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ABSTRACT Sentiment classification is a valuable application of natural language processing that has seen
wide usage in optimizing business processes. This paper explores a novel implementation of sentiment
analysis using the Variational Quantum Algorithms (VQA) framework. As ansatz choice determines model
performance in VQA, this paper proposes an alternative ansatz for the sentiment classification task in
quantum representation. Specifically, it builds upon previous work in quantum sentiment classification by
proposing an alternative ansatz to the Instantaneous Quantum Polytime ansatz, entitled Simple Sentiment
Analysis (SimpleSA) ansatz. A key feature of the SimpleSA ansatz is the decision to neglect noun
parameterization. The proposed SimpleSA has less complexity than the other ansätze in terms of the number
of parameters and the number of gates. Moreover, experimental results show that the SimpleSA ansatz
with H-CNOT-Rz-H compound block construction outperforms the Instantaneous Quantum Polytime (IQP)
ansatz at 85.00% accuracy. Furthermore, SimpleSA optimization converges 20.89% faster than Instantaneous
Quantum Polytime (IQP) for the Simultaneous Perturbation Stochastic Approximation (SPSA) method with
130 iterations. The proposed work is useful for applications of quantum computers for sentiment analyses
and classifications.

INDEX TERMS Quantum natural language processing, quantummachine learning, sentiment classification,
ansatz, quantum circuit.

I. INTRODUCTION
Recent breakthroughs in quantum computing technology
have expanded the scope of multiple disciplines beyond what
was previously possible. Among the fields impacted is natural
language processing, or NLP. Compared to other branches
of machine learning, NLP has seen significant developments
with the advent of quantum machine learning (QML), giving
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rise to the field of quantum natural language processing,
or QNLP.

The foundations for QNLP were first established in
[1]. The paper describes an equivalence between pregroup
grammars and diagrams for quantum processes, formulated in
a representation dubbed ‘‘DisCoCat’’. This was understood in
[1] as a distributional and compositional model of meaning.
The model preserves the syntax of a sentence throughout
diagram manipulation and, as such, allows the grammatical
properties of sentences to be reflected when calculating a
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FIGURE 1. Diagram of VQA scheme.

sentence’s meaning. Such a model was unorthodox around
the late 2000s when most language models employed a bag-
of-words approach. Unfortunately, around the time the paper
was published, there were no quantum computers capable
of simulating the proposed model, which would only arrive
almost a decade later.

Since 2018, there have been significant developments in
the field of quantum computing. Now, quantum computer
technology has entered the ‘‘NISQ’’ era. NISQ stands
for Noisy Intermediate-Scale Quantum, where quantum
hardware is in the fifty to several hundred qubits range
and circuit operations are noisy [2]. Indeed, this class of
quantum hardware has been used to implement QMLmodels.
In order to mitigate the drawbacks of NISQ-era computers,
a hybrid quantum-classical approach to quantum machine
learning was introduced, known as Variational Quantum
Algorithms, or VQA [3]. Essentially, this framework uses
quantum computers to evaluate parameterized quantum
circuits (PQCs), then approximates the necessary changes
in circuit parameter values using a classical computation
method until the model converges. Fig. 1 depicts the general
VQA framework, adapted from [3].

As a product of quantum computational development
within the past four years, research in the field of QNLP
has advanced considerably. The feasibility of implementing
NLP using quantum computers was analyzed in [4], which
compiles the first full-stack pipeline for DisCoCat QNLP.
The paper specifies the stages of data transformation as
sentences are converted into string diagrams and quantum
circuits. Furthermore, the work improves the string diagram
simplification method offered in [5], which is used as
groundwork for further QNLP implementation. Then, in [6],
a QNLP pipeline based on the principles of VQA was
implemented, specifying the data transformation and problem
modeling techniques based on the calculus rules described
in [7]. Eventually, the open-source Python library, Lambeq
[6], was published for accessible DisCoCat QNLP use. The
pipeline offered in the work details the stages of transforming

sentences as an input into the quantum machine learning
model’s prediction as its output. It utilizes the DisCoCat
model proposed in [1] and builds trainable quantum circuits
based on the string diagram representation, using a class of
algorithms known as ansätze.

An ansatz, in the context of quantum computing, is a
subroutine or algorithm that dictates how a parameterized
quantum circuit is generated from a problem model [8].
In the context of DisCoCat QNLP, the ansatz determines how
specific word boxes of string diagrams are transcribed to
specific arrangements of quantum circuit gates [6].

The general QNLP pipeline as proposed in [6] is depicted
in Fig. 2. In addition to seminal papers that establish
the fundamental theories, other researchers have applied
QNLP theory to real-life use cases within natural language
processing. Among them is [9], [10], and [11], which uses the
QNLP framework previously described in order to perform
sentiment analysis.

Sentiment analysis is a task within the field of NLP that
aims to analyze the opinions or sentiments of a speaker
through the use of sentences in natural language [12].
In the industry, sentiment analysis is regularly done to
determine public opinion on a product or service offered by a
company [13]. In this work, the scope of sentiment analysis
is limited to sentence-level binary sentiment classification.
While multi-class sentiment classification is possible with
DisCoCat QNLP as shown in [14], this research opts for a
simplified model in order to streamline the ansatz design
process. That is, binary sentiment classification allows the
output register to be represented by a single qubit; positive
or negative sentiment is assigned to the computational basis
states |0⟩ and |1⟩. Such is also done in [9], [10], and [11].
In [9], sentiment classification is performed by measuring

a sentence’s PQC bit string output and interpreting it as
the model’s prediction. The paper integrates the DisCoCat
model to represent sentences in string diagrams and uses IQP
ansatz to transcribe the diagrams into PQCs. The PQCs are
optimized classically using SPSA. This is done to speed up
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FIGURE 2. QNLP pipeline diagram [6].

computation. Even so, the optimization process still took an
extensive amount of time. On a simplified artificial dataset,
training and classification required an order of 2.5 hours
to complete. Additionally, the performance of the model
still needs to be improved as the model achieved at most
81.67% on the test set. Therefore, this research aims to find
an alternative hybrid quantum-classical machine learning
method for sentiment analysis with better performance.
In particular, this research is intended as a direct comparison
of performance to the model offered in [9]. Specifically,
this research implements an alternative ansatz that is better
tailored for sentiment classification.

