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ABSTRACT Large bandwidth, Low latency and intensive computing are the main challenge in
high-performance virtual reality (VR) video transmission. As mobile edge computing (MEC) can provide
computation and storage resources closer to terminals, it has been a promising mode in VR video
transmission to substantially improve communication quality. This work focuses on the autonomous
perception ability in MEC-supported VR video transmission, and introduces deep reinforcement learning
to investigate optimal task offloading solutions. Therefore, this paper proposes a deep reinforcement
learning-based optimal computation offloading scheme for VR video transmission in mobile edge networks.
Specifically, a Deep Deterministic Policy Gradient-based computation offloading algorithm in designed
as the main technical framework. The optimal planning of computation offloading strategies is viewed
as a Markov decision problem, and a deep Q-Network is employed to deal with it. Finally, the setting of
MEC-supported VR video transmission scenes is simulated, in which the proposed scheme is implemented
for evaluation. The results are displayed in visualization format and show that the proposed task computation
scheme can possess proper performance results in MEC-supported VR video transmission scenes.

INDEX TERMS Virtual reality, video transmission, computation offloading, mobile edge networks,
reinforcement learning.

I. INTRODUCTION
Since 2016, the virtual reality industry has been growing
rapidly. But due to the high demand for local computing and
rendering equipment, users are still mainly a few enthusiasts
and VR business is difficult to serve ordinary users [1]. Cloud
virtual reality (VR) is a cloud-based real-time virtual reality
technology, which uses cloud servers instead of users’ local
computing devices [2]. However, due to the intensive data
volume of VR video, the bandwidth and latency limitation
of network transmission becomes the new bottleneck of
the whole system after the cloud computing and rendering
[3]. For the basic 4KB resolution CloudVR service, the
bandwidth requirement needs at least 40Mbit/s [4]. While
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the round trip time (RTT) should be less than 70 ms to
provide a good experience for users [5]. In VR-based mobile
network structures, currently, the transmission distance
between the side of users and the side of servers usually
remains in metropolitan level. Without considering the time
consumption in procedures of forwarding and transmission,
the RTT is as high as 20 to 40 ms for fiber optic transmission
alone [6]. Such circumstances make it difficult to reach the
requirement of instantaneous VR communication [7], [8].
With the development and implement of 5G networks, the
bandwidth of mobile network is greatly improved. Mobile
edge computing (MEC) technology deploys the server at the
edge of the base station near the user, which greatly reduces
the transmission delay by sinking the user-plane gateway,
application edge, etc., making CloudVR possible [9]. On the
other hand, the source side (edge server) and the channel
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side (base station) are more closely connected in the MEC
scenario, and the bandwidth is sufficient to support baseband
data at the server [10].

Each frame of VR video contains full view information, but
the user can only see a small portion of the image within its
FOV (field of view) when watching VR video, which means
that there is a large amount of redundancy in each frame of
VR image [11]. Ideally, only the valid image information
within the user’s FOV can be pushed based on the user’s
viewpoint information [12]. However, due to the limitations
of network latency and bandwidth and the special nature
of VR video viewing, this approach will lead to severe lag
and image switching lag (switching images only when a
new frame arrives) [13]. Therefore, the current mainstream
program is based on the user’s point-of-view information
transmission quality uneven code stream program [14]. It is
expected to ensure the quality of the image within the FOV
at the same time, as far as possible to reduce the quality of
redundant images [15]. When the user’s viewing direction
changes slightly, the user does not need to wait for the
arrival of new-frame data, and can complete the screen switch
locally, solving the problem of lag and lag [16]. The server
side dynamically adjusts the FOV position of the transmitted
video based on the user’s uploaded viewpoint information to
match the user’s FOV as much as possible and realize the
dynamic pushing of the user’s viewpoint perception [17].

