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ABSTRACT The main objective of firefighters is to optimise readiness in response to hazardous events
and to minimise their collateral effects. In this context, few but growing research is investigating machine
learning algorithms to support firefighters’ work. Hence, this paper presents a decision support system to
promptly identify relevant interventions, which are those events for which the national control room needs
to alert the competent authorities because they could be dangerous for the community. The aim is to provide
firefighters useful information for the management of such interventions and of the available resources.
We define a set of new hand-crafted features specifically designed for the task, which catch both static and
dynamic characteristics of the events. Furthermore, we design a learning approach based on a cascade of
binary classifiers, which exploits the ability of most of the available classification algorithms to learn binary
functions and it takes advantage of some characteristic of the dataset. The experiments were performed in
leave-one-out on a real-world data set provided by the Italian National Fire Corps, analysing how the system
works to distinguish among relevant and not-relevant interventions, both at the time of the call and during
the events updates. The results show that machine learning-based decision support system significantly
outperform the human operator.

INDEX TERMS Firefighting operations, supervised learning approaches.

I. INTRODUCTION
The National Fire Corps (Corpo Nazionale dei Vigili del
Fuoco - CNVVF) ensures the safety of people, the integrity
of property and environment as well as it provides techni-
cal interventions, including highly specialised content and
appropriate instrumental resources. Within the institutional
competencies of the National Fire Corps, the function of
pre-eminent public interest is fire prevention. To this end, the
study, the preparation and the experimentation of standards,
measures, actions aimed at preventing the occurrence of
a hazardous event or limiting its consequences play a
fundamental role. Regardless of the nature of the event, the
requirements for successful intervention by the firefighters
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include the immediacy of the service, the proper deployment
of available resources and coordination with other law
enforcement agencies.

For the CNVVF it is essential to identify the interventions
for which the national control room must inform the
competent authorities, such as the head of the Home Affairs
Office, the Civil Protection Department, the National Police,
etc.. These events are referred to as relevant and, for instance,
they could have major consequences on the population,
on some historical or artistic buildings or even on cities’
public transportation or main pathways. Straightforwardly,
in the following we will refer to the other events as not-
relevant. In this respect, the current practice starts with the
fire corps’ operator receiving the emergency call for a given
event: he/she identifies the hazard and assesses the situation,
and then gives rise to the intervention needed to resolve
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such an event. Next, he/she labels the event as relevant
according to his/her experience and using a vademecum, i.e.,
a document listing several conditions that should be satisfied
to make relevant the event and the associated intervention.
Nevertheless, some events last several hours or days and,
in these cases, updates are collected over time: such new
pieces of information can lead the events to be assigned to
the relevant class. Finally, the national control room manages
and monitors those events received from the operators, and it
alerts the competent authorities when needed. However, this
approach leads to an excessive generation of relevant events
from the operators, that, in turn, corresponds to a high false
positive rate, assuming that the relevant class is the positive
one. Indeed, according to the data available in this work
and discussed hereinafter, this results in a sensitivity slightly
larger than 10%.

To tackle this limitation, here we present an artificial
intelligence (AI)-based decision support system (DSS) that
automatically identifies the relevant interventions, an issue
that has never been tackled in the literature to the best of our
knowledge. Nevertheless, some researchers and practitioners
have recently started investigating the use of AI to develop
services able to support firefighters’ activities in the different
phases of the emergency, such as the preparation, the
response, the recovery and the mitigation [1]. In our case, the
identification of relevant events would help the control room
to develop services for better management of the resources
and to reduce the time required to identify an appropriate
response, so that we fall within both the preparation and
the response phases. In these two areas contributions in the
literature are few but growing in number [2], [3], [4], [5],
[6], [7], [8], which are summarized in Table 1 where we
highlight the aims, the data, the learning models adopted and
the performance achieved for each contribution. In [2] and [7]
the authors forecast the time needed to reach the intervention
area using data collected in a private dataset integrated with
driving time estimates computed using distance information
retrieved from an online routing engine (e.g., Google Maps),
whereas [8] predicts both the victims’ mortality and their
need for transportation to health facilities, in order to better
allocate their available resources. Except for these three
works, all the others listed in Table 1 aim to predict the
number of interventions in a given time slot that in most of
the cases is one hour. To this end, they use data from private
datasets that feed learning models belonging to different
paradigms, such as neural networks, ensemble of classifiers
and regression approaches. With respect to this overview
of the literature, [8] could be regarded as the most similar
work compared to our contribution. However the main aim
of the authors is to predict the mortality of victims, which is
substantially different considering our definition of relevant
events, that take into account the different types of events that
could harm public safety and order.