This study aims to address the limitations of the
IQP ansatz for sentiment analysis by exploring an alternative
ansatz, referred to as the SimpleSA ansatz. Unlike the IQP
ansatz, SimpleSA does not parameterize noun types into rota-
tion gates. The study seeks to leverage this alternative ansatz
within the VQA framework to enhance the performance
of sentiment analysis. Utilizing a hybrid quantum-classical
machine learning approach, it aims to achieve better accuracy
and efficiency compared to the existing model.

The main contributions of this paper are the following:

1) We explore a novel implementation of sentiment anal-
ysis for use in quantum natural language processing
(QNLP) using the Variational Quantum Algorithms
(VQA) framework.

2) We propose a novel ansatz called Simple Sentiment
Analysis (SimpleSA).

3) We elaborate the detailed pipeline of Simple Sentiment
Analysis (SimpleSA) which consists of sentence-
to-diagram conversion, diagram-to-circuit conversion,
optimization, and metric measurement.

4) We calculate the derivation of thewave function and the
complexity of the proposed SimpleSA ansatz in term
of number of parameters and gates. Moreover, we also
analyze the accuracy of the proposed SimpleSA ansatz.

5) Finally, our proposed method (SimpleSA ansatz) with
H-CNOT-Rz-H compound block construction outper-
forms IQP ansatz at 85.00% accuracy. Furthermore,
SimpleSA optimization converges 20.89% faster than
IQP for SPSA with 130 iterations.

The remainder of this paper is organized as follows: First,
we provide the preliminaries on sentiment classification,

language representation, and hybrid quantum-classical
machine learning approach in Section II before describing
our proposed method in Section III. Next, we present
our experimental results and provide relevant discussion
in Section IV. Lastly, Section V concludes the paper and
describes possible future work.

II. PRELIMINARIES
In this section, we provide the essential theoretical back-
ground to aid the readers in understanding our proposed
methods. In particular, we elaborate on three aspects:
classical sentiment classification, language representation for
use in quantum natural language processing, and hybrid
quantum-classical machine learning.

A. CLASSICAL SENTIMENT CLASSIFICATION
Sentiment analysis (SA) is a branch of NLP that analyzes the
opinion, feeling, or sentiment held by a speaker towards some
object or idea communicated through a sentence in natural
language, as described in [12]. Generally, the sentiment is
labeled positive, neutral, negative, or some value in between.
A use-case where sentiment analysis is commonly used
is in determining public opinion towards some product or
service offered, as explained in [13]. Examples of this
include customer reviews for some electronic product or
restaurant, film or book reviews, user comments on a
social media platform, or the general sentiment of a news
article.

Sentiment classification is done on the sentence level,
where every sentence has a binary sentiment (positive or
negative). In classical machine learning, sentiment analysis
can be performed through several methods. One of the
simplest methods is the Naïve Bayes algorithm [15]. Other
than for sentiment analysis, this algorithm is commonly
used for classification tasks on the sentence level that
depend on its lexical composition, such as spam detection
and political bias classification [13]. The Naïve Bayes
algorithm calculates the likelihood of each word appearing
in a positive-sentiment or negative-sentiment sentence within
the training corpus, then determines the sentiment of a
new sentence based on the likelihood of its constituent
words [16]. Aside from Naïve Bayes, methods based on
artificial neural networks are also commonly employed in
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sentiment analysis. Conventionally, this method performs
pre-processing on eachword in the sentiment into a numerical
word embedding form, such as word2vec [17]. The encoding
is then used as the input of a neural network. It has been
thoroughly reviewed that among neural network models,
RNN is most suitable for sentiment analysis [18], [19].
It was shown that RNN has the highest metrics and
reliability over several diverse datasets. That is due to
the recurrent mechanism inherent in RNNs that propagate
information sequentially, which is suitable for processing
sentences [19].

However, neither method accounts for the grammatical
structure of the sentence. Naïve Bayes is inherently a bag-
of-words model, while RNNs process inputs sequentially in
pairs or windows of larger size. Meanwhile, [20] acknowl-
edges that fine-grained sentiment analysis takes grammatical
structure into account. Upon considering grammatical struc-
ture, [21] discovered that each part of speech has varying sig-
nificance toward the sentiment of a sentence. The paper ranks
each part of speech according to importance or relevance.
They identify nouns as having the least importance, while
verbs and adjectives as having the highest importance. The
distinguishing of part-of-speech contribution may improve
model performance within sentiment analysis, as well as
provide a possible heuristic for rewriting.

B. LANGUAGE REPRESENTATION FOR QUANTUM
NATURAL LANGUAGE PROCESSING
One of the frameworks for natural language processing is
the DisCoCat model, derived from the terms distributional,
compositional, and categorical. The model stems from [1],
which utilizes Lambeq calculus and categorical grammar to
represent sentences and defines a mapping from pregroup
types into a distributional and a numerical in the form of
vector space. As such, this model reflects the compositional
property of sentences, as the semantic evaluation of a
sentence depends on the way its constituent phrases or
words are composed. The exact pregroup types belonging
to the category may vary. However, most commonly, there
exists at least two grammatical types: n, which represents
the noun type, and s, which represents the sentence type.
Sentences represented in DisCoCat are depicted using string
diagrams, which may be manipulated using a set of graphical
calculus rules. As such, it is possible to manipulate and
rewrite string diagrams while ensuring the meaning of the
sentence is conserved. Interpretation of the diagrams is
performed by considering the information propagated from
word boxes throughout strings to other word boxes, where
the meaning value of a word is evaluated at each word box,
and the meaning value of a sentence is evaluated at the open
terminating s string [1].
DisCoCat is used as the language representation of

the QNLP pipeline in [4] and [6]. DisCoCat has been
used for question-answering [22], language translation [23],
relative pronoun detection [24], and sentiment classification
[9], [10], [11].

TABLE 1. List of quantum gates used in the experiment.

C. QUANTUM CIRCUITS
A universal quantum computer (UQC), also known as a
quantum Turing machine (QTM), is a quantum-mechanics-
based computational network consisting of connected qubits.
The foundations of this paradigm lie in the universal Turing
machine concept that is applied in modern conventional
computers. In a universal quantum computer, qubits are
assembled in a quantum circuit, where circuit wires propagate
information in the form of quantum states, and states
are transformed or manipulated using quantum gates. The
resulting quantum states of the circuit are then measured
in order to determine the result of the intended calculation
[25], [26].
A gate is a matrix operation performed on a qubit to

transform the state of a quantum circuit. A defining property
of a qubit gate is its reversibility, i.e., there exists some other
matrix operation that is capable of returning the state of a
quantum circuit to its input state after undergoing some qubit
gates [25].