For the construction of non-uniform quality panoramic
images, the most common solution is to split the panoramic
video into different tiles and transmit different quality
tiles according to the user’s FOV, which largely saves
network bandwidth [18]. These solutions are based on HTTP
adaptive streaming protocols such as DASH, and the extend
temporal segmentation to spatial segmentation [19]. Firstly,
the panoramic video is divided into multiple blocks in time
and space, and then multiple quality versions are generated
for each block separately [20]. According to the user’s
point-of-view information, the appropriate quality version is
selected for each block for transmission, and the closer the
quality is to FOV, the higher the quality is, realizing dynamic
adaptive pushing flow [21]. In essence, these methods are
still based on ERP (equirectangular projection) panoramic
map for block coding, and the quality of the image is
relatively rigid between blocks, which affects the user’s
viewing experience. Another type of methods are based
on projection transformation, such as tetrahedral and cube
projection. They use the classical map projection idea to
divide the sphere into many spherical trapezoids and project
them onto some kind of polyhedra, with the characteristics of
small distortion and high compression efficiency [22].

While common polyhedral projection methods have equal
size on each side, a pyramidal projection scheme proposed
by Facebook projects the spherical surface onto a positive
quadrilateral and uses the difference in projected areas of
different surfaces to generate a non-uniform mass image
with a clear bottom surface and blurred sides [23]. This

method integrates the generation of non-uniform quality
images into the projection transformation, and the image
quality changes more naturally. The above studies mainly
focus on the source perspective and reduce the redundant
data by coding or projection methods. An VR transmission
mechanism based on joint source-channel coding is proposed
by Cheng et al. [24], which maximizes the viewing quality
within the user’s FOV by using different levels of error
protection after chunking the VR video with the user’s FOV
information. In the study of [25], in order to measure the
user’s viewing experience, a QoE (quality of experience)
metric is defined and an efficient algorithm is presented for
controlling the code rate and to maximize the QoE [26].

The research [27] investigates how to use SDN-based
microcellular network architecture in 5G for multi-path
collaborative VR video transmission, hoping to enhance the
quality of VR video transmission using microcellular and
edge data center (EDC) to improve the user experience.
The main idea is that based on the pre-cached content
in the edge data center, millimeter wave transmission of
cached content is used between microcell sites to satisfy the
requests of users within the coverage area microcell sites,
thus satisfying the demand for low latency. The research
[28] explores the transmission of VR video multicast in
5G networks and discusses the challenges of VR video
multicast over 5Gmicrocellular networks, while they propose
a single frequency network (SFN)-based implementation and
a millimeter wave band-based scheme, respectively [29].
In addition, amechanism forVR videomulticast transmission
using D2D assistance in 5G is proposed in the research [30],
which aims to efficiently utilize spectrum resources for VR
video transmission in a multicast manner.

The research [31] proposes a multi-path layered transmis-
sion mechanism in 5G-based heterogeneous networks, where
the base and augmented layer VR video content is mainly
transmitted via WIFI, while the 5G network is mainly used
for data retransmission as well as correction. The research
[32] utilizes the mode of 5G MEC to investigate an adaptive
VR video transmission scheme, where the transmission rate
is minimized by optimizing the computation offloading and
caching strategies with limited latency and energy consump-
tion. The research [33] focuses on user viewpoint-based
caching strategies in MEC and a viewpoint-aware caching
strategy is presented to increase the hit rate of cached
content. In the scenario of multiple micro-base stations
with multi-user multicast, research [34] proposes a deep
learning assisted scheduling and content quality adaptive
ground transmission mechanism to solve the problem of
VR video for micro-base station multicast transmission. The
research [35] discusses the advantages of millimeter wave
in VR video transmission and proposes a solution using
mobile edge computing as well as pre-caching, aiming to
provide reliable VR video transmission, taking the more
interactive VR games as the research object. In the research
[36], the problem of fusing millimeter wave communication,
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FIGURE 1. System model.

mobile edge computing, and pre-caching solution is further
modeled, the corresponding solution algorithm is given, and
the solution is verified by simulation to have lower latency
compared to the conventional solution. Based on the MEC
architecture, this paper proposes a resource optimization
model based on the 5G smart edge, which can guarantee the
service demand of mobile VR by collaboratively optimizing
communication, computation and storage.

Given above analysis and description, we summarize main
contributions of this paper as follows:
• The latency model of mobile VR services based on 5G
edge computing are formulated in order to adapt the
reinforcement learning model.

• We adopt reinforcement learning to tackle the offloading
decision problem of mobile VR in edge computing.
The proposed offloading algorithm is designed for
improving the efficiency of edge resource.

• We conduct considerable amount of simulation
experiments to verify performance of the proposed
computation offloading scheme.