To sum up, our work presents three main contributions:
• we develop a DSS to automatically identify rele-
vant interventions, to potentially optimise CNVVF

preparation and response to such events executing the
necessary actions;

• we define several features relying on both static and
dynamic quantities computed from the fusion of data
collected by the firefighters’ operator at the time of the
call with geographical information about the event locus
as well as with the data on the resources used for the
intervention on the field;

• we further power our DSS with Explainable AI (XAI)
to determine the features that most influenced the
predictions and provide further information to the
operators that would potentially use this system.

The rest of the paper is organised as follows: section II
illustrates the available materials and the pre-processing
methods applied. Section III defines the proposed classifi-
cation approaches and the computed features. Section IV
provides details on the experimental setup used. Finally,
sections V and VI present the results and derive some
conclusions that can guide further studies.

II. MATERIALS AND DATA PREPROCESSING
Firefighters are not only required for fires, but they also have
to deal with many types of events, such as non-conventional
risks arising from criminal acts, preparation of national and
territorial civil defence plans and intervention in case of
landslides, floods or other public disasters.

The National Fire Corps provided two datasets: (i) the
CNVVF dataset, which contains a random extraction of
2264 interventions carried out in the years 2016 and 2017;
(ii) the SMS dataset, which contains 7554 messages sent for
any purpose by the National Fire Corps control room to the
local authorities.

This means that the latter repository contains both mes-
sages used for generic communication aims and messages
used to inform about relevant interventions where, here, the
term relevant is used according to the definition introduced
in section I. Table 2 shows the 25 attributes available in the
CNVVF dataset with the rate of missing values, which are
imputed as presented in the supplementary material.1

In order to automatically identify relevant interventions
we implement an algorithm that links messages of the SMS
dataset to the interventions in the CNVVF dataset, which
is discussed with more detail in the supplementary material
as its presentation is not central with respect to the scope
of this work. In summary, we first pre-filter each message
in the SMS dataset by looking for candidate records in the
CNVVF dataset that match according to different criteria.
For instance, such criteria compare the intervention time slot
in the CNVVF dataset with the time the emergency team
initiated the intervention in the SMS dataset, or it matches
the description keywords in the CNVVF dataset with the
words used in the SMS messages. If the set of candidate
records of a message is empty, we discard this message since

1As shown in Supplementary Table 1, the original dataset accounted for
34 attributes, but 9 are neglected since they are missing for almost all the
samples or they contain redundant information.
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TABLE 1. Summary of related work dealing with AI-based system to better manage the resources and to reduce the time required to identify an
appropriate response. The symbol # denotes the number of interventions. MAE and RMSE stand for mean absolute error and root mean square error,
respectively, while min and h are minutes and hours.