In this paper, quantum circuits are composed using an array
of quantum gates. In particular, we employ the Hadamard
gate (H ), Pauli-X gate (X ), Pauli-Z gate (Z ), X-rotation
gate (Rx), Z-rotation gate (Rz), controlled Pauli-X gate or
controlled-NOT gate (CNOT ), controlled X-rotation gate
(CRx), and controlled Z-rotation gate (CRz). Their definitions
stem from [27] reconciled with discopy’s quantum gate
implementations. The details of each gate’s symbol and the
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FIGURE 3. Generic form of IQP ansatz.

corresponding matrix operation are listed in Section II-C.
Note that the controlled gate definition assumes that for a
two-qubit state |9⟩ ⊗ |8⟩, |9⟩ is the control qubit and |8⟩
is the target qubit, which would be the convention when
defining the controlled operation, e.g., controlled Pauli-X or
CNOT, controlledX-rotation, and controlled Z-rotation gates.

D. ANSATZ
In physics and engineering, an ansatz is understood as an
initial guess or estimation for some value of interest, to be
subsequently adjusted such that the value best approaches
the true value [28]. In quantum physics, modeling the
wavefunction of a quantum system often uses an ansatz as
an initial guess, commonly as a trial wavefunction. Fig. 3
shows an example of a generic form of IQP ansatz. The circuit
consists of n qubits appended with H gates, and each qubit is
entangled to the subsequent qubit by a series of CRz gates.
In the context of quantum-circuit-based machine learning,

an ansatz is a collection of subroutines or algorithms to
construct some initial circuit from a reference form or
template, where the resulting circuit possesses a param-
eterized (trainable) section [29]. Ansatz regulates how
quantum circuits are generated from the problem model
and determines, for example, how quantum gates are placed
within the circuit, the entanglement between qubits, the depth
of the circuit, what modifications are made during post-
processing, and other aspects of the circuit that may be
controlled during the training process.

E. HYBRID QUANTUM-CLASSICAL MACHINE LEARNING
Variational quantum algorithms or VQAs are a class of
hybrid quantum-classical machine learning algorithms which
employ quantum computers to evaluate quantum circuits,
then optimize the circuit parameters on a classical computer.
As an optimization method, the VQA task is formally to find
the values of θ , such that ∂C(θ )

∂θ
= 0 for some objective

(cost) function C(θ ). For some initial input state ρ, a set
of observables O, and some circuit unitary operator U (θ ),
the objective function can be generally described as C(θ ) =
f (ρ,O,U (θ )). The objective function may also be written
as a sum of objective scores at each observation point as in
Eq. (1) [3].

C(θ ) =
∑
k

fk (Tr[OkU (θ )ρkU†(θ )) (1)

In designing a VQA, some design choices must be made
regarding the VQA components used. Firstly, an ansatz is
needed to convert the problem from a descriptive form into
a quantum representation. Ansätze are subroutines or initial
templates to build an estimate circuit model such that learning
can be done to obtain an optimal solution [8]. Within the
universal quantum computer paradigm, VQA ansätze have a
general form as in Eq. (2) [3].

U (θ ) = UL(θL) . . .U2(θL)U1(θ1) (2)

Ul(θl) =
∏
m

eiθmHmWm (3)

where Ul(θl) in Eq. (3) is the unitary at the l-th element
of θ , Hm is some Hermitian operator, and Wm is some
non-parameterized gate comprising the non-trainable of fixed
component of the ansatz.

As VQA defines the model feature space by the quantum
circuits used, then the ansatz choice will directly influence
the model’s capability to search for the best solution
in the hypothesis space. The ansatz is expected to represent
the problem sufficiently well. Therefore, ansatz choice is a
critical part of designing a machine learning model using the
VQA framework [3].

Historically, Instantaneous Quantum Polytime (IQP)
ansatz is used for QNLP. IQP is a broad class of
quantum circuits that consists of a fixed component and
a parameterized component. The circuit is described as
instantaneous, that is, the evaluation of quantum gates
within the circuit does not depend on the propagation
time of information along the qubit wires. The circuit is
also described as polytime, meaning that the process of
circuit evaluation consumes at most a polynomial number of
resources [30]. In QNLP, it was implemented as a layered
block construction consisting of a row of Hadamard gates
interleaved with controlled unitary rotation gates, and first
presented in [6].

This ansatz is also used in [9]. In determining the sentiment
of a sentence, [9] expands the pipeline offered in [6] by
analyzing the quantum representation suitable for sentiment
sentences. It models negation word boxes, i.e., the word
‘‘not’’, as a fixed quantum gate. The work explores two
alternative placements, on the word box and rewritten at the
output string, as well as two alternative gate constructions,
as a Pauli-X gate and as a Pauli-X gate followed by a
Pauli-Z gate. The work also designs auxiliary algorithms
for sentiment sentences to conform to the bigraph rewriting
method commonly employed.

III. PROPOSED ANSATZ – SIMPLE SENTIMENT ANALYSIS
ANSATZ (SIMPLESA)
This paper designs an alternative ansatz to IQP that is
specifically explored for sentiment classification. The design
motivation stems from a generalization of the IQP layered
structure. An essential difference is the observation in [21]
that nouns have the least relevance in sentiment analysis, and
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TABLE 2. Types of sentences within the dataset.

as such a strategy may be employed where the impact of noun
word boxes in the PQCs is adjusted accordingly.

A. DATA DESCRIPTION
The dataset of sentiment sentences used is the same as
in [9](https://github.com/abiwardani/qnlp-sa-fp). The dataset
consists of 270 English sentences, with a distribution of
160 training sentences, 50 validation sentences, and 60 testing
sentences. The vocabulary is comprised of 29 words: 6 nouns,
8 verbs, and 14 adjectives. The detail of sentence types is
presented in Table 2.