II. SYSTEM MODEL
Figure 1 shows the mobile VR service architecture with
5G smart edge converged communication, computation
and storage. The architecture mainly includes mobile VR
terminal, 5G access network, and MEC. this paper focuses
on lightweight VR device and mobile terminal-based VR
headset. 5G access network provides access services for
users, and this paper adopts 5G typical network structure,
where users transmit services through a remote radio head
unit (RRH). The edge computing server is deployed near

by the baseband pool (BBU), which provides storage and
computing resources.

The latency of mobile VR services based on 5G edge
computing mainly consists of two parts: content transmission
latency and computation offloading latency, as shown in
Figure 2, which illustrates the composition of computation
offloading latency for offloading computation tasks to edge
nodes. It is assumed that there are U mobile VR user, N
VR video, R 5G base station and K edge computing node.
The bandwidth and average signal-to-noise ratio of the user
between associated base stations are denoted as Br,u and βr,u,
respectively, and the data transfer rates of the forward haul
from the base stations to the BBU and the backhual from the
BBU to the cloud service are denoted as df , db respectively.
Therefore, the transmission delay of 1-bit data from the cloud
server to the BBU, from the BBU to the base station, and from
the base station to the VR user terminal is written as follows:

tb =
1

db/U
(1)

tf =
1

df /U
(2)

tw =
1

Br,u · log2(1+ βr,u)
(3)

Through multi-level caching based on interest and pop-
ularity prediction, the VR contents requested by users are
then all at the C-RAN edge nodes. Therefore, the content
transmission delay from the C-RAN edge node to the
user terminal is Dn,τu (tf + tw). In this paper, two types of
intensive computation tasks, 3D scene reconstruction and
high realism rendering, are computationally offloaded. The
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FIGURE 2. Latency model for mobile VR.

computationally offloaded delay mainly consists of two
parts, one is the computation delay of the computation task
calculation; the other part is the transmission delay of the
computation task offloading and return the computation result
data.

The computational task of Mobile VR user u is denoted
as Cu = {Cn,τ

u ,Dn,τu },where Cn,τ
u denotes the CPU

cycles required for the computational task of 3D scene
reconstruction and rendering, Dn,τu is the amount of data
currently requested by the user for VR content as shown in
Equation (3), where qkn,τ,m is the bit rate of the first Tile of the
first video segment of the first VR video. The data volume of
the 3D scene reconstruction and rendering computation tasks,
and the data volume of the computation task return results are
defined as ςn,τu , ξn,τu . In addition, for user terminals and edge
nodes, computing power of them are denoted as Hu and Hk ,
respectively.

Dn,τu =
K∑
k

M∑
m

qkn,τ,m (4)

In this paper, the following three computation modes are
used: 1) the mobile terminal completes the computation task
locally, 2) the computation task is offloaded to the edge
node, and 3) a hybrid mode of local computation and edge
node computation offloading. Therefore, the computational
delay for local 3D scene reconstruction and rendering tl ,
the computational delay for projection and rendering at the
edge node tk , and the computational delay for rendering
the computational tasks locally and at the edge node th,
respectively, are expressed as Equations (5), (6), and (7),
respectively:

tl =
Cn,τ
u

Hu
(5)

tk =
Cn,τ
u

Hu,k
(6)

th =
δCn,τ

u

Hu
+

(1− δ)Cn,τ
u

Hu,k
(7)

III. DEEP REINFORCEMENT LEARNING-BASED TASK
OFFLOADING SCHEME
A. PROBLEM FORMULATION
The massive amount of information in mobile VR leads to
high processing complexity, which puts a strong demand on
the intensive computing capability of the system. VR infor-
mation processing requires real-time completion of intensive
computing tasks to ensure that users can obtain a natural
and smooth experience. Due to the limitation of computing
power, mobile terminals are difficult to support mobile
VR intensive computing tasks in mobile VR computing
tasks, mobile terminals. There are still obvious gaps in
terms of computing power to meet the needs of mobile
VR intensive computing. If the calculation is migrated to
a remote cloud server, its latency performance is difficult
to guarantee. Therefore, it is necessary to effectively make
full use of computing ability of 5G mobile terminals from
comprehensive views, so as to fulfill the intensive computing
requirements of VR. Through the analysis of the intensive
computing tasks of mobile VR, it is found that 3D scene
reconstruction and rendering require the largest amount of
computation in the whole process, which cannot be satisfied
by the current computing power of mobile terminals, while
such computing tasks as video/audio decoding can meet the
computational requirements. Therefore, this paper will focus
on two types of intensive computation tasks, namely 3D
scene reconstruction and high realism rendering, to study the
computation offloading strategy.