TABLE 2. List of attributes available in the CNVVF dataset listed by category, showing also their type and rate of missing values. The date timestamp
refers to a structure like DD/MM/YYYY, just as the time timestamp to HH:MM.

it refers to an intervention not included in the CNVVF dataset.
Nevertheless, searching for candidate records may return a

list of samples from the CNVVF dataset, but only one has to
be selected. To address this issue, for each SMS message and
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for each of its candidate records, we compute a score based
on the number and type of information that match between
them. Straightforwardly, we assign the SMS message to the
candidate record from the CNVVF dataset with the largest
score, excluding those with intermediate scores, and the
selected record in the CNVVF dataset is assigned to the
relevant class. Furthermore, we discard the SMS messages
if all its candidate interventions get a zero score. Finally,
we assign to the not-relevant class all the interventions in
CNVVF dataset not assigned to any SMS message.

As already mentioned in section I, there exist interventions
in the CNVVF dataset originally labelled as relevant by
the operator receiving the emergency call which have
not been followed by an SMS message. Although they
are assigned to the not-relevant class, we mark them as
interesting, effectively introducing a third class.We deem that
this could be helpful from a machine learning perspective
because relevant and interesting interventions have similar
characteristics that not only misled the human operator but
could make overlap the samples in the feature space, thus
making more difficult the training process. The introduction
of this artificial and additional class should allow themodel to
separately learn the distinctive features of these interventions.
These assumptions are further confirmed by the obtained
results, as it will be shown in section V.
At the end of the process described in this section we got

708, 360 and 1196 interventions in the relevant, interesting
and not-relevant classes, respectively. When treated as a
binary test, as humans would do, this means that we have
708 and 1556 relevant and not-relevant events, respectively.

III. METHODS
The proposed learning approach leverages two different types
of features, referred to as static and dynamic. The former
do not change with the evolution of the event, even if the
intervention lasts several hours or days, as described in
section I. The latter are computed at each update of the
intervention, capturing its temporal evolution.

While these descriptors are presented in details in
section III-B, let us now introduce the following notation:

• m is the number of training samples;
• u is the number of static features;
• v is the number of dynamic features;
• ltr is the matrix m×3 containing the ground truth labels
of the training samples according to a 1-of-N coding;

• Xs,tr is a matrix m × u including the static features,
as denoted by the apex s. Furthermore the apex tr stands
for the training set and, straightforwardly, when it is
replaced by te denotes the test sample, so that Xs,te is
a 1 × u row vector;

• n is the number of updates;
• Xd,tr

i is a matrix m × v including the dynamic features,
as denoted by the apex d , with i ∈ {0, . . . , n − 1}
denoting the i-th update. Similarly to before, Xd,te

i
denotes the dynamic features of a test sample at the
i-th update and its size is 1 × v;

• πππ tr
i is a matrix m × 3, where 3 comes from having

considered three classes (i.e. not-relevant, interesting
and relevant). For i = 0 it is given by πππ tr

0 = Jm,1 ptr0 ,
where Jm,1 is the all-ones matrix of size m×1 and ptr0 is
the vector 1 × 3 of prior probabilities of the training
set. For i ∈ {1, . . . , n − 1}, it is defined by recursion as
πππ tr
i = πππ tr

i−1+ytri−1, where y
tr
i is matrixm×3 containing

the outputs of the learnerMi for all the training samples.
Similarly to before, the use of apex te refers to a test
sample;

• the learner Mi, already mentioned, is set up as depicted
in panels B or C of Fig. 1, which will be detailed later.
During the training process, its inputs are the labels ltr

andXtr
i = [Xs,tr ,Xd,tr

i ,πππ tr
i ]; the latter is the matrixm×

(u+ v+3) returned by the Shared Representation Layer
block (SRL) where the features are concatenated by an
early fusion approach. In the test phase, the input of Mi
is only Xte

i provided by the SRL block;
• yten−1 is the vector 1 × 3 containing the output of the
last learner, so that the final classification for a test
sample is given by the max membership rule, i.e. Ote =

argmax yten−1.

