗ ct−1 + it ∗ tanh(uczt−1 + vcxt + bc) (8)

zt = ot ∗ tanh(ct ), (9)

where uf , ui, uo, uc are the output activation members, vf , vi,
vo, vc are the input activation members, and bf , bi, bo, bc are
the biases. ct and zt denote the unit state and output at time t ,
respectively. σ is the sigmoid activation function [37].

D. SPARROW SEARCH ALGORITHM (SSA)
Xue et al. [38] proposed a novel heuristic algorithm,
SSA, based on careful observation of the foraging and
anti-predation behaviors of sparrow populations. Sparrows
are quite clever and have strong recall, with a strict
exploration-follow-warning mechanism within the entire
population, corresponding to three different individuals:
producers, predators, and perceivers [39], [40].

Producer sparrows have high intelligence in the population
and play a leading role, responsible for providing foraging
information to other sparrows. The update formula is as
follows:

X t+1
i,j =


X ti,j · exp

(
−i
τ · T

)
if Raf < ST

X ti,j + Rn · L if Raf ≥ ST ,

(10)

where τ is a random number, T represents the maximum
number of iterations, Raf and ST represent the alarm factor
and the safety threshold, respectively. Rn is a random number
with normal distribution, L denotes a 1 × d dimensional
vector.

Predators are particularly eager to replace producers.
In order to achieve their own goals, while foraging with
the producers, they regard the producers as competitors for
food. This competitive behavior stupendously upgrades the
convergence rate of SSA. The predator location is updated
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FIGURE 1. The overall framework of EWT-AVMD-Hurst-SVR-BILSTM-ISSA model.

FIGURE 2. The data input and output structure of multi-step advance prediction.

below:

X t+1
i,j =

Rn · exp

(
X tworst − X ti,j

i2

)
if i > n/2

X t+1
P + |X ti,j − X t+1

P | · A+
· L otherwise,

(11)

where Xworst stands for worst population location, XP denotes
the location of the smartest producer. A is used to control
the update direction of predator location, which is a 1 × d
dimensional matrix that can only take 1 or -1, and A+

=

AT (AAT )−1.
When the sparrow population encounters danger, the

perceiver are in charge of sounding the alarm signal to
prompt the population out of danger. The perceiver location
is updated below:

X t+1
i,j =


X tbest + β · |X ti,j − X tbest | if fi > fg

X ti,j + K ·

(
|X ti,j − X tworst |

(fi − fw) + ε

)
if fi = fg,

(12)

where Xbest represents the most intelligent sparrow position,
K is a random number, the step size control factor is denoted
by β.

E. THE PROPOSED HYBRID FORECASTING MODEL
In this section, the proposed EWT-AVMD-Hurst-SVR-
BILSTM-ISSA hybridmodel is presented at great length. The
general architecture of the model is shown in Fig. 1, and the
specific procedure can be broken down into the following
four steps:

Step 1: The EWT is adopted to disassemble the primeval
PM2.5 concentration sequence, and then the AVMD algo-
rithm is utilized to further disassemble the high-frequency
components, and eventually several intrinsic mode functions
(IMF) are attained.

Step 2: The Hurst exponent of each IMF component
is calculated, via the signal divider, the corresponding
prediction network is determined and meteorological data are
added.

Step 3: Each IMF component is inputted into the
SVR model and BILSTM network for multi-step predic-
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Algorithm 1 AVMD
Parameters:

• k: modal number
• α: penalty parameter
• Ep : envelope spectrum entropy
• f : high-frequency signal

Begin:
for k = 2 : 20 do

\ ∗ Rough search ∗ \

α = 1000
while α < 10000 do

k modes are gained by VMD decomposition: {um}
k
m=1 = VMD (k, α, f )

Calculate the envelope spectrum entropy {Epm}
k
m=1 of all modes

Epk,α = min
(
Ep1,Ep2, . . . ,Epk

)
α = α + 1000

Calculate the initial local optimal penalty parameter under the corresponding number of modes:
_, α = argmin

k,α

({
Epk,α

})
\ ∗ Fine search ∗ \

Determine the scope of fine search: α′

min = α − 500, α′
max = α + 500

Set α′
= α′

min
while α′ < α′

max do
{um}

k
m=1 = VMD

(
k, α′, f

)
Epk,α′ = min

(
{Epm}

k
m=1

)
α′ = α′

+ 100
The local optimal mode number and local optimal penalty parameters are obtained:
klocal, αlocal = argmin

k,α′

({
Epk,α′

})
{um}

klocal
m=1 = VMD (klocal, αlocal, f )