Within the training and testing data, there are 28 and
9 negation sentences respectively. All negation sentences are
of the form SX[not]A, that is, the word ‘‘not’’ is attached to
the adjective (e.g., ‘‘the food was not great’’). Additionally,
the longest sentences in the dataset are those with SVAO and
SX[not]A form at 5 words.
The sentences are labeled 0 or 1 indicating negative and

positive sentiment respectively. As data is loaded onto the
runtime environment, the labels must be mapped onto a
data type that is compatible with quantum circuit outputs.
As output strings of the diagrams will later be instantiated as
one qubit, the data is therefore mapped onto |0⟩ and |1⟩ single
qubit states. As a convention, positive (1) labels are mapped
to |0⟩ or

[
1
0

]
, whereas negative labels are mapped to |1⟩

or
[
0
1

]
.

B. QNLP PIPELINE
The QNLP pipeline implemented in this research is adapted
from the pipelines proposed in [6] and [9]. The abbreviated
QNLP pipeline is shown in Fig. 4. There are five main
stages: sentence-to-diagram conversion, diagram-to-circuit
conversion, optimization, and metric measurement.

The complete pipeline is shown in Fig. 5. Initially, the
dataset is loaded onto Python. The dataset is divided into
several sets; training, development, and testing sets. As NOT-
boxes will be applied, a shortcut for rewriting (as done in
[9]) is performed, whereby the word ‘‘not’’ in sentences
is briefly ignored, to be reintroduced at a later stage. The
sentences are then parsed using Lambeq’s Bobcat Parser
to obtain raw string diagrams. These diagrams are first
filtered based on sentence validity. As explained in [1], the
valid sentence is one where its Preg representation reduces
to a singular s (sentence) type. These filtered diagrams
are then rewritten using Lambeq’s default rewrite rules,
which are a set of grammatical rewrite rules that perform

FIGURE 4. General QNLP pipeline for sentiment classification.

logical word box modeling. The resulting diagrams are
subsequently transformed into the normal form using the
trailing cups conversion algorithm proposed in [9]. This
allows the string diagrams to be converted into bigraph
form. This method removes cups from the diagrams, thereby
resulting in diagrams with fewer qubit wire requirements.
The diagrams then undergo stemming, which reconciles
conjugated or modified words that have the same stems. The
stemmed diagrams are now ready for circuit instantiation.

Step 7 (ansatz application) requires an ansatz to first be
chosen. This step differs most greatly from [4], [6], and [9]
as both papers use IQP ansatz. After the ansatz is applied and
the quantum circuits are generated, the NOT-box is reapplied
to negated sentences, following the method outlined in [9].
Where the initial sentence has the word ‘‘not’’ in it, the Pauli-
X gate is attached to the output qubit wire. The resulting
circuits are now ready to be trained.

To train the circuits using SPSA, the necessary training
functions must be compiled. SPSA defines a prediction
function and a cost function, where the cost function utilizes
the prediction function. These functions call the quantum
backend with a set amount of shots, and the resulting
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FIGURE 5. Complete QNLP pipeline for sentiment classification.

FIGURE 6. Pregroup grammar representation of the sentence ‘‘the
restaurant had terrible service.’’

measurements are recorded. The prediction function takes
the average output state, whereas the cost function takes the
binary cross-entropy loss against the data labels. The circuit
parameters are then trained using an SPSA optimizer. The
outputs of the test circuits are read, and the accuracies and
fit times are recorded.

A complete example of the pipeline is given as follows.
First, take the sample sentence ‘‘the restaurant had terrible
service’’ with a negative sentiment label (0). The sentence is
loaded onto the Python runtime, and the label is converted
into a |1⟩ vector. The sentence is then parsed to obtain the
pregroup grammar representation depicted in Fig. 6.

The syntax tree can be viewed as a string diagram
consisting of word boxes and wires, as shown in Fig. 7.
This string diagram is now ready for rewriting. Rewriting is
performed on the string diagram, using the determiner rewrite
rule, which treats the determiner word box ‘‘the’’ as a n⊗ nl

cap. This yields the diagram in Fig. 8. The arrangement of
cups and caps may be removed using the yanking equations.
This normalizes the diagram, resulting in the string diagram
depicted in Fig. 9

Then, the cups present in the diagram are converted
into trailing form. This form is an adaptation used in [9]
to conform to the Python-specific implementation of the
bigraph method algorithm. The trailing cups form orders
the cups in a cascading manner, such that scanning the
diagram top-to-bottom encounters the rightmost cup first and

consecutively encounters cups to the left until it reaches the
leftmost cup last. A string diagram depiction of the trailing
cups form can be viewed in Fig. 10

The string diagram can now be converted into bigraph form
using the bigraph method. Word boxes at even distances from
the root word box remain as states, while word boxes at odd
distances are transposed into effects. The result is depicted in
Fig. 11.

Finally, the string diagram is ready for ansatz consumption
and transcribed as a PQC. In this example, IQP ansatz is
used. As such, single qubit word boxes (in this case, nouns)
are instantiated using XZX Euler decomposition, whereas
compound-type word boxes are instantiated as a layered set
of Hadamard gates with a linearly cascading set of controlled
Z -rotation gates. A compound-type word box is defined as
a word box whose domain is more than one Preg type.
An example is the ‘‘had’’ and ‘‘terrible’’ boxes (outlined in
dotted lines) in Fig. 12. The resulting PQC is depicted in
Fig. 12.

The process is repeated for all sentences in the dataset. The
training and development sets are fed into the SPSA optimizer
to learn the rotation gate parameter values. The time required
to fit the model onto the training and development sets is
recorded. Once the parameters are learned, the accuracy
of the test set is measured and recorded. The complete
QNLP pipeline is implemented in Python, and structured as
a model experimentation notebook which can be accessed at
https://github.com/abiwardani/qnlp-sa-fp.

C. NOUN PARAMETERIZATION
Drawing from [21] where nouns have the least importance in
the evaluation of a sentence’s sentiment, this paper employs
an ansatz strategy whereby the impact of nouns is neglected.
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FIGURE 7. String diagram of the sentence ‘‘the restaurant had terrible service.’’

FIGURE 8. Rewritten string diagram of the sentence ‘‘the restaurant had terrible service.’’

FIGURE 9. Yanked string diagram of the sentence ‘‘the restaurant had
terrible service.’’

FIGURE 10. Trailing cups form of the sentence ‘‘the restaurant had
terrible service.’’

It is initially implemented as Lambeq’s IQP ansatz, where
nouns are not parameterized. In terms of string diagram
rewriting, this may be interpreted as a grammatical rewrite
rule which maps n type word boxes as identity wires.
In terms of ansatz implementation, this is interpreted as a
construction rule which instantiates single n types as the
identity gate. This is in contrast to conventional IQP, which
defines single n types as an SU (2) gate, instantiated using

FIGURE 11. Bigraph form of the sentence ‘‘the restaurant had terrible
service.’’