On this basis, Fig. 1 shows the proposed approach. Panel
A represents the training and test phase, which consists of
a chain of n learners Mi. In the training phase, each Mi is
trained to predict the class labels of the training samples
using past and current knowledge about the evolution of
the interventions. Such knowledge is given by the shared
representation provided by the SRL block, which includes
static and dynamic features as well as πππ tr

i , a quantity that
takes into account the past predictions of previous learners
in the chain since an intervention can be assigned to different
classes during its evolution.
In the test phase, the descriptors of each intervention feed

all the learners of the chain, and the final label is given
by the already mentioned quantity Ote provided by Mn−1.
By construction, this approach takes into account all the
information collected during the updates of the intervention
as in the training phase.

A. ON THE STRUCTURE OF MI
A first straightforward way to build Mi should consist of a
binary classifier trained to distinguish between not-relevant
and relevant classes, but, as mentioned at the end of section II,
the introduction of a third virtual class may help the learning
process. In this respect, Panel B of Fig. 1 shows that we appeal
to a single multiclass classifier, whilst Panel C shows thatMi
can be also organized in a cascade of binary classifiers. This
approach is two-fold motivated: (i) in general discriminating
between two classes is much easier than simultaneously
distinguishing amongmore classes [9] and, in our context, the
similarities between relevant and interesting samples could
be better addressed by a dedicated classifier that follows a
first one separating the not-relevant class from all the other
instances; (ii) most of the available classification algorithms
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FIGURE 1. Panel A shows the classification pipeline of the method proposed. Panel B and C present the two classification approaches
employed in the model train and test blocks of panel A.

are best suited to learn binary functions [10]. Note also that
in the case of the cascade the quantity ytr/tei is given by the
average of the outputs provided by the two classifiers if the
prediction is relevant or interesting, otherwise it corresponds
with the output of the first classifier. When comparing the
results with those of the operator, however, the predictions
are regrouped by merging the interesting samples with the
not-relevant ones (see Fig. 5).

B. FEATURE COMPUTATION
As already mentioned at the beginning of the section, the
features set is composed of static descriptors (Table 3), which
do not change with the evolution of the event, and dynamic
descriptors (Table 4), which do change and their computation
has to be repeated for each of the updates considered. Table 5
shows an example of features computation for a relevant
sample, starting from the CNVVF attributes to the features
vector.

For the computation of the static features we both extract
values from the CNVVF dataset records and employ data
from other sources. In particular: we consider that the month
and the hour of the daymay influence the type of intervention
required and possibly also how it evolves; the description
attribute gives an indication of the type of event in progress;
finally, the time of first departure may implicitly indicate the
urgency of the intervention and the availability of resources
at the time of the event. Furthermore, in order to have a
statistical description of the geographical characteristics of
the territory, we retrieve a publicly available dataset from

ISTAT, the National Institute of Statistics, containing the five
characteristics marked by an * in Table 3 [11].

Let us now turn our attention to the dynamic descriptors
(Table 4). We identify four characteristics that represent the
urgency and gravity of the event: the update number and
the event duration make it possible to distinguish an event
of short duration and with a reduced number of resources
needed to deal with it from one that is protracted in time;
the average update time may suggest the urgency of having
more resources involved to address the event; finally, the
emergency vehicles employed may indicate specific types of
event. As an example of a dynamic feature computation, let’s
delve into this last descriptor: Table 5 the upper part reports
that for each update we have two different types of vehicles
employed for the rescue, i.e., the helicopter and the van for
diving unit (column 4, rows 4-7). In the lower part of the same
table there are the computed values for this descriptor, shown
in two columns, one per type (columns 5-6, last four rows).
The number reported in each row is computed considering
the number of vehicles of a specific type that are out for the
intervention at each update: for instance, in this intervention
we have only one helicopter that is employed from the first
update on, so we have 1 in each row of the corresponding
column. Different it is the case of the van for diving unit:
from the second update on, there is one more vehicle of
this type that is employed for the rescue, so this number is
incremented to finally reach 3, which is the total number of
van for diving units that are out for this intervention in the last
update.
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TABLE 3. Descriptions of the static descriptors. Those marked with * are retrieved from the ISTAT dataset [11]. Each column of the dichotomous variables
may assume a Boolean value.