Calculate EOS indicator: EOSklocal ,αlocal = EOS
(
{um}

klocal
m=1 , f

)
The global optimal hyperparameter of VMD algorithm are acquired by minimizing EOS indicators:
k∗, α∗

= argmin
klocal ,αlocal

({
EOSklocal ,αlocal

})
End

tion according to the structure of Fig. 2. Different IMF
components have different characteristic information, so the
hyperparameters of each prediction network are different.
The hyperparameters of SVR model and BILSTM network
are obtained by ISSA algorithm and trial-and-error method
respectively.

Step 4: The ISSA algorithm is utilized to attain the optimal
weight of each prediction network, then all the predicted
results are weighted and integrated to get the ultimate
predicted value of PM2.5 concentration.

III. DECOMPOSITION AND DIVISION OF DATA
A. ADAPTIVE VARIATIONAL MODE DECOMPOSITION
When decomposing signals employing VMD, the appropriate
mode number k and penalty parameters α must be chosen
ahead of time. However, there are many deficiencies in
the extant methods. For instance, the manual calcula-
tion method requires researchers to have sufficient prior
knowledge. Otherwise, unreasonable parameter settings will

result in over-decomposition and owe-decomposition [32].
In addition, the manual calculation method has strong
uncertainty and significant human disturbances. The swarm
intelligent optimization method ignores the time cost, and
the computational efficiency is relatively low. To this
end, an AVMD algorithm based on EOS comprehensive
evaluation indicator and rough-to-fine grid search strategy is
proposed in this article to achieve the adaptive acquisition
of VMD parameters on the premise of ensuring efficiency.
On the one hand, we propose a new EOS indicator to measure
the decomposition effect of VMD, which comprehensively
considers the energy difference and modal aliasing problem
of the signal, and can more accurately reflect the degree of
signal decomposition. This helps to reduce the impact of
external disturbances caused by inaccurate or inappropriate
evaluation indicators on model performance. On the other
hand, the rough-to-fine grid search strategy can dynamically
adjust the search space range of α, and gradually refine
from the whole to more specific parameter settings. To some
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extent, the uncertainty and error caused by manual setting of
hyperparameters are alleviated, thus improving the stability
and robustness of the model. The specifics of the AVMD are
elucidated in Algorithm 1.

As shown in Algorithm 1, firstly, the minimum envelope
spectral entropy (Ep) under different α values is calculated
to gain the approximate value of the local optimal penalty
parameter, and the Ep can be denoted as follows:

Ep = −

∑N

i=1
Pilog2Pi, (13)

in which N denotes the signal length and Pi denotes the
standardized form of the instantaneous envelope of the signal.

Then, the search range is narrowed, the final local optimal
mode number klocal and local optimal penalty parameters
αlocal are obtained with the same steps, and the corresponding
EOS indicator are calculated. This indicator combines energy
loss coefficient (ELC), orthogonal index (IO) and spectrum
degree of cross-correlation (SPC). Specifically, the ELC
reflects the degree of difference among the primeval signal
with the reconstructive signal. A smaller ELC results in less
information loss and better decomposition. IO reveals the
degree of similarity between modes. A smaller IO means
strong independence between modes. However, it tends to
produce bad decomposition results when k is fixed and α is
large, at which point IO is small [41]. SPC is devoted to assess
the degree of mode aliasing. A smaller SPC indicates a lower
probability of modal aliasing, but the degree of information
loss is large [42]. From the above analysis, the more moderate
the IO and SPC, the better the decomposition effect. These
indicators are expressed as follows:

1) ELC is either expressed as:

ELC =

∥∥∥∥∥f (t) −

k∑
i=1

ui

∥∥∥∥∥
2

2

/ ∥f (t)∥22 , (14)

2) IO is either expressed as:

IO =
1

k − 1

k−1∑
i=1

(
ui · ui+1

|ui||ui+1|

)
, (15)

3) SPC is either expressed as:

SPC =

k∑
i=1

k∑
j=1

(
F(ui) · F(uj)

)
∑
(F(f (t)))2

(i ̸= j), (16)

4) EOS is either expressed as:

EOS = ELC + |IO− IOavg| + |SPC − SPCavg|, (17)

where f (t) represents the primeval signal and ui represents
the i-th mode component, F(·) stands for Fourier transform.
IOavg and SPCavg denote the average value of the correspond-
ing indicator, respectively.

