
Received 11 October 2023, accepted 22 October 2023, date of publication 26 October 2023, date of current version 1 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3327820

Distribution Aware Testing Framework for
Deep Neural Networks
DEMET DEMIR 1, AYSU BETIN CAN 1, AND ELIF SURER 2,3, (Member, IEEE)
1Department of Information Systems, Graduate School of Informatics, Middle East Technical University, 06800 Ankara, Turkey
2Department of Modeling and Simulation, Graduate School of Informatics, Middle East Technical University, 06800 Ankara, Turkey
3Neuroscience and Neurotechnology Center of Excellence, Middle East Technical University, 06800 Ankara, Turkey

Corresponding author: Demet Demir (demet.demir@metu.edu.tr)

ABSTRACT The increasing use of deep learning (DL) in safety-critical applications highlights the
critical need for systematic and effective testing to ensure system reliability and quality. In this context,
researchers have conducted various DL testing studies to identify weaknesses in Deep Neural Network
(DNN) models, including exploring test coverage, generating challenging test inputs, and test selection.
In this study, we propose a generic DNN testing framework that takes into consideration the distribution
of test data and prioritizes them based on their potential to cause incorrect predictions by the tested DNN
model. We evaluated the proposed framework using the image classification as a use case. We conducted
empirical evaluations by implementing each phase with carefully chosen methods. We employed Variational
Autoencoders to identify and eliminate out-of-distribution data from the test datasets. Additionally,
we prioritize test data that increase uncertainty in the model, as these cases are more likely to reveal potential
faults. The elimination of out-of-distribution data enables a more focused analysis to uncover the sources of
DNN failures while using prioritized test data reduces the cost of test data labeling. Furthermore, we explored
the use of post-hoc explainability methods to identify the cause of incorrect predictions, a process similar to
debugging. This study can be a prelude to incorporating explainability methods into the model development
process after testing.

INDEX TERMS Data distribution, deep learning testing, explainability, test selection and prioritization,
uncertainty.

I. INTRODUCTION
Deep Learning (DL) [1] has achieved great success in
real-world applications such as image recognition, speech
recognition, andmachine translation, thanks to advancements
in deep learning algorithms, improved hardware capability,
increased data volume, and ease of data access [2]. DL sys-
tems are adopted in safety and security-critical systems like
autonomous driving vehicles [3], medical treatments [4],
robotics [5], and malware detection [6] based on their ability
to match and sometimes surpass human performance in
complex tasks.

Despite their outstanding experimental results, real-world
deployments of DL systems may produce unexpected or
incorrect behavior. These vulnerabilities may result from

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

insufficient training data, inadequate training procedures,
the inability to generalize in the deployment environment,
or other systematic errors. Failures in safety-critical systems
may result in the loss of human life; therefore, the use of
DL systems in such applications necessitates the assurance
of their safety and trustworthiness.

Testing is the primary instrument for ensuring the reli-
ability of software. The automotive (ISO 26262 [7]) and
avionics (DO-178 [8]) standards outline the testing criteria
that must be followed for certification of safety-critical
software. However, since DL systems are inherently different
in nature from programmed software, these principles do not
directly apply to them. DL systems differ from programmed
software due to their development process: 1) DL systems
do not have well-defined specifications; they learn how to
behave from training data that are representative of the
problem domain, 2) during the training of a Deep Neural
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Network (DNN) in a DL system, its behavior is encoded to
its parameters, and learning continues until the desired level
of accuracy is achieved, and 3) after training, it is expected
that the learned behavior would generalize to new valid inputs
other than the training data. Thus, the behavior of the software
is not programmed by the developer in accordance with
predefined specifications; instead, it is learned from training
data. Also, unlike programmed software, DNNs lack a clear
decision path from which the execution flow may be easily
followed.

Due to these characteristics, conventional software testing
methodologies cannot be applied directly to DL systems.
Typically, in DNN model development, the whole labeled
dataset is divided into training, validation, and test datasets.
Test data are not used during the training of the model.
DNN testing is performed with this reserved dataset from
the labeled data at hand, with testing accuracy serving as a
quality metric for DNNs. In the rest of this paper, we use the
term original test data for this test dataset used in the model
development. Note that the original test dataset consists of a
limited number of labeled data.

There is a growing need to test DNNs more thoroughly
to improve the trustworthiness of models before they are
used in critical safety systems in the real world. In the
last decade, many academic studies have been conducted
in the field of DL testing to define a more systematic
testing process and better assess the reliability of DL
systems.