XZX Euler decomposition. An example IQP circuit without
noun parameterization is depicted in Fig. 13.

However, it is visible from the circuit diagram that
this ansatz would result in largely non-predictive circuits.
Recalling that controlled Z-rotation gates have matrix form
as in Section II-C, the open qubit wire in Fig. 13 would only
experience a Hadamard and phase shift.

A concise proof is given in the following. It considers a
section of the circuit diagram with two qubits, where the
two qubits comprise an equal or larger compound-type word
box. The circuit diagram is depicted in Fig. 14. In this, the
first qubit starts with a Hadamard gate and has experienced
bigraph rewriting, hence ends with a |0⟩ post-selected non-
parameterized noun wire, and the second qubit consists of a
Hadamard gate followed by a controlled Z-rotation gate. The
second qubit then may be used as the control qubit for further
sections of the compound-type component, which in turnmay
experience |0⟩ post-selection.

For this circuit, the final wavefunction is first determined.
As a convention for writing this paper, quantum states are
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FIGURE 12. IQP circuit of the sentence ‘‘the restaurant had terrible
service.’’

FIGURE 13. IQP circuit diagram without noun parameterization.

written using Big Endian notation. Eq. (4) derives the final
wavefunction of the circuit.

|90⟩ = |0⟩⊗2 = |00⟩

|91⟩ = H⊗2 |90⟩

=
1
2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)

|92⟩ = CRz(θ ) |91⟩

=
1
2
(|00⟩ + |01⟩ + e−i

θ
2 |10⟩ + ei

θ
2 |11⟩) (4)

To calculate the desired output probability, i.e., the
probability distribution attributed to the second qubit, the
calculation must consider the post-selection of the first qubit.
The example is when taking the measurement of the |0⟩ state.
This can occur in |00⟩ and |10⟩. However, the first qubit is
post-selected for |0⟩. As such, its evaluation is interpreted as
the conditional probability of measuring |00⟩ given |00⟩ or
|01⟩ is measured. Eqs. (5) and (6) calculate the probabilities

FIGURE 14. Section of IQP circuit without noun parameterization.

of measuring |00⟩ and |01⟩ respectively.

P(|00⟩) = | ⟨00|92⟩ |

= | ⟨00|
1
2
(|00⟩ + |01⟩ + e−i

θ
2 |10⟩ + ei

θ
2 |11⟩)⟩ |

= | ⟨00|
1
2
|00⟩ | =

1
4

(5)

P(|01⟩) = | ⟨01|92⟩ |

= | ⟨01|
1
2
(|00⟩ + |01⟩ + e−i

θ
2 |10⟩ + ei

θ
2 |11⟩)⟩ |

= | ⟨01|
1
2
|01⟩ | =

1
4

(6)

The conditional probability is calculated in Eq. (7).
As shown, the qubit has a probability of measuring |0⟩ at
0.5. This calculation can be expanded to the four-qubit circuit
shown in Fig. 13. Notice that the transposed circuit section
comprising the compound-type block and |0⟩ post-selections
on qubits 3 and 4 is a rotated copy of the 2-qubit base
case. Likewise, the controlled Z-rotation with control qubit
2 and target qubit 4 only experiences phase shift, and as such
does not meaningfully post-select the second qubit in the
computational basis.

P(O = |0⟩) = P(|0⟩2 | |0⟩1)

=
P(|00⟩)

P(|00⟩)+ P(|01⟩)

=
1/4

1/4+ 1/4
=

1
2

(7)

Given that this is independent of the value of θ . Thus,
it indicates a QNLP model using IQP ansatz without nouns
would result in a model that is incapable of learning.
Furthermore, the model would only infer |0⟩ and |1⟩
sentiments at a uniform rate. As such, the model would be
non-predictive. An alternative compound-type construction
must be determined.
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FIGURE 15. SimpleSA Generic Compound-Type.

FIGURE 16. SimpleSA H-CRx compound-type construction.

FIGURE 17. SimpleSA H-CNOT-Rz compound-type construction.

D. COMPOUND-TYPE CONSTRUCTION
Following from Chapter III-C, a cascading controlled
Z-rotation construction is not suitable for a noun non-
parameterization strategy. The compound-type construction
must hence be replaced. The template however still follows
the linearly-entangled cascading structure of Lambeq’s
implemented IQP ansatz. This alternative ansatz is based
on IQP, and it employs noun non-parameterization. As it
is designed for sentiment classification, this paper refers to
it as the Simple Sentiment Analysis ansatz, or SimpleSA
ansatz. The generic SimpleSA compound-type construction,
therefore, resembles Fig. 15.

The following three constructions are investigated in
this paper: H-CRx, H-CNOT-Rz, and H-CNOT-Rz-H. The
H-CRx construction is very similar to IQP ansatz, where
the CRz gates are swapped for CRx gates. A diagram
depicting the H-CRx compound-type construction is shown
in Fig. 16. The H-CNOT-Rz construction has a cascading
layer of CNOT gates, where each CNOT gate is followed
by a Z-rotation gate. The H-CNOT-Rz compound-type
construction is depicted in Fig. 17. The H-CNOT-Rz-H con-
struction is similar to the H-CNOT-Rz construction but has
an additional Hadamard gate following the Z-rotation gate.
The H-CNOT-Rz-H compound-type construction is depicted
in Fig. 18. Sample circuits for each construction are depicted
in Figs. 19, 20, and 21. Notice that the set of controlled gates
follow the patterns shown in the compound-type construction
diagrams.

FIGURE 18. SimpleSA H-CNOT-Rz-H compound-type construction.

FIGURE 19. SimpleSA H-CRx circuit diagram.

FIGURE 20. SimpleSA H-CNOT-Rz circuit diagram.

Algorithm 1 describes a code for constructing SimpleSA
circuit segments using H-CNOT-Rz-H block components.
The code is intended to be used modularly, taking sections
of the string diagram based on a word box, and then
composing the resulting circuits together to form a final
circuit. Upon processing each segment, there are two types of
word boxes that may occur, as previously explained: single
qubit types and compound-types. The procedure takes as
input the number of qubits spanned by the word box and
a list of variables params. If the number of qubits is 1,
then the word box is a single qubit type. For the scope of
this paper, single qubit types are noun word boxes. In this
case, nouns may be parameterized or not parameterized.
As such, the pseudocode checks the length of params; if it
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FIGURE 21. SimpleSA H-CNOT-Rz-H circuit diagram.

is zero, then the noun is not parameterized, and the circuit
is instantiated as a single qubit identity wire. Otherwise, the
noun is parameterized, and the circuit is instantiated as an Rx-
Rz-Rx component with the first, second, and third elements
of params as its gate parameters.