The algorithm iterates continuously until the EOS indicator
corresponding to all local optimal parameters are acquired.

Finally, the optimal hyperparameters (k∗, α∗) of VMD
algorithm are obtained by minimizing EOS.

In this article, EWT is used to disassemble the primeval
data into six IMF components (IMF1, IMF2,. . . , IMF6),
and then the high-frequency component IMF6 is further
disassembled by AVMD. Table 2 and Fig. 3 show the
procedure of VMD parameter optimization. We observed
that the EOS indicator reaches the minimum when the mode
number is 3, on the Beijing data set. Over-decomposition
occurs when the mode number is greater than 8. Therefore,
k and α are set to 3 and 600, respectively, and IMF6 is further
disassembled into three independent IMFs. Eventually, the
primeval data is disassembled into IMF1-IMF8. Similarly,
on the Handan data set, the primeval data is disassembled
into 11 IMF components.

B. DETERMINATION OF PREDICTION NETWORK AND
METEOROLOGICAL DATA
It is crucial to select the corresponding prediction network
and meteorological data for different components. To tackle
this problem, the Hurst exponent (H ) is introduced. The Hurst
exponent reflects the long-term correlation of time series.
When H < 0.5, the time series has anti-persistence and
shows the characteristic of oscillation. When H = 0.5, the
time series has no correlation. When H > 0.5, the time
series has a long-term correlation. In general, A higher Hurst
exponent indicates that time series are easier to predict [32].
Based on this characteristic, this article takes Hurst exponent
as the reference of signal division and designs a signal divider.
The concrete rules are as below:

1) Refer to the division criteria of Tian [32], when H ≥

0.7, it implies that the time series is monotonous
and stationary. In this case, SVR is selected as the
prediction network.

2) When H < 0.7, it implies that the time series has
strong randomness, nonlinearity and unpredictability.
In this case, BILSTM with excellent learning ability is
selected as the prediction network, and meteorological
data is added to upgrade the forecast precision.

Based on the results of the decomposition in Section III-A,
Table 3 presents the Hurst exponents of each IMF component
under different data sets, which are calculated by rescaled
range analysis. We observed that IMF1, IMF2, and IMF3
follow rules (1), and IMF4, IMF5, IMF6, IMF7, and IMF8
follow rules (2) on Beijing data set. Similarly, on the Handan
data set, each IMF component is divided into two categories:
one is IMF1-5, the other is IMF6-11. These IMF components
are input into the corresponding forecasting network to obtain
their respective forecasting results.

IV. IMPROVED SPARROW SEARCH ALGORITHM
Although SSA algorithm has strong preponderances in
convergence rate and optimization power, it is susceptible to
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TABLE 2. All the local optimal parameters obtained based on AVMD.

FIGURE 3. Corresponding EOS indicator values for all local optimum parameters.

TABLE 3. The Hurst exponents of each IMF component under different data sets.

running into local optimum in late iterations. To surmount
this problem, this article proposes an ISSA algorithm based
on adaptive hyperparameter, Levy flight, mutation and lens
opposition-based learning (LOBL). Besides, the validity
of the ISSA was demonstrated adopting six benchmark
functions with different dimensions.

A. ADAPTIVE HYPERPARAMETER
Since producer sparrows are the bellwether of the whole
population, a larger foraging range is required during the iter-
ation process. However, in the actual situation, the foraging
range of producer sparrows will become increasingly smaller,
which will inevitably lead to the imbalance among global
with local search ability, and seriously affect the convergence
precision. Therefore, this article defines an adaptive weight
factor ω to amplify the foraging range of producers,

and the position update of the producer can be rewritten
as:

ω = ω0 · exp
(

−η
t
T

)
(18)

X t+1
i,j =

X ti,j · exp
(

−i
ω·τ ·T

)
if Raf < ST

X ti,j + Rn · L if Raf ≥ ST ,
(19)

whereω0 = 1 is the initial weight and η= 20 is the attenuation
factor used to control the attenuation degree of ω, t denotes
the present number of iterations.