In this study, we propose a DNN testing framework with
three phases: Test Input Generation, Test Input Selection, and
Test Results Interpretation. The objective of this framework is
to evaluate the reliability of a DNN model by subjecting it to
a diverse set of test inputs while considering the distribution
of the test dataset. Labeling of test data and examining the
test results are processes that require manual human effort
in DNN testing. Our goal is to ensure that human labor is
used effectively by focusing on test inputs that are likely to
be more informative and beneficial for improving the model’s
performance and robustness. Therefore, we give prioritization
to test data that cause the DNN model to make incorrect
predictions. While doing this, we make sure that the test data
are coming from a similar data distribution to the dataset on
which the model is trained.

The test dataset plays a crucial role in thoroughly testing
a DNN model to ensure its robustness and reliability. The
first phase of our test framework concentrates on establishing
the test dataset. Data diversity and comprehensiveness are
extremely important factors in testing. Further testing beyond
the original test data can be realized by collecting new data
from the real world or by generating them synthetically.
Synthetic data generation methods are commonly used
in recent DL testing studies to increase the number and
diversification of test data [9], [10], [11], [12]. In some of
these studies, test data generation is guided by the increase
in the coverage of the DNN model structure, such as neuron
coverage [13], [14], [15], [16], [17], [18]. Neuron coverage

for a test suite is the ratio of the number of neurons whose
output exceeds a predefined threshold value to the total
number of neurons in the DNN. The main idea in the studies
that aim to generate test data that increases neuron coverage is
that the activation of new neurons that have not been activated
before can be helpful to explore different parts of the DNN
model and identify erroneous behaviors that have not yet been
discovered. It is later shown that, despite their high coverage
scores, some of these approaches generate a high number of
invalid data that are not recognizable even by humans [19].
Even if the synthetically generated data are understandable to
humans, they could differ from the dataset that is used to train
the DNN model. For instance, if the DNN model is trained
to recognize handwritten digits, the digit dataset written in
Times New Roman style is a different data distribution for
the model. As a second issue, although a high number of test
data can be generated automatically, these generated test data
need to be labeled before being used in testing, and labeling is
performedmanually most of the time. These problems are not
unique to the synthetically generated test data but also apply
to large amounts of unlabeled test data gathered from the real
world.

Test selection can be used to overcome these problems.
By concentrating the DNN test on selected and prioritized
data from a larger dataset, effective test selection reduces
the cost of testing in two ways—first, by reducing the cost
of labeling additional test data (produced or gathered) and
second, by reducing the effort required to examine the results
of tests.

Test selection methods in the literature generally ignore the
data distribution shifts within the test dataset. The training
inputs of a DNN come from a data distribution, and the
DNN adopts itself to this distribution while optimizing its
parameters to solve the problem defined in this context. Data
distribution-shift refers to a phenomenon in which the statisti-
cal properties of training data and test data are different. There
are mainly two types of data distribution shifts: covariate
shift and semantic shift [20]. In covariate data shift, the
label space remains the same across two datasets. Examples
of this type of shift include style changes or perturbations
due to adversarial attacks. Adversarial attacks are a class
of techniques in which small, imperceptible manipulations
are performed on the input data to deceive the DNN model
and produce incorrect output [21]. However, in the case of
semantic shift, the labels of the data change, and datasets
may have different label spaces. Covariate data shifts are
expected to be handled by the DNNmodel within the scope of
generalization. However, the degree of shift is important for
the model to handle this shift. As the degree of shift increases,
it becomes more difficult to make correct predictions for this
data by the model since they differentiate from the training
dataset.

Out-of-distribution (OOD) data are defined as data that
come from a different data distribution than training data
distribution, while in-distribution data are used inversely.
OOD data detection is a challenging problem in DL systems,
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and several approaches have been proposed [20]. OOD
detection is studied for semantic data shifts with datasets
that have different data label spaces. To date, only a limited
number of studies have been conducted on distribution-
sensitive DL testing, which only started to be researched
in recent years. These recent studies demonstrate the need
for additional research on this topic. These studies can
be categorized into two groups: evaluation of OOD data
impact on DNN testing [22], [23] and application of
distribution awareness in test data generation [11], [12],
[19]. Berend et al. [22] carried out a study that evaluates the
relationship between DL testing criteria and OOD data ratio
in the test suite constructed with the use of corresponding
testing criteria. Furthermore, they added the selected OOD
data to the training dataset and retrained the model. They
investigated the impact of OOD data in the retraining dataset
on improving the robustness of the DNN model. Hu et al.
[23] conducted a comprehensive empirical study to assess the
efficiency of the DL test data selection metrics in terms of
accuracy improvement after retraining the model using the
selected test data. They employed many different generated
test datasets with varying percentages of in-distribution and
OOD data in their experiments. On the other hand, studies
that fall in the second group [11], [12], [19] use generative
models with the objective of creating solely in-distribution
test data.