The time-varying characteristics of the wireless spectrum
lead to fluctuations in the communication links of mobile VR
users. In this paper, the time-varying characteristics of the
wireless channel need to be considered in the computational
offloading, and the computational offloading allocation
algorithm for the channel quality of mobile terminals will be
designed. The computing capacity of edge computing nodes
is limited to a certain extent, especially in the current situation
that edge computing nodes cannot meet the offloading of
intensive computing tasks for multiple users under the nodes,
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FIGURE 3. DDPG based intelligent decision algorithm for VR task offloading.

and it is necessary to offload some computing tasks to the
core network edge computing nodes to meet the offloading
demand of intensive computing. Based on the above analysis,
this paper models the offloading optimization problem of VR
computing tasks as the following problem:

min
A,B,1

U∑
u

0∑
τ

tde + (αtl + λtk + (1− α − λ)th)

s.t. tmaxCn,τ
u ≤ Hu

tmax(1− δ)
∑
U

Cn,τ
u ≤

∑
U

Hu,k

a ∈ {0, 1}

λ ∈ {0, 1} (8)

where tde is the content transmission delay from the C-RAN
edge node to the user terminal.

tde = Dn,τu (tf + tw) (9)

B. PROPOSED DQN ALGORITHM
Markov Decision Process (MDP) is the most classic
in reinforcement learning A modeling approach, it is a
mathematical model of sequential decision making used to
de-model in a system the stochasticity of policies achievable
by an intelligence with the reward values returned by the
environment. When MDP is used to deal with the ofloading
decision problem of edge computing, the main objects can
be represented by a triple {S,A,R}. Among, S denotes the
whole state space of scenes, A denotes the whole action

space of agents, and R denotes the rewarding function for
actions taken by agents. And we consider the algorithmic
process within the control node as an intelligent body, which
will automatically obtain from each interaction with the
environment {S1,A1,R1, . . . .Si,Ai,Ri} sequence. As more
experience is gained, the intelligence performs better in
decision making. The definition of {S,A,R} is as follows:
S: Network state. The computing entities in the proposed

network model in this paper are endpoints, edge servers and
cloud servers. The cloud server is approximated as an infinite
resource, so there is no task queue duration in calculating
the computational latency of the cloud server. The network
state of edge computing is N terminals q1, . . . .qn with E edge
servers q1, . . . .qe the task queue.
A: Offloading action. At each instant, taking into account

the task’s individual delay threshold, an action may be taken
by the agent, so as to assign tasks for a server to make
processing.We designate the computational offloading action
as A(Ad→ẽ,Aẽ→

↼e ).
R: Reward function definition. For each action made

by the intelligence, the environment will provide a reward
automatically. Then, we can define the cumulative reward as:

Ri =

−tiln(1−
1

e
√
ti
)

(10)

G =
T∑
t=1

R(s′t , a
′
t , st+1) (11)
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The final objective is:

Max
A

E[
T∑
t=1

R(s′t , a
′
t , st+1)] (12)

The MDP problem can be modeled to a quadratic
< S,A,P,R >. In order to make the resource allocation
decisions, the agent has interactions between the environment
to acquire samples, and estimates the reward by the resulting
samples. The final goal is to solve the optimal policyπ∗. To fit
for the above analyzed problem scenario, the DDPG-based
approach is chosen to construct the decision-making strategy.
DDPG is an enhanced gradient algorithm for Policy, and is
driven from the dual network of deep Q-network (DQN). The
deterministic policy, as opposed to the random policy, has
only one action selection, simplifying the sample size during
training.