On the other hand, if the number of qubits spanned by
the word box is more than 1, then the word box is of a
compound-type. Therefore, the cascading entangling gates
are used. This is built starting with a row of Hadamard gates
spanning the qubit register, followed by a series of CNOT
then Rz gates parameterized as the i-th element of params,
where i is the index of the qubit register. The Hadamards and
rotation components are repeated with the depth of params.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, we present some experiments to highlight
our proposed method, Simple Sentiment Analysis Ansatz
(SimpleSA). The proposed ansatz requires no noun param-
eterization with a smaller amount of quantum gates, but it
performs better than other ansatz. The dataset used for the
experiments is the same as explained in Section III-A. As an
environmental simulation setup, we use an 8-core vCPU
with 52 GB RAM in Linux with VM type of n1-highmem-8.

The results of our experiments are presented in Table 3.
As shown, SimpleSA Ansatz with default parameters and
H-CNOT-CRz-H block construction outperforms baseline
IQP Ansatz at 85.00% against 72.50%, displaying a signif-
icant 12.50% increase in accuracy. Noun parameterization
slightly decreases SimpleSA ansatz performance. Impor-
tantly, SimpleSA ansatz with H-CRx and H-CNOT-Rz
construction displays non-predictive behavior similar to IQP
ansatz without nouns, as indicated by the asterisk (*) in
Table 3.

Moreover, Fig. 22 shows the comparison of train-
ing accuracy for several ansätze. In this case, we only
compare IQP Ansatz, SimpleSA (SSA) Ansatz without noun

Algorithm 1 SimpleSA Circuit With H-CNOT-Rz-H
Construction
Input: nQubits: Number of qubits used in input word

box, params: list of parameters used in circuit.
Output: circuit: resulting SimpleSA circuit
begin

integer nQubit
arraySymbol params
Circuit circuit
Circuit hadamards, rotations
integer N ← length of params
if nQubits = 1 then

if N = 0 then
circuit← Id(1)

else
circuit←
Rx(params1)◦Rz(params2)◦Rx(params3)

else
assert params is 2-dimensional
assert number of parameters for each qubit
equals nQubits-1
circuit← Id(nQubits)
for each thetasBatch ∈ params do

hadamards← H⊗nQubits

rotations← Id(nQubits)
for i = 0 to nQubits− 2 do

rotations← rotations ◦ (Id(i)⊗ CX⊗
Id(nQubits− 2− i))

rotations← rotations ◦ (Id(i+ 1)⊗
Rz(thetasBatchi)⊗Id(nQubits−2−i))

rotations← rotations ◦ (Id(i+ 1)⊗
H ⊗ Id(nQubits− 2− i))

circuits← circuits ◦ hadamards ◦ rotations

return circuit

parameterization and SimpleS (SSA) Ansatz with noun
parameterization. We run the training for 130 iterations.
As shown in Fig. 22, IQP Ansatz with noun parameter-
ization (IQP-Noun), SimpleSA without noun parameteri-
zation (SSA), and SimpleSA with noun parameterization
(SSA-Noun) have training accuracy around 70-85%. How-
ever, the training results are then further tested as shown in
Table 3.

The confusion matrices for each SVO, SVAO, and SXA
sentence type are presented in Tables 4 and 5 for IQP and
SimpleSA model respectively. The columns ‘‘Actual |0⟩’’
and ‘‘Actual |1⟩’’ record instances where the test sentence
is labelled |0⟩ and |1⟩ respectively. The rows ‘‘Predicted
|0⟩’’ and ‘‘Predicted |1⟩’’ record instances where the model
classifies the test sentence as |0⟩ or |1⟩, respectively.

A. NON-PREDICTIVE ANSÄTZE
From our experiment, it was found that H-CRx and
H-CNOT-Rz constructions result in non-predictive SimpleSA
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FIGURE 22. Sentiment analysis training accuracy and cost comparisons for various Ansatz.

TABLE 3. Testing accuracies and fit times of experiment results.

models. Derivation can be performed in a similar manner as
in Chapter III-C using Figs. 19 and 20 as reference.

For SimpleSA ansatz with H-CRx construction, its
wavefunction can be derived as in Eq. (8)

|90⟩ = |0⟩⊗2 = |00⟩

|91⟩ = H⊗2 |90⟩ =
1
2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)

|92⟩ = CRx(θ ) |91⟩

=
1
2
(|00⟩ + |01⟩ + (cos

(
θ

2

)
− i sin

(
θ

2

)
) |10⟩

+ (cos
(

θ

2

)
− i sin

(
θ

2

)
) |11⟩) (8)

Following the derivation method outlined in Chapter III-C,
the probabilities of measuring |00⟩ and |01⟩ are calculated
in Eqs. (9) and (10). The probability of measuring |0⟩ on
the second qubit is likewise calculated using the conditional
probability under post-selection, as derived in Eq. (11). This
yields another non-predictive model whose inferences do not
depend on circuit parameters and it measures single qubit
states of maximum superposition.

P(|00⟩) = | ⟨00|92⟩ |

= | ⟨00|
1
2
(|00⟩ + |01⟩

+ (cos
(

θ

2

)
− i sin

(
θ

2

)
) |10⟩

+ cos
(

θ

2

)
− i sin

(
θ

2

)
|11⟩)|

= | ⟨00|
1
2
|00⟩ | =

1
4

(9)

P(|01⟩) = | ⟨01|92⟩ |

= | ⟨01|
1
2
(|00⟩ + |01⟩

+ (cos
(

θ

2

)
− i sin

(
θ

2

)
) |10⟩

+ cos
(

θ

2

)
− i sin

(
θ

2

)
|11⟩)|

= | ⟨01|
1
2
|01⟩ | =

1
4

(10)

P(O = |0⟩) = P(|0⟩2 | |0⟩1)

=
P(|00⟩)

P(|00⟩)+ P(|01⟩)

=
1/4

1/4+ 1/4
=

1
2

(11)