We think that the DNN model’s compliance with the
test requirements should be validated first. The model’s
success in settings not included in the training set, i.e., the
evaluation of the model’s generalization scope, should be
examined afterward. Based on this idea, we integrate Out-
of-Distribution detection into the Test Selection phase. With
this method, the data with a covariate shift above a predefined
threshold is identified as OOD and removed from the test
dataset. Therefore, our study can be evaluated differently
from these two categories.

In the second stage of Test Selection, we prioritize
the test data according to their ability to reveal faults.
The fundamental objective of DL testing is to detect the
weaknesses of the tested DNN model, hence, the most
valuable test cases are those for which the model makes
incorrect predictions. Recently, studies have been conducted
to analyze metrics in terms of test selection. These metrics
have been compared based on fault detection as well as
adversarial input detection and retraining performance gain
[23], [24], [25], [26], [27], [28], [29], [30].
In most of the studies in the literature, after identifying

the test data that result in incorrect predictions, they are
added to the training dataset, and the model is retrained
to improve its accuracy on these data samples [23], [24],
[27], [28], [29]. As an alternative method, we argue that if
the model’s reasoning for the prediction can be understood,
a wiser decision can be made than retraining the model
by adding all the incorrectly predicted data to the training
dataset.

For this purpose, in the Test Results Interpretation phase,
we employ post-hoc explainability methods for investigating
the incorrectly classified test data. An explanation is an
answer to why questions [31]. In machine learning (ML),
the explanation is defined as the details or reasons that are
given by the model to make its functioning clear or easy
to understand for its audience [32]. The ML models can
be categorized into two groups according to the way they
provide it: models that are interpretable by design (trans-
parent models) and those that can be explained by external
techniques. As DNN models are black box models [33] and
not transparent, post-hoc explainability techniques are used.
Post-hoc explainability techniques refer to techniques that
are used to understand why the model reached a particular
prediction without modifying the model’s architecture and
training process.

We conducted experiments with image classification
datasets by choosing methods to be employed at each
phase of the proposed framework. In the test input gen-
eration phase, we employed data augmentation techniques,
adversarial attacks, and generative models, which are most
used in the DL testing literature. Data augmentation is
increasing the size of the dataset and diversifying it by
applying transformations and modifications to the original
data without collecting additional real-world samples. In the
second phase, we utilized a generative model for OOD
data detection, namely Variational Autoencoder (VAE). For
prioritizing test data, we utilized state-of-the-art uncertainty
quantification approaches and metrics and evaluated their
fault detection capability. DL uncertainty is the degree of how
much the model is unsure of its prediction. A classification
model outputs probability values for each class, which are
also known as confidence. DNN models can make incorrect
predictions with overconfidence. In order to address this
problem, uncertainty estimation is used to provide additional
insight into the predictions of the models. Uncertainty is
measured with uncertainty quantification methods which are
used to estimate and quantify the uncertainty associated with
the particular predictions of the models. In uncertainty-based
test selection, test data with higher uncertainty values are
prioritized. For uncertainty-based test selection, we employ
the Deep Ensemble (DE) method [34] and Variational
Inference with the Flipout (VI-F) [35] method, along with the
commonly assessed Margin, Entropy, and Least Confidence
metrics. To the best of our knowledge, this is the first study to
investigate DE and VI-F uncertainty quantification methods
for test selection in DL systems. We also compared the
effectiveness of these prioritization techniques with state-of-
the-art test selection approaches.

In the last phase, we used the visualization methods, which
aim to provide an explanation for the model’s decision by
highlighting regions of the input image that significantly
influence the DNN’s output. After identifying the test data
that led to incorrect predictions by the DL model, we ana-
lyzed them using visualization techniques. For test data
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visualization, Grad-Cam [36], Grad-Cam++ [37], and Score-
Cam [38] were investigated. The objective of visualization
is to determine whether it is possible to understand the
reason behind the model’s incorrect predictions. The details
of methods employed in each phase are given in Section V-B.