As shown in Figure 3, the deployment of the intelligent
decision algorithm comprised of two components: the
environment and the intelligent agent. The intelligent agent
responsible for offloading decisions for edge computing
is deployed on the core router, and the task information
generated on the device is handed over to the intelligent agent
for decision making. The intelligent agent is deployed with
a DDPG-based offloading algorithm for edge computing.
DDPG employs a policy πθ (s) for resource allocation
decision-making, which deterministically converts a state
into a specific action, and chooses only one action compared
to a random policy, which significantly enhances the training
convergence. Within the Actor-Critic network, the agent is
boosted by the Actor network using the Policy Gradient
method, and the action with the highest probability is
selected directly via the policy function πθ (s) at the current
state. Correspondingly, the action of Actor’s evaluation
is determined by the Critic network. The formula for
DQN-based policy gradient is:

∇θJ (πθ ) = Es,ρπ [∇θπθ (s)∇πQπ (s, a)|a = πθ (s)] (13)

As depicted in Figure 3 the DRL-based algorithm for
distributed dynamic resource optimization consists of four
components. They all have their own identical structures.
First, the agent gets the current network state through having
interaction with the environment. And it records the present
state vector, action vector, reward and next state vector
as φ(S), A, R, φ(S ′) respectively. It stores them within
the experience pool. With the purpose of gaining deeper
insights into the action space, a fixed amount of noise is
introduced to the actions chosen by Actor. Then, subsequent
to the accumulation of a specific data volume in experience
pool, a mini-batch size data block, with a specific size,
is extracted from it and fed into the Critic network to calculate
the following actions. Correspondingly, the loss function is
calculated as:

loss =
1
m

m∑
j=1

(yj − ŷj)
2 (14)

where ŷj is denoted as:

ŷj = Q(φ(Sj, aj,w) (15)

Once the loss function has been obtained, the agent then
updates all the parameters of Critic network by passing
the gradient backwards through w of the neural network.
Leveraging the loss function, Eval-Net update the parameters
of the network uses with gradient descent scheme, after
a specific episode, the latest parameters are copied from
Eval-Net to Target-Net. DDQN uses the TD difference
method to achieve the update in each step. After multiple
episodes of parameter updating, the loss function of Eval-Net
will converge to the optimal policy π after applying the
trained network parameters w. The update of the parameters
for the Actor-Critic neural network is defined as follows:

w′← τw+ (1− τ )w′ (16)

θ ′← τθ + (1− τ )θ ′ (17)

In contrast to DQN, the proposed algorithm utilizes a
step-wise update method, where only a part of the parameters
are updated each time. At the same time, aiming at the
achieving better exploration of the whole solution space, the
learning process incorporates the introduction of noise η as
well, which increases the randomness when selecting actions,
and the action can be selected via the following formula:

A = πθ (S)+ η (18)

Subsequently, the loss functions for both the Critic network
and the Actor network are represented as:

J (w) =
1
m

m∑
j=1

(yj − ŷj)
2 (19)

And the gradient of the loss function pertaining to the Actor
network is articulated in the subsequent manner.

∇θJ (πθ ) = Es,ρπ (�1 ·�2) (20)

where

�1 = ∇πQπ (s, a)|s=si,a=πθ (s) (21)

�2 = ∇θπθ (s)|s = si (22)

The DDPG-based computation offloading algorithm
encompasses two components. At first the decisions executed
by the intelligent agent resemble those of the stochastic
algorithm, and after the DDPG-based computation offloading
algorithm learns from the interaction, the offloading policy
becomes closer to the optimal. The parameters of the trained
DDPG neural network will be updated at the end of the
learning iteration.

IV. SIMULATION AND ANALYSIS
A. SETUP
In this paper, the simulation of edge environment is conducted
using the Networkx library in python, while the construction
of the proposed algorithm in this paper is achieved through
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FIGURE 4. Performance of latency of tasks with DDPG.

FIGURE 5. Performance of tasks completion rate with DDPG.

the application of tensorflow. This experiment divides the
edge servers into three layers, which includes the terminal
layer, the edge layer and the cloud layer. The network model
assumes that there are 3-7 wireless edge servers and in the
edge layer,there are 2-5 wired edge servers, and the wireless
edge servers are served in a certain range. Initially, for
each AP,there exist N=3 edge devices within the service
range, and each edge in each time slot follows the Poisson
distribution for the probability of offload requests. The
computing capacity of each edge server is set from 4GHZ to
6GHZ, the computation capacity of the cloud is 10GHZ, and
the computation capacity of each edge is set as 0.5GHZ.
The bandwidth between the edge server and terminal is set
as 100MB/S. The bandwidth between edge server and the
wireless terminal is set as 50MB/S. The bandwidth among

different edge servers is set as 300MB/S. The transmission
delay among edge servers is set as 10ms. And for link
between the edge server and the cloud server, transmission
delay is set as 30ms. It is assumed that both of the Actor
network and Critic network are set as a three-layer structure.
And the second fully connected layer is assumed to consist
of 200 neurons. The neural network for this experiment is
implemented by Tensorflow, and the hyper-parameters of
networks are given in Table 1. The specific parameters of the
compared DQN are presented in Table 2.