B. LEVY FLIGHT STRATEGY
Levy flight is a stochastic walk method [43]. It simulates
the flight behavior of various animals and insects in nature
[44], with characteristics of randomness and intermittency.
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FIGURE 4. The displacement direction of predator sparrows before and after introducing levy flight.

The detailed formula is as below:

s ∼ N
(
0, σ 2

s

)
(20)

r ∼ N
(
0, σ 2

r

)
(21)

σr = 1 (22)

σs =

0 (1 + ρ) · sin
(
πρ
2

)
ρ · 0

(
1+ρ
2

)
· 2

(ρ−1)
2


1
ρ

(23)

0 (z) =

∫
∞

0
tz−1e−tdt (24)

levy =
σs · s

|r|
1
ρ

, (25)

where ρ = 1.5 is a constant,0 represents the gamma function,
levy denotes the random step size.

In (14), restricted by the value of matrix A, predators can
only update positions from two opposite directions, as shown
in Fig. 4a) and 4b). We can see that the shadow part is
a blind area, and the SSA algorithm cannot search for it
sufficiently, which implies that the SSA algorithm is prone to
miss the optimal solution and trap a temporary scam. In view
of the strong randomness of levy flight, the introduction of
levy flight can fully search the vicinity of predators and best
producers, which merely improves the local search ability of
the algorithm yet effectively avoids the problem of missing
the optimal solution, as shown in Fig. 4c) and 4d). In this
subsection, we utilize levy random step size to control the
updating direction of predator position, and the new predator
position can be indicated as:

X t+1
i,j =


Rn · exp

(
X tworst−X

t
i,j

i2

)
if i > n/2

X t+1
P +|X ti,j−X

t+1
P | · levy · L otherwise.

(26)

C. ALTERNATE SEARCH MECHANISM BASED ON LEVY
MUTATION AND LOBL
Levy flight can alternate between the majority of short-range
searches and occasional long-range searches. This intermit-
tent behavior is profit for elevating the algorithm’s local
approximation power and enabling it to leap out of the local
optima. To this end, we combine levy flight with mutation
strategy and propose a novel levy mutation method, which is
expressed as follows:

X t+1
i = X ti ∗ (1 + levy) rand ≤ Pm, (27)

where X ti means the position of the ith sparrow in the
t iteration, rand ∈ (0, 1) is a random number, Pm =

0.05 indicates the mutation rate.
In addition, in the iterative process of SSA algorithm, the

population diversity will decrease, which may lead to the
problem of prematurity [45]. Fortunately, opposition-based
learning methods can effectively overcome this problem.
Among them, the LOBL method has great potential in
improving population diversity due to its unique physical
characteristics. It is a method to seek the opposite solution
based on the principle of convex lens imaging [46], and the
calculation identity is as below:

X̂ ti,j =
aj + bj

2
+
aj + bj

2k
−
X ti,j
k

(28)

k = kmin + 0.5 (kmax − kmin) ·

(
1 − cos

(
tπ
T

))
, (29)

where X ti,j and X̂
t
i,j represents original solution and opposite

solution the jth dimension of the ith sparrow in the t iteration,
respectively. aj and bj stands for upper and lower bounds of
the jth dimension, respectively. k is a nonlinear decreasing
function, with its bound is [0.5, 1.5]. LOBL can produce a
variety of different opposite solutions by adaptive adjusting
the size of k , so that raise the diversity of the population [47].
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TABLE 4. Benchmark function.

FIGURE 5. Fitness curves of PSO, FOA, SSA and ISSA on different benchmark functions.

Inspired by [48], we propose an alternate search mech-
anism based on levy mutation and LOBL. The core of
this mechanism is to introduce a selection probability Ps,
and selectively mutate or seek opposite solutions for the
whole population after each iteration to further upgrade
the performance of the SSA algorithm. Specifically, when
rand < Ps, the levy mutation is executed. When rand ≥ Ps,
the LOBL is executed. Finally, the position of all populations
is updated by greedy rule. Ps is a function that increases
from 0 to 1 and can be denoted as follows:

Ps = 0.5 ·

(
1 − cos

(
tπ
T

))
. (30)

D. COMPARISON AND VALIDATION
To authenticate the validity of the proposed ISSA, it was
tested using six benchmark functions and the outcomes were
contrasted with PSO, FOA, and SSA. Table 4 shows the
details of the benchmark function. The comparison outcomes
are shown in Fig. 5.