With the experiments, we evaluated the effectiveness
of uncertainty-based test selection metrics with a data
distribution-aware point of view, assessed their performance
in prioritizing fault-revealing test data, and investigated the
use of explainability methods in testing. We answered the
following research questions:

RQ1:Which test data generation method is more likely to
generate OOD data?

RQ2: How effective are uncertainty-based test selection
metrics for prioritizing the fault-revealing data instances in
datasets generated with different techniques and identified as
in-distribution data?

RQ3: Does the existence of OOD data in the test dataset
impact the success of the test selection methods?

RQ4: Is it possible to use post-explainability methods in
testing to understand the root cause of test failures?

In our experiments, we used two popular image clas-
sification datasets (i.e., MNIST and CIFAR-10) with two
well-known DNNmodels for each dataset. We generated new
test data employing three test data generation techniques.
We observed that each technique produces a substantial
amount of OOD data that should be considered in testing.
Then, we prioritized the generated test data according to nine
test prioritization strategies and observed that uncertainty-
based prioritization aids in identifying the fault-revealing data
with an average percentage of fault detection (APFD) scores
between 0.69 to 0.92. Interestingly, our results reveal that
test prioritization strategies that employ Variational Inference
with the Flipout method have the lowest performance on all
evaluated test datasets in the category of uncertainty-based
test prioritization methods. Also, with this study, we took the
first step toward incorporating DL explainability techniques
into the testing process and conducted a sample analysis. As a
result of our analysis, we got promising results regarding the
use of visualization techniques to understand the rationale
behind the model decision for test failures.

Our contributions with this study can be summarized as
follows:

• We proposed a DNN test framework that employs out-
of-distribution detection for test data and eliminates
OOD data in the test dataset. In this manner, the testing
of the DNN model is carried out with a test dataset that
comes from a similar data distribution to the training
dataset.

• We compared the state-of-the-art uncertainty quantifi-
cation methods and metrics in terms of test data pri-
oritization. This evaluation was performed with several
test datasets generated by various test data generation
methods, and the competence of the metrics in different
contexts was also compared.

• We assessed the use of visual post-explanation methods
for the explainability of the model’s decision logic for
incorrectly predicted test data and the proposal of actions
for improving the model’s performance.

II. BACKGROUND AND RELATED WORK
A. DL TESTING
Deep Learning is a data-driven paradigm that employs deep
neural networks (DNN) to learn how to make decisions from
the data. In recent years, there has been a growing interest
in DL testing, and the number of testing techniques proposed
has increased exponentially, mainly contributing to i) test data
generation, (ii) test adequacy evaluation, (iii) test selection,
and (iv) test oracle determination [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [39].

Several studies have been carried out to transfer the
knowledge and experience gained in the field of software
testing to DL testing without increasing the need for labeled
data. Metamorphic relations and cross-referencing are mostly
preferred as test oracles since they eliminate the need forman-
ual labeling. In the metamorphic test method, the software
function is examined, and metamorphic relations existing in
the function are determined. The metamorphic relationship
can be defined as the relationship between the input changes
and corresponding output changes. When using metamorphic
relationships in software testing, it is common to transform
the input data so that the expected output remains the
same. With the same approach, metamorphic relationships
are determined for DL systems as well. For example, for an
image classification DNN system, input image changes by
linear and affine transformations or adversarial attacks can
be called metamorphic transformations since the expected
output remains the same despite the changed input data. InDL
testing, metamorphic transformations are frequently utilized
to generate test data [9], [13], [14], [17].

Existing synthetic test generation methods do not consider
the likelihood of generated data distribution similarity to that
of training data. Brend et al. [22] conducted an empirical
study to evaluate the relationship between the test coverage
criteria, mutation operators, and data distribution. They
emphasize the importance of distribution awareness in DL
testing techniques for more effective testing. It is essential to
identify the reason for test failures, which may be related to
the DNN model or data attributes.