B. RESULTS
In this paper, firstly, we compared the convergence of this
algorithm throughout the training process, followed by a
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TABLE 1. Parameters of simulation.

TABLE 2. Parameters of DQN.

FIGURE 6. Comparison of latency performance VS. computation of mobile
edge.

comparison with the performance of other algorithms in the
identical scenario. As illustrated in Figure 4, the average
task latency drops rapidly in the first 30000 training rounds.
However, after 30000 of training rounds, the task latency
stabilizes at 13.8 ms or less. As shown in Figure 5, the
task completion rate increases significantly in the first
20000 rounds of training, and the training converges to
85%-90% after the 20000th iteration. The above results show
that the training effect slows down after 20000 iterations of
the algorithm, and the training convergence is achieved.

In the simulation, we are trying to examine the per-
formance of the proposed method with different situation.
As shown in Figure 6, the number of users and mobile edge is
fixed, and with the increase of computation of mobile edge,
the latency of tasks are decreased. As shown in Figure 6,
the DDPG algorithm is significantly better than the local
computation and server computation mode, and the DDPG is
also better than the DQN since the action space of the DQN
algorithm is discrete values. when the server computation
capacity improves, the average task latency of offloadmethod
decreases except for the terminal local computation, and

FIGURE 7. Comparison of latency performance VS. number of mobile
edge.

the local computation is limited by bandwidth and the
computation capacity of the terminal’s processor. Then, the
relationship between the number of servers and the task
latency expectation is given in Figure 7, the capacity of edge
servers and the number of users (i.e. the computation tasks)
are fixed, with the increase of the number of edge servers, the
individual task latency expectation is gradually decreasing,
limited by the bandwidth between servers. From the figure
we can see that with the increase of servers count to 8, it is
not obvious to increase to improve the effect. The effect of
the number of mobile terminals on the expected task delay
is shown as Figure 8. We observe that the DDPG-based
algorithm outperforms better the rest of the algorithms,
and the expected task delay experiences a rapid surge with
the growing number of mobile terminals. In the context
of mobile edge computing, the growing number of mobile
terminals results in a corresponding rise in task offloading
requests during each time slot, consequently amplifying the
computational burden on the edge server.

Figure 9 shows the task success rate for each algorithm.
It is evident that the DDPG-based task offloading decision

VOLUME 11, 2023 122779



X. Xu, Y. Song: Deep Reinforcement Learning-Based Optimal Computation Offloading Scheme

FIGURE 8. Comparison of latency performance VS. number of mobile VR
device.

FIGURE 9. Comparison of task completion performance with different
methods.

mechanism outperforms other mechanisms when considering
the same task queue, followed by the probability of complet-
ing the task within the specified time frame for DQN and
edge server offloading computation, and the local computing
scheme without task computation offloading has difficulty
in meeting the computation time frame requirements of the
application. The reason for this result is that the action space
of DDPG is continuous. Therefore, the action granularity
of computation offloading is more delicate and precise than
that of the DQN-based computation offloading mechanism.
The computation offloading method in which the tasks are
all executed on the edge server will waste the computation
resources of the end device and the cloud server, so although
the edge server computation offloading method can better
meet the requirements of the device application, the service
effect is still inferior to the two methods based on DRL. End
devices with weak processors will have difficulty in meeting
the computationally intensive tasks in the task queue without
using compute offloading services.

V. CONCLUSION
This paper utilizes reinforcement learning to address the
offloading decision issue concerning mobile VR in edge

computing. First, The latency model of mobile VR services
in 5G edge computing network are formulated in order to
adapt the reinforcement learning model. Then, a DDPG-
based offloading algorithm is designed for improving the
efficiency of edge resource. Finally, Plenty simulations are
conducted to verify that the proposed DDPG-based resource
offloading algoirthm can improve the performance of edge
computing offloading service.
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