We can see that ISSA can accurately find the global optimal
solution on the F1 - F6. On the F1 and F4 test functions, only
ISSA successfully jumps out of the local optimum. On the F2
test function, ISSA, SSA, and FOA have similar convergence
accuracy and are better than PSO. On the F3 test function,
ISSA is significantly superior to SSA, PSO, and FOA. On the
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TABLE 5. The optimal weight of each prediction network under different data sets.

F5 and F6 test functions, both ISSA and PSO have the highest
convergence accuracy, but the time consumed by ISSA is
much less than that of PSO. In conclusion, compared with
PSO, FOA, and SSA, ISSA is optimal both convergence
accuracy and convergence rate.

Based on the above tests and the results of Section III-B,
we utilized the validated ISSA algorithm to optimize the
weights of each prediction network and achieved satisfactory
prediction outcomes. The optimal weights of each prediction
network under different data sets are shown in Table 5.

V. EMPIRICAL STUDY
A. DATA DESCRIPTION
The PM2.5 concentration data used in this experiment come
from China Air quality online Monitoring and Analysis Plat-
form (https://www.aqistudy.cn/). The meteorological data
come from the Weather Network (https://www.tianqi.com/).
The sample data are PM2.5 concentration data and mete-
orological data from January 1, 2019 to December 31,
2021 in Beijing and Handan, which with an interval of one
day. The meteorological data include highest temperature,
lowest temperature, wind power, wind direction, air pressure,
humidity and weather, a total of 7 meteorological related
factors. Among them, the wind direction and weather belong
to the nonnumerical type, which has been numerically
processed in advance. In the process of data collection,
there will inevitably be missing data. Here, the cubic
spline interpolation approach is employed to preprocess the
missing data. Table 6 shows the statistical information of
PM2.5 concentration data after preprocessing.We beheld that
there is a noteworthy discrepancy in PM2.5 concentration
between these two regions, and both of which are heavily
polluted cities. Despite the geographical proximity of Beijing
and Handan, the PM2.5 concentration sequence of the two
cities presents different characteristics due to their significant
differences in regional scale, population, traffic, industrial
structure and climate characteristics [27]. Therefore, the
broad applicability and practicability of the presented model
can be fully verified on these two data sets.

The dataset is separated into three portions in this paper,
with a 6:2:2 rate: training set, verification set, and testing set.
The first 657 data (2019/1/1-2020/10/18) is the training set,
the next 219 data (2020/10/19-2021/5/25) is the verification
set, and the last 220 data (2021/5/26-2021/12/31) is the test

TABLE 6. Statistical information of PM2.5 concentration data after
preprocessing.

set, which is used for model training, avoid overfitting and
performance evaluation, respectively.

B. PERFORMANCE EVALUATION CRITERIA
There are many different categories of indicators used to
evaluate model performance, but there is no pervasive inter-
national evaluation criterion at present. Therefore, this article
utilizes the four mainstream error indicator to authenticate the
validity of the proposedmodel, includingmean absolute error
(MAE), root mean square error (RMSE), symmetric mean
absolute percentage error (SMAPE), and R-square (R2). The
above indicators can be denoted as:

MAE =
1
N

N∑
i=1

|ypre(i) − yobs(i)| (31)

RMSE =

√√√√ 1
N

N∑
i=1

(
ypre(i) − yobs(i)

)2 (32)

SMAPE =
100%
N

N∑
i=1

|ypre(i) − yobs(i)|(
|ypre(i)| + |yobs(i)|

)
/2

(33)

R2 = 1 −

N∑
i=1

(
ypre(i) − yobs(i)

)2
N∑
i=1

(
yavg − yobs(i)

)2 , (34)

where ypre, yobs, and yavg represent the predicted, observed,
and average values of test sets, respectively. N stands for
number of test sets.

C. MODEL COMPARISON
In order to authenticate the superiority of the proposed
weighted combination forecast model, we compared the
proposed model with nine contrast models, including
ARIMA [49], SVR [10], BILSTM [13], VMD-ISSA-SVR,
ICEEMDAN-SE-WT-GTOA-ELM [50], VMD-SE-LSTM
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FIGURE 6. 1-Step prediction outcomes of PM2.5 concentration in Beijing case.