The same derivation is done with the H-CNOT-Rz
construction. It similarly describes H-CNOT-Rz circuits as
non-predictive, hence unsuitable to use as a VQA ansatz.
However, the derivation of H-CNOT-Rz-H circuits shows that
it is trainable. In practice, it was this exact trainability that
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served as the motivation for applying another Hadamard gate.
The wavefunction of the base case H-CNOT-Rz-H circuit is
shown in Eq. (12).

|90⟩ = |0⟩⊗2 = |00⟩

|91⟩ = H⊗2 |90⟩ =
1
2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)

|92⟩ = CNOT |91⟩

=
1
2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)

|93⟩ = (I ⊗ Rz(θ )) |92⟩

=
1
2
(e−i

θ
2 |00⟩ + ei

θ
2 |01⟩ + e−i

θ
2 |10⟩ + ei

θ
2 |11⟩)

|94⟩ = H⊗2 |93⟩

=
1
2

((
e−i

θ
2 + ei

θ
2

)
|00⟩ +

(
e−i

θ
2 − ei

θ
2

)
|01⟩

)
(12)

Calculating the conditional probabilities uses the proba-
bilities of measuring |00⟩ and |01⟩, which are derived in
Eqs. (13) and (14) respectively.

P(|00⟩) = | ⟨00|94⟩ |

=| ⟨00|
1
2

((
e−i

θ
2 +ei

θ
2

)
|00⟩+

(
e−i

θ
2 −ei

θ
2

)
|01⟩

)
|

= | ⟨00|
1
2

(
e−i

θ
2 + ei

θ
2

)
|00⟩ |

=
1
4
|e−i

θ
2 + ei

θ
2 |

=
1
4
||2 cos

(
θ

2

)
||

= cos2
(

θ

2

)
(13)

P(|01⟩) = | ⟨01|94⟩ |

=| ⟨01|
1
2

((
e−i

θ
2 +ei

θ
2

)
|00⟩+

(
e−i

θ
2 −ei

θ
2

)
|01⟩

)
|

= | ⟨01|
1
2

(
e−i

θ
2 − ei

θ
2

)
|01⟩ |

=
1
4
|e−i

θ
2 − ei

θ
2 |

=
1
4
| − 2i sin

(
θ

2

)
|

= sin2
(

θ

2

)
(14)

The probability of measuring |0⟩ on the second qubit is
as calculated in Eq. (15). This yields a value of cos

(
θ
2

)
.

In this compound-type construction, the output probability
does rely on the θ -parameterized rotation gates. Hence,
the SimpleSA ansatz with H-CNOT-Rz-H construction is
predictive, which explains its behavior against non-predictive
circuits in Table 3.

P(O = |0⟩) = P(|0⟩2 | |0⟩1)

=
P(|00⟩)

P(|00⟩)+ P(|01⟩)

=
cos2

(
θ
2

)
cos2

(
θ
2

)
+ sin2

(
θ
2

)
= cos2

(
θ

2

)
(15)

B. ACCURACY ANALYSIS
From Table 3, SimpleSA is capable of outperforming IQP
ansatz at 85.00% accuracy. This implementation of the quan-
tum sentiment classification pipeline also outperforms the
IQPmodel evaluated in [9], which achieves amaximum accu-
racy of 81.67%. It is expected that the non-parameterization
of noun types allows SimpleSA to evaluate the sentiment
of sentences more suitably by focusing on sentiment-
relevant words, such as verbs and adjectives [21]. This
underperformance of IQP is observable in Tables 4 and 5,
where IQP has 58.82% accuracy at SXA classification
and SimpleSA achieves 100.00%. This is reflected in the
respective expressions for output qubit probability.

First, consider the behavior of IQPmodels on some generic
SXA sentences, shown in Fig. 23. The circuit is generated
from two-word boxes: the single qubit noun type instantiated
as XZX diagonalization in the bottom part of the first
qubit, and the two-qubit adjective spanning the first and
second qubits instantiated as a row of Hadamard gates and
a controlled Z-rotation gate.

Analytically deriving the form of its final wavefunction
and then taking the conditional probability of the output qubit
where the first qubit is in the |0⟩ state yields the expression in
Eq. (16).

P(|0⟩2) =
0.5 (sin (θ2) sin (θ3)+ 1)

Q (θ0, θ1, θ2, θ3)
(16)

where Q (θ0, θ1, θ2, θ3) is defined in Eq. (17), θ0 is the
gate rotation parameter of the block component representing
the adjective, and θ1, θ2, θ3 are the single qubit parameters
representing the subject noun in an SXA type sentence.

Q (θ0, θ1, θ2, θ3) = 0.5 sin (θ0) sin (θ1) cos (θ3)

+ 0.5 sin (θ0) sin (θ3) cos (θ1) cos (θ2)

+ 0.5 sin (θ2) sin (θ3) cos (θ0)

+ 0.5 sin (θ2) sin (θ3)+ 1.0 (17)

It is obvious that the expression for P(|0⟩2) depends on
the subject noun thetas. Taking a sample SXA sentence
‘‘(the) meal was good’’ and plugging in the learned values of
θ1, θ2, θ3 for the noun ‘‘meal’’ into Eq. (16), the expression
in Eq. (18) is obtained.

P(|0⟩2) =
0.6823

0.0398 sin (θ0)+0.1823 cos (θ0)+1.1823
(18)

Upon differentiating with respect to θ0 and equating the
expression to 0, the range P(|0⟩2) ∈ [0.4984, 0.6853]
is obtained. Therefore, the model circuit by nature tends
to infer |0⟩ more than |1⟩. This imbalanced output space
is undesirable, as there is no linguistic reason that SXA
sentences with the subject ‘‘meal’’ should tend to be a
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FIGURE 23. IQP circuit of SXA sentence.

TABLE 4. IQP model confusion matrix for each sentence type.

TABLE 5. SimpleSA model confusion matrix for each sentence type.

positive sentiment more than a negative one. In contrast,
the expression for SimpleSA circuit output probabilities will
resemble Eq. (15), and solely focuses on the parameter
associated with the adjective. Hence, SimpleSA accurately
represents the sentiment analysis aspect of the task, in terms
of SXA sentence classification.

C. COMPLEXITY ANALYSIS
This chapter compares the circuit complexity between
the three best ansatz configurations: IQP with nouns,
SimpleSA without nouns and H-CNOT-Rz-H block con-
struction, and SimpleSA with nouns and H-CNOT-Rz-H
block construction. The three models are referred to as IQP-
Noun, SimpleSA, and SimpleSA-Noun respectively. Table 6
describes the number of parameters and the number of gates
used by each ansätze. As the number of parameters varies for
each sentence and experiment setting, its record is written as a
function of n, i,w. The variable n denotes the number of noun
word boxes present in the string diagram, i denotes the index
of compound-type word box in the string diagram, and wi is
the width of the i-th compound-type word box. The parameter
counts are derived from each ansatz definition, assuming the

sentence types covered in Chapter III-A. The derivation also
assumes that the ansätze are configured for one layer (layers
are not repeated). As in both ansätze, multi-qubit word boxes
are implemented using linear entanglement and both n and
s strings are instantiated as one qubit, therefore the number
of parameters in each word box is equal to one less than the
number of strings comprising the compound-type word box
(denoted w). Additionally, as IQP-Noun parameterizes nouns
using three rotations, it follows that IQP parameter count has
a 3n term. Therefore, in terms of parameter count, SimpleSA
(without nouns) uses 3n less parameters than IQP-Noun.

In terms of number of gate operations, SimpleSA with
H-CNOT-Rz-H construction usesmore gates than IQP (which
uses H-CRz construction). Specifically, it uses an additional
two gates for each controlled gate, i.e. the target qubit wire
of the controlled gate is followed by two gates per layer. This
contributes to the 2(wi−1) term of each compound-type word
box. Furthermore, all ansätze compound-types initialize with
a row of Hadamard gates, hence have an additional wi term.
The resulting gate counts are shown in Table 6.

For our dataset, the total number of parameters present
in each set of training circuits are calculated as follows.
In Preg representation, SVO circuits are reduced to nrsnl .
Likewise, SVAO sentences are reduced to nrs(nl)lnl , and
SXA sentences are reduced to nrs. Reduction is performed
using the method outlined in Chapter III-B. Using the
formulae in Table 6, the values in Table 7 are obtained. Mul-
tiplying each number of parameters with the number of each
sentence type in Table 2, there are 1243 total parametric gates
in IQP-Noun training circuits, 391 total parametric gates
in SimpleSA training circuits, and 1243 total parameteric
gates in SimpleSA-Noun training circuits. In other words,
SimpleSA uses about one-third the amount of parametric
gates as IQP-Noun and SimpleSA-Noun. Hence, SimpleSA
performs about one-third the amount of rotation gate
operations as noun-parameterized ansätze. This reduction
of rotation gates leads to shorter inference times, which is
reflected in the fit times recorded in Table 3.

The total number of gate operations is derived similarly to
the number of parametric gates. Table 8 shows the number of
gates by sentence type for different ansätze. The following
values are obtained: 1911 gate operations for IQP-Noun,
1841 gate operations for SimpleSA, and 2693 gate opera-
tions for SimpleSA-Noun. The number of gate operations
respectively have high correlation with fit times (R=0.9454),
indicating that circuit depth increases fit times. This is likely
due to increased inference times, where more gate operations
leads to longer circuit evaluation. Thus, SimpleSA-Noun
takes the longest to train at 3 hours 24.9 minutes while
SimpleSA is fastest at 2 hours 14.2 minutes.

In terms of parameter optimization, this also affects the
number of unique trainable parameters. By counting the
unique parameter symbols over all sentences, it is obtained
that IQP-Noun uses 60 unique parameters whereas SimpleSA
and SimpleSA-Noun uses 42 unique parameters. This 30%
reduction in number of trainable parameters contributes
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TABLE 6. Complexity formula for different ansätze.

TABLE 7. Number of parameters by sentence type of different ansätze.

TABLE 8. Number of gates by sentence type of different ansätze.

to model stability. Where IQP-Noun experiences overfit
(achieves 80.00% training accuracy in Fig. 22a and 72.50%
testing accuracy in Table 3), SimpleSA and SimpleSA-Noun
do not. Most notably, SimpleSA achieves 78.23% training
accuracy in Fig. 22a and 85.00% testing accuracy in Table 3.
This is due to the reduction of trainable parameters in
SimpleSA, which leads to a suitable reduction of hypothesis
space, as evidenced by the elimination of overfit present in
IQP. For this reason, the non-parameterization of nouns in
SimpleSA ansatz is essential to its robustness over IQP-Noun
ansatz.

D. COMPARISON WITH OTHER METHODS
Additionally, we also compare our results with previous
works in literature (i.e., [9], [10]). In particular, we compare
the best-performing model from [9] and our best result.
As shown, previous works obtain the maximum accuracy
of 81.67% [9]. Meanwhile, ours yields 85% by leaving out
noun parameterization, which shows the superiority of our
method. Note that another work on sentiment analysis was
performed by Ganguly et al., [10], which yields perfect
accuracy and 83.33% for noiseless and noisy quantum
computation [10], respectively. However, the work utilizes
much smaller samples (i.e., a total of 130 sentences: 130, 30,
and 30 for training, development, and testing, respectively)
with little information on the technical implementation and
the sentences employed than [9], which uses a total of
280 samples: 170 for training, 50 for development, and 60 for
testing), and this work, whose dataset is as previously shown
in Table 2.

V. CONCLUSION AND FUTURE WORK
This paper explored a novel implementation of sentiment
analysis using the Variational Quantum Algorithms (VQA)
framework. This paper proposed an alternative ansatz for

the sentiment classification task in quantum representa-
tion. The proposed SimpleSA has less complexity than
the other ansätze in terms of number of parameters and
number of gates. Moreover, experimental results showed
that the SimpleSA ansatz with H-CNOT-Rz-H compound
block construction outperforms IQP ansatz at 85.00%
accuracy. Furthermore, SimpleSA optimization converges
20.89% faster than IQP for the SPSA method with
130 iterations.

In conclusion, SimpleSA ansatz is more suitable than IQP
ansatz at sentiment classification. It has a circuit construction
that is robust to noun choice and suitably determines the
sentiment of a sentence based on relevant word boxes.
This is due to the employment of a part-of-speech-oriented
strategy where noun word boxes are effectively ignored and
instantiated as identity wires.

Future work may be done by employing more specific
tuning strategies. For example, nouns may be instantiated
by rotation gates that do not diverge far from the identity
operation. Additionally, other parts of speech may be
modeled accordingly to their behavior within sentiment
analysis according to existing literature.
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