B. DISTRIBUTION-AWARE TESTING
Several techniques have been developed for detecting
OOD data in DL, and in a recent review study, they
were categorized as classification-based, density-based, and
distance-basedmethods [20]. In the category of density-based
methods, generative models are used to learn the training
data distribution and to estimate the likelihood that new
input comes from the same distribution as the training data.
Variational Autoencoders (VAE) are employed to detect OOD
data with this approach.
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Dola et al. [19] conducted a study that evaluates the
validity of the test data generated by previously proposed
DL testing techniques (DeepXplore [14], DLFuzz [15],
and DeepConcolic [18]) and showed that these techniques
generate a high percentage of out-of-distribution data. They
used VAEs for both detection of OOD data and the generation
of new in-in-distribution test data. Kang et al. [11] also used
VAEs in a search-based DNN testing strategy to generate
new test data images. They applied differential testing using
multiple DNN models and guided the test data generation by
searching test data that cause distinct output values from the
models. Similarly, Byun et al. [12] proposed a distribution-
aware test case generation and selection method that employs
a Conditional Variational Auto Encoder (CVAE). We use
VAEs to identify OOD data in test datasets and remove them,
as opposed to generating new instances of test data.

C. DL UNCERTAINTY
DL uncertainty is categorized as aleatoric uncertainty and
epistemic uncertainty [40]. Measuring the uncertainty of
the DNN model is important to estimate the probability of
incorrect predictions accurately [41]. In the classification
DNN models, the confidence of the model is determined by
the output probability for the predicted class. The confidence
value is not always sufficient to measure the model’s
uncertainty since, in some cases, DL systems make incorrect
predictions with high confidence values, such as in adversar-
ial samples [42]. Quantifying the DNNmodel’s uncertainty is
an open research problem, and several techniques andmetrics
have been proposed so far [43], [44], [45], [46].

D. TEST SELECTION
Test selection in DL testing is conducted by prioritizing a sub-
set of data from a large test dataset with different objectives
such as fault detection, adversarial input detection, or model
improvement with retraining [11], [23], [24], [25], [26], [27],
[28], [29], [30], [47]. Although most of the test data selection
studies are domain agnostic, particular studies have been con-
ducted for domains like automotive and medical [48], [49].
Feng et al. proposed the DeepGini [28], which is a

statistical approach for test prioritization. For a classification
problem, when the prediction probabilities for different
classes are close to each other, the likelihood that the model is
uncertain about its prediction and, as a result, the possibility
for misclassification is high. Originating from the impurity in
statistics, a metric similar to entropy but easier to calculate is
suggested with DeepGini.

DeepGini = 1 −

∑
i

pi2

pi : predicted probability for class i (1)

Shen et al. introduced multiple-boundary clustering and
prioritization (MCP) [29], a test case selection method based
on defining the boundaries of classes and prioritizing data
from these boundaries. This method clusters the test data into

boundary areas according to their first and second predicted
classes and selects samples evenly from all boundary areas.

Kim et al. [50] proposed Likelihood-based Surprise
Adequacy (LSA) and Distance-based Surprise Adequacy
(DSA) metrics for measuring the adequacy of a DNN test
suite using the surprise effect of each test input. The surprise
effect is calculated according to how far the test input
is from the training dataset. Byun et al. [27] used these
surprise definitions and proposed surprise-based test input
prioritization, which gives higher priority to test inputs with
high surprise values. LSA calculates the estimated density of
the neuron activation values belonging to a test input with
respect to the activation trace of the training dataset using
Kernel Density Estimation. Activation trace is defined as the
vector of activation values of neurons in a selected layer for
an input. DSA uses the Euclidean distance to compare the
activation trace of the test input with the activation trace of
the training dataset to calculate how different the test input is
from the training data set.

As an alternative strategy, Zhang et al. [51] and Yan et al.
[26] utilized neuron activation values to prioritize test data.

Empirical evaluations are also carried out to compare
the effectiveness of test selection metrics. Ma et al. [24]
compared a set of uncertainty metrics with the previously
proposed DNN test coverage metrics and concluded that
uncertainty metrics are better in prioritizing the test data
in terms of identifying the ones that the DNN model will
misclassify. Their experiments utilized the Monte Carlo
(MC) Dropout Bayesian [52] approximation to estimate the
uncertainty. Shi et al. [30] performed the most comprehensive
empirical study so far to evaluate the test selection metrics
with the objective of their fault-revealing capability. They
compared 11 test case prioritization metrics derived from
the model’s prediction probability and categorized them
into four groups: information surprise adequacy, confidence
dispersion, mutation uncertainty, and mutation rate. In a
recent studywith a distribution-aware point of view, Hue et al.
[23] compared the effectiveness of test prioritization metrics
on test datasets that were created with a mixture of different
ratios of out-of-distribution test data and in-distribution test
data.