In addition, as already depicted at the beginning of
the section, to transfer the information about past pre-
dictions along the chain, we design the features π

tr/te
i ,

named as assignment probabilities, initialized with the a
priori probabilities of the three classes and updated each
time summing with the probabilities returned by the i-th
classifiers ytr/tei .

It is worth noting that description and emergency vehicles
can assume a high number of different values, 65 and
75 respectively. While the latter is a list containing very
heterogeneous vehicles that should not be grouped, in the
former we identify redundant descriptions of the intervention
reasons. This suggests we reduce such a high granularity by
identifying 20 super-descriptions that group the 65 reasons
for the interventions.

The data often do not have a suitable format to support
the learning model, as it happens in our case. For this
reason, we standardise to zero mean and unit variance the
numerical features,2 whilst we dichotomise the categorical
ones. It should be noted that a simple dichotomisation does
not allow us to distinguish events where more than one
vehicle of the same type is involved. Therefore, instead of
applying a pure one-hot-encoding, we report the number
of vehicles involved in each category for these features.
This information is shown in the last two columns of
Tables 3 and 4.

IV. EXPERIMENTAL SETUP
The experiments are performed using the leave-one-out cross
validation paradigm and we measure the performance by
means of the following performance metrics: the accuracy,
the recall, the precision and the F1-score.

Next sections explain how the depth of the chain is chosen
and detail the classifiers employed, already mentioned in
sections III and III-A.

A. ON THE CHAIN DEPTH
An important parameter of the proposed approach is the depth
n of the classification chain. In order to identify the proper

2This operation is performed on the test set based on the parameters
computed using the training set.

FIGURE 2. The figure shows the mean and standard deviation of the
euclidean distances of the performance obtained in the relevant class
recognition task of all possible combinations of classifiers and
classification approaches from the optimum point in the recall-precision
curve.

value for the task at hand we measure on a validation set
drawn from the training set in 10-fold cross validation the
performance of the approach for different updates in terms
of recall and precision for n ∈ {0, . . . , 9},3 and using three
base classifiers belonging to different paradigms, which are
described in section IV-B, for both the multiclass and the
cascading approaches. For each depth value of the chain,
in the recall-precision plane we estimate the distance of the
measured performance scores from (1, 1), which is the point
corresponding to a perfect classification. This process enables
us to plot a curve of how this distance varies with the number
of updates considered, searching for a minimum: indeed
the lower the distance from the optimum (1,1), the better
the performance. To determine n we normalize the y-values
of the curves in the [0, 1] interval, and then we compute
the mean and standard deviation of the 6 combinations of
classifiers and classification approaches, as depicted in Fig. 2.
As the update that reaches the lowest mean value is the sixth,
we select it as the depth of the chain.

B. LEARNING PARADIGMS
We investigate learning paradigms belonging to different
approaches. In particular, we use a support vector machine

3The upper extreme can be eventually set to a different value, but in our
case the preliminary analysis of the data suggested us to not proceed further.
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TABLE 4. Descriptions of the dynamic descriptors.Each column of the dichotomous variables may assume a Boolean value.

TABLE 5. The table reports an example of features computation for a relevant sample at its different updates: the upper-most part of the table shows the
attributes of the CNVVF dataset divided into static and dynamic; in the middle part, it displays the message that was linked to the intervention. Finally, the
bottom-most part shows the features vectors, once again divided into static and dynamic, for each single update obtained from the attributes given above.

(SVM) as a kernel machine, a random forest (RF) as an
ensemble of tree classifiers and a Multilayer Perceptron
(MLP) as a neural architecture. We use the default parameters
values for all the classifiers because we are not interested
in fine-tuning the models. Indeed, [12] empirically observes
that in many cases the use of tuned parameters cannot
significantly outperform the default values of a classifier
suggested in the literature.