TABLE 7. Performance statistics of 1-step prediction of different models in Beijing case.

[19], CEEMDAN-AVMD-SE-LSTM [51], VMD-BILSTM
[52], EWT-AVMD-Hurst-SVR-BILSTM. In addition, 1, 3,
and 5-step predictions are carried out for all models to
measure their multi-step prediction ability. The detailed
comparison results of different cases will be presented in the
following subsections.

1) PERFORMANCE COMPARISON IN BEIJING CASE
The outcomes of 1-step prediction of PM2.5 concentration
for Beijing are shown in Fig. 6. The performance evaluation
outcomes of different models are displayed in Table 7.

As shown in Fig. 6, compared with rest contrast models,
the predicted value sequence of the proposed model is closer
to the real value sequence and has the best prediction perfor-
mance. The hybrid prediction model based on ‘‘decomposi-
tion and ensemble’’ method can accurately predict the overall
trend of PM2.5 concentration sequences. The predicted
value sequences of ARIMA, SVR, and BILSTM exhibit
significant fluctuations, and their performance is far inferior
to hybrid prediction models. The performance statistics
in Table 7 further confirm the above results. Apparently,
the proposed EWT-AVMD-Hurst-SVR-BILSTM-ISSA has
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FIGURE 7. Performance statistical histogram of 3 and 5-step prediction in Beijing case.

TABLE 8. Performance statistics of 3 and 5-step prediction of different models in Beijing case.

the lowest MAE, RMSE, SMAPE and the highest R2,
which are 4.0900, 5.7810, 23.4720, and 0.9304, respec-
tively. For other hybrid prediction models, the prediction
performance of VMD-ISSA-SVR and ICEEMDAN-SE-WT-
GTOA-ELM is slightly worse, with MAE, RMSE, SMAPE,
and R2 are 7.4484, 9.7666, 40.7380, 0.8353 and 7.4812,
9.4462, 42.3119, 0.8297, respectively. The possible reason is
that SVR and ELM cannot sufficiently extract the potential
features of complex signals. Nevertheless, the prediction
outcomes of the model are also satisfactory. In the single
prediction model, BILSTM outperforms SVR and ARIMA,

with MAE, RMSE, SMAPE, and R2 of 9.1371, 10.9181,
46.1128, and 0.7520 respectively, but its performance is
far inferior to that of VMD-ISSA-SVR and ICEEMDAN-
SE-WT-GTOA-ELM. This demonstrates that the ‘‘decompo-
sition and ensemble’’ method can efficaciously strengthen
the expression power and generalization performance of the
model, which has a enthusiastic impact on the forecast of
PM2.5 concentration.

Taking into account that the multi-step prediction ability
of model is more extensive in practical application [53].
To this end, Fig. 7 and Table 8 evaluate the multi-step
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FIGURE 8. 1-Step prediction outcomes of PM2.5 concentration in Handan case.

TABLE 9. Performance statistics of 1-step prediction of different models in Handan case.

prediction performance of the various models. Combining
Fig. 7 and Table 8, we can clearly see that whether it
is 3-step prediction or 5-step prediction, EWT-AVMD-
Hurst-SVR-BILSTM-ISSAmodel procured the lowestMAE,
RMSE, and SMAPE of 5.3360, 7.3399, 30.6014, 6.2820,
8.3916, 37.6704, and the highest R2 of 0.9070, 0.8784.
The performance of the single prediction model is seriously
inadequate, which is consistent with the above conclusion.
In short, the proposed EWT-AVMD-Hurst-SVR-BILSTM-
ISSA model provides the best prediction accuracy and effect.

2) PERFORMANCE COMPARISON IN HANDAN CASE
This subsection takes the PM2.5 concentration in Handan
as the research object to further verify the applicability
and dependability of the proposed model. The fitting
curve of the 1-step prediction are shown in Fig. 8,
and Table 9 lists the performance statistics outcomes of
different models. We observed that the MAE, RMSE,
and SMAPE of EWT-AVMD-Hurst-SVR-BILSTM-ISSA are
4.3635, 6.3160, 14.0291, respectively, and R2 is 0.9498,
which is better than other contrast models. VMD-ISSA-
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FIGURE 9. Performance statistical histogram of 3 and 5-step prediction in Handan case.

TABLE 10. Performance statistics of 3 and 5-step prediction of different models in Handan case.

SVR and ICEEMDAN-SE-WT-GTOA-ELM exhibit a weak
correlation between predicted and observed values, but
vaguely superior to BILSTM. The error analysis outcomes
of 3 and 5-step prediction are shown in Fig. 9 and Table 10.
Obviously, the R2 of the proposed model has been kept
around 0.9, which has a strong fitting advantage. The results
of the above analysis are intensively coherent with the
Beijing case, which means that the proposed model can
suit to different environments excellently and has significant
practical application value.

D. DISCUSSION
The comparison results of the two city cases indicate that
the proposed hybrid prediction model EWT-AVMD-Hurst-
SVR-BILSTM-ISSA has outstanding performance in dif-
ferent environments. In VMD-ISSA-SVR, VMD-SE-LSTM,
and VMD-BILSTM models, the parameters of VMD are
universally affected by human intervention, resulting in the
characteristics of the data cannot be adequately expressed.
Our research ingeniously integrates the EOS indicator with
a grid search strategy that progresses from rough-to-fine, and
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TABLE 11. Performance statistics of 1, 3 and 5-step prediction of
different models in Shanghai case.

realizes the accurate location of the optimum parameters. The
superiority of the proposed model is indirectly confirmed by
this as well. Furthermore, it is noteworthy that the proposed
model shows a significant improvement in MAE, RMSE,
SMAPE by 27.9%, 19.1%, 25.9% respectively compared
to EWT-AVMD-Hurst-SVR-BILSTM, with an increase of
R2 by 3.9%. Similarly, in Handan case, MAE, RMSE, and
SMAPE increased by 15.8%, 11.7%, 11.9% respectively, and
R2 increased by 1.5%. The above analysis results show that
the optimized weight coefficient can preferably approximate
the real value, and it is feasible to use ISSA algorithm for
error correction.

We can see from Figs. 7 and 9 that the MAE, RMSE, and
SMAPE of 5-step prediction for each model are generally
taller than those of 3-step prediction, and R2 is on the
contrary. For Beijing, the MAE predicted by EWT-AVMD-
Hurst-SVR-BILSTM-ISSA model at 1, 3, and 5 steps are
4.0900, 5.3360, and 6.2820, respectively, showing an upward
trend, while R2 of 0.9304, 0.9070, and 0.8784 respectively,
showing a decreasing trend. This phenomenon has also been
further demonstrated in the case of Handan City. The cause of

this phenomenon could be that the correlation between input
variables and output variables weakens with the increase
of prediction step size, resulting in a dramatic decline in
prediction performance. Unfortunately, the proposed model
has a weak advantage in multi-step prediction performance
and needs to be improved, but it outperforms other contrast
models on the whole.

To ensure that the proposed model can be effectively
applied in different scenarios, we collected PM2.5 con-
centration and meteorological data in Shanghai, and as an
additional case study. The experimental procedure is the
same as above. Table 11 presents the performance evaluation
results of different models. As can be seen from Table 11, the
behavioral characteristics of each model in the Shanghai case
are highly consistent with those in the Beijing and Handan
cases, and we can draw conclusions similar to those in
Section V. In conclusion, the proposed weighted combination
forecast model is a promising model and can be taken as a
energetic tool for PM2.5 concentration prediction.

VI. CONCLUSION
In this article, a hybrid prediction model of PM2.5 con-
centration based on secondary decomposition ensemble and
weight combination optimization is presented to improve
the shortcomings of the existing models. The validity of the
model is authenticated by using real case data of Beijing,
Handan and Shanghai. The experimental results reveal that
compared with other contrast models, the proposed model
primarily embodies the following three advantages: (1) the
proposed AVMD algorithm alleviates the repercussions of
external perturbance on the performance of themodel to some
extent, and effectively reveals the potential characteristics
of PM2.5 concentration series; (2) the signal division
mechanism based onHurst exponent realizes the synchronous
determination of prediction network and meteorological data,
which promotes the adaptive capacity of the model to
complex nonlinear dynamic series; (3) the learning paradigm
of weight optimization balances the prediction performance
of different networks and enhances the stability of the model.
In the future, we hope to expand our approach to additional
cities and investigate the underlying causes of air pollution.
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