In test selection studies, new test data were generated and
added to the original test dataset for use in experiments to
assess the effectiveness of the test selection strategy. While
adversarial attacks were mainly used to generate new test
data, image transformations were also employed in some
studies.

Differently from previous test prioritization studies, we use
uncertainty metrics with deep ensembles and variational
inference with flipout methods. In addition, our methodology
eliminates the OOD data from the test dataset and then
prioritizes the fault-revealing test data.

E. DL EXPLAINABILITY
With the increasing complexity of DLmodels, their decision-
making processes became less understandable and this trend
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highlighted the need for explainability methods. To under-
stand the decisions of DNNs, they can be designed and trained
to produce an explanation along with their output or post-
hoc explanation methods can be used on a trained DNN
model without making any modification to its architecture
or training process [53]. Various post-hoc explainability
approaches have emerged in the last decade, including
feature attribution based techniques [36], [54], [55], [56],
[57], example-based techniques [58], [59] and rule-based
techniques [60], [61]. The goal of feature attribution based
methods is to determine the significance or contribution of
each individual input feature (such as the words in a text or
the pixels in an image) to the model’s predictions. Gradient-
based feature attribution methods, use the gradients obtained
during the backpropagation process to identify which features
in the input affect the prediction of the model [36], [37], [57].
However, perturbation-based approaches apply perturbations
to particular input regions to determine how they affect the
output, such as adding blur, noise or totally blocking a region
[54], [62], [63].

With the advancement in the development of explainability
methods, utilization of these methods to understand the
cause of failures in DL models is explored in academia.
Especially for the natural language processing problem,
studies using post-hoc explainability methods or using self-
explainable models have been conducted [64]. In these
studies, mostly Naive Bayes models or Logistic Regression
models were used. The use of explainability methods in
the image classification problem is studied by Adebayo
et al. [65] using an 8-layer convolutional neural network.
Their study was to examine the effectiveness of visual post-
hoc model explanations in diagnosing model errors and
debugging. The bugs were categorized into three types: data
contamination bugs, model contamination bugs, and test-
time contamination bugs. Overall, their findings indicate that
feature attribution methods can effectively identify the spatial
spurious correlation bug but do not provide conclusive assis-
tance in distinguishing mislabeled examples from normal
ones. Regarding model contamination, they observed that
certain feature attributions remain invariant to the parameters
of the higher layers in deep learning models, suggesting
limited effectiveness in diagnosing model contamination
bugs. Furthermore, they discovered that attributions for out-
of-domain inputs closely resemble attributions obtained from
an in-domainmodel. In contrast to this study, we concentrated
on instances where the model was unable to generate accurate
predictions because there were not sufficient data that contain
specific features.

III. PRELIMINARIES
BayesianNeural Network (BNN) is a class of neural networks
where weights for each layer are represented as distributions
instead of concrete values. The variance in the predictions
of the BNN model for the same test input with several
samplings from these weight distributions is used to measure
the uncertainty.

The BNN is initialized with a prior distribution p(w), and
the posterior weight distribution is estimated using Bayesian
inference in the training process. The training process aims
to infer posterior distribution p(w|X ,Y ). The training dataset
is represented with X = {x1, x2,. . .xN} as the input data, and
Y = {y1, y2,. . .yN} as the corresponding output data.

p(w|X ,Y ) =
p(Y |X ,w)p(w)

p(Y |X )
(2)

However, training of BNN is computationally hard to
implement for networks with deep layers. For this reason,
approximation methods are used for BNNs. Variational
inference (VI) is an approach for learning an approximate
posterior distribution over the neural network’s weights
instead of an exact one. In VI, the objective is to estimate
a variational parameter θ that parametrizes a variational
distribution qθ (w), which is close to the exact posterior
distribution. For this purpose, the minimization of Kullback-
Leibler (KL) [66] divergence between the approximate and
exact posterior distribution is aimed. The KL divergence is
used to measure the closeness of two distributions:

KL(qθ (w)||p(w|X ,Y )) =

∫
qθ (w)log

qθ (w)
p(w|X ,Y )

(3)

However, the KL divergence cannot be minimized directly
since it depends on the exact value of posterior distribution,
so evidence lower bound (ELBO) [67], which is equal to it
up to a constant value, is