The support vector machine is built using the SVC model
from the sklearn Python package [13]. It uses a radial basis
function (RBF) kernel to deal with a nonlinear classification
task, and a one-vs-one approach to tackle the multiclass
classification problem, when needed.

The random forest is built using the RandomForestClas-
sifier model from the sklearn Python package [13], its trees
are built using the entropy as impurity measure and with a
maximum depth of 10.

The multilayer perceptron is built using the sequential
model from the Keras module, Python TensorFlow backend
[14]. In its design we tried different values of layers and
neurons per layer. Its final structure consists of five layers
with 150, 100, 50, 30 neurons and in the last layer a number of
neurons equal to the number of classes under consideration.

Their activation functions are Sigmoid (layers I, II and IV),
ReLU (layer III), Softmax (layer V). The network is trained
up to 100 epochs with Adam optimiser, with a learning rate
of 0.001, with categorical cross-entropy as loss function and
an early-stopping criterion based on validation loss with a
patience of 30 epochs. During training, 10% of the training
data are used for validation.4

V. RESULTS
We now present the results achieved by the multiclass and
the cascading approaches presented in section III and shown
in Fig. 1. As already discussed in section IV-A, note that we
analyze the approach by considering an increasing number of
updates, up to 6.

The first row of Table 6 reports the performance computed
considering the labels assigned by the firefighters’ operators
using the vademecum when he/she received the emergency
call. It is worth noticing that in this scenario we regard as
true positive the interventions marked as relevant that also
received an SMS (so the relevant class for the proposed DSS),
false positive the interventions marked as relevant that did not

4The code implemented in this work is available at: https://github.
com/cosbidev/VVF_project
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TABLE 6. Recognition results of the human operator (row 1) and of the
proposed method, both for the multiclass (rows 2-4) and cascading
(rows 5-7) approaches at the sixth update.

FIGURE 3. Rank of the various experiments computed with a multiple
comparison test.

receive the SMS (so the interesting class for the proposed
DSS), false negative the interventions that did receive an
SMS and weren’t marked as relevant by the operator and true
negative all the rest.

Rows from 2 to 7 of the same table report the recognition
results of the proposed approaches, both for the multiclass
and the cascade, at the sixth update. Such performance show
that, independently from the classifier employed, the pro-
posed method has accuracies larger than the human operator.
This particularly impacts the recognition performance of
the relevant class (i.e. the recall) which are more than four
times that of the operator. Similar considerations hold for the
precision and, consequently, for the F1-score.

Let us now compare the results achieved by the different
implementations of our proposal (rows 2-7 in Table 6).
We notice that no one clearly outperforms the others, whilst
the RF-based experiments show higher or at least more
balanced performance, reflecting larger F1 values. This may
be due to the ability of tree-based models to directly learn
from both quantitative and categorical data, whereas the SVM
and the MLP need for an encoding mechanism, which could
bias the learning process.

To evaluate the statistical difference between the proposed
methods, we perform a multiple comparison test using
the statistics returned by Friedman’s test performed on
the F1-scores of the different experiments. Fig. 3 reports the
ranks achieved by the different experiments where, on the
one hand, we observe again that RF-based experiments get
better performance and, on the other hand, multiclass SVM
and multiclass MLP return F1-score statistically lower and
different from the cascading RF (p < 0.05).
Let us now discuss how performance vary with the number

of updates. In this respect, Fig. 4 shows that, in most

FIGURE 4. F1-scores of the tested methods varying the number of
updates. Continuous and dashed lines refer to the multiclass and the
cascading approaches, respectively.

FIGURE 5. Confusion matrix of the RF-based cascading approach. Red
and green cells represent true negatives and true positives of the binary
classification scenario, respectively. Indeed, not-relevant and interesting
must collapse in a single class, i.e., the negative one. Yellow and purple
cells correspond to false positive and false negative classifications,
respectively.

of the cases, the F1-score increases with the number of
updates. Continuous and dashed curves reveal that, except
for the multiclass MLP, this happens whether we use a
singlemulticlass classifier or the cascade of binary classifiers.
As further proof of the fact that the cascading RF should
be preferred to the others, in Fig. 4 we observe that the
corresponding curve (dashed blue) reaches higher values than
others at each update.

As an additional test, we also verify that the proposed
approaches, either multiclass or cascading, perform better
than a pure binary one. Indeed, a binary RF reaches an
F1-score equal to 56.50%, which is significantly lower than
the cascading RF (Wilcoxon rank-sum test, p < 0.05).
This suggests that the introduction of the interesting class
does bring benefits in recognizing the class of relevant
interventions. Note that some errors made in the classification
of interesting interventions are tolerable since they are
operators’ mistakes. In fact, for the sake of completeness,
Fig. 5 shows the confusion matrix of the RF-based cascading
approach highlighting the results for the three classes.
To compute the binary performance shown in Table 6 let us
recall that interesting and not-relevant collapse in a single
class, i.e., the negative one, as we highlighted in Fig. 5 using
the same colour.

Given the imbalance of a-priori class probabilities in our
dataset, we also attempt to introduce class weights in the RF,
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FIGURE 6. Ablation test results in term of F1-score, reported per class.

which is a standard approach to address this issue. We set
the weights inversely proportional to class frequency in the
training data. Note also that we consider only the RF as it
is the model providing the best result. The model therefore
becomes more liberal, as it labels more samples as positive.
As usually happens in these situations [15], [16], this reflects
in a larger recall (59.89%) and in a smaller specificity that,
in turn, leads to a smaller accuracy (74.82%). However as the
main limitation of the current vademecum-based approach
is the large number of false positives, in the rest of this
discussion we prefer to deepen the results attained by the
more conservative configuration reported in Table 6, which
does not adopt the class weights. We are also aware that
there exists a large literature on more advanced methods to
address class imbalance learning [15], but we deem that this
investigation is out of the scope of this work.

It is worth noting that all the results reported so far
are obtained using the default parameters of the classifiers,
as reported in section IV-B. Although we are not interested
in fine-tuning the models according to [12], for the sake
of completeness we investigate its utility on this dataset.
To this end, we performed several tests changing the
hyperparameters of the best model, i.e., the number of
estimators (50 − 100 − 150), the impurity measure (entropy
and Gini) and the class weights (balanced or not) of
the cascading RF, which is the best approach according
to Table 6. Fine-tuning results agree with [12] and therefore
confirm our initial hypothesis since the performance between

the model with the default and the tuned parameters are not
statistically different (p > 0.1).

As a further validation, the National Fire Corps provided
us with another extraction of 265 samples. The labelling
algorithm assigns 137 of them to the not-relevant class, 48 to
the interesting one and the other 80 to the relevant class.
Straightforwardly, when treated as a binary task, we have
185 and 80 not-relevant and relevant samples, respectively.
The cascading RF trained on the dataset described in
section III-B, when tested on this additional data, yields
results consistent with those shown in Table 6. Indeed,
it achieves an F1-score equal to 61%, whilst the human
operator reaches 9%.

We also perform an ablation test to examine the effect on
the predictions of the three assignment probabilities π tr/te

(Table 4). To this end Fig. 6 shows that the F1-score obtained
using all the features is larger than the corresponding value
returned in the ablation test, both in the recognition of the
relevant class and in the average recognition of all classes.
We also perform aWilcoxon rank-sum test revealing that such
performance are statistically different (p < 0.001).

A. EXPLAINING FEATURES CONTRIBUTION
In recent years, besides developing learning algorithms able
to cope with tasks of various natures, there has been a
growing interest in explaining the predictions made by
such models. Therefore several techniques that estimate the
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FIGURE 7. SHAP summary plots of features’ contributions in the RF-based cascading approach. Random
forest A is the first in the cascade and it performs the classification between not-relevant and
interesting/relevant, whilst random forest B is the second one and it distinguishes between interesting and
relevant samples (as depicted in panel C of Fig. 1).

feature contributions to the model output are becoming more
widespread.

Among the various approaches, we use the SHAP method:
it is based on Shapley values, used in game theory to estimate
the contribution of each player to the final payout [17]. With
respect to the cascading RF, Fig. 7 shows the SHAP summary

plots of the two learners used in the cascade, where the order
of the features is based on their importance to distinguish the
different types of interventions, i.e., the higher the position
of a feature in the plot, the more important it is. Moreover,
in order to understand the graphs, the colour of each dot
indicates the value assumed by the sample according to
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the colour heatmap, whereas the feature contribution to the
prediction of a specific class is represented by the extension
of the points in a specific direction along the x-axis, i.e.
the more the points stretch to the right the more the feature
influences the prediction on the relevant class, on the contrary
the more the points stretch towards the left the more the
feature indicates the not-relevant class. For instance, in the
first of the two graphs, high values of the feature assignment
probabilities - not-relevant indicate the not-relevant class,
whereas low values drive the prediction towards the relevant
class.

The visual inspection of such plots suggests some obser-
vations: first, in both panels, we note that the assignment
probabilities are the main features that allow the classifiers
to distinguish the interventions being the topmost in the
plots. Next, for classifier A, i.e., the first in the cascade
distinguishing the not-relevant class from the other two,
we notice that the temporal features event duration and
update number have a great impact on the output of the
model: this happens because relevant and interesting inter-
ventions are characterized by longer duration and a higher
number of updates than the not-relevant ones. In classifier B
we observe that relevant interventions are still distinguished
by long duration, but with fewer updates compared to
interesting ones. Further to this, the XAI analysis proves
the hypothesis used to design the features and reported in
section III-B: indeed, relevant interventions are characterized
by low values of time of first departure compared to not-
relevant interventions, and, being more prolonged over time,
by high values of average update time. Finally, the XAI
allows us to find out and understand which are some of
the descriptions that misled the operator when assigning the
event to the relevant class: for instance, looking at the plot
for random forest A, the description people rescue seems
to indicate a possible relevant intervention, but looking at
the second graph (random forest B), we notice that this
description is usually associated with interventions which are
not truly relevant.

VI. CONCLUSION
A successful firefighters’ intervention requires it to be rapid
and appropriate to the event. There are a few works in the
literature that use machine learning techniques to support
firefighters’ operations, and most of them aim at speeding up
the intervention rather thanmaking it appropriate to the event.

Within all the support requests arriving at the emergency
department, the National Fire Corps needs to identify those
that are related to relevant interventions to better allocate
the available resources and alert the competent authorities.
To this goal, we design a DSS that leverages an ad-hoc
feature set, encompassing information collected during the
emergency calls integrated with other information resources.
The challenging problem we face is modelled as a binary
task, which we decompose into a cascade of two dichotomies,
a solution that is possible by introducing a third ‘‘virtual’’
class that stems from the analysis of the problem. Further

to this, we boost our analysis leveraging the temporal
evolution of each intervention with a chain architecture.
Finally, we uncover the feature impact on the model output
with explainability-based analysis.

The model performance significantly outperform the
operators and show to be promising, suggesting that machine
learning can help in automatically distinguishing relevant
interventions.

Nevertheless we deem there is room for future work to
improve the recognition performance of the relevant class,
introducing for instance an ad-hoc feature selection stage
or designing other features, which may take into account
information about structures and activities around the event
as well as data about past interventions at the same time or in
surrounding locations.

Moreover, to further investigate the temporal evolution
of interventions, some specific techniques could be used,
such as Long Short Term Memory Neural Networks or
Finite State Machines, as they might be able to extrapolate
time-related information useful for the classification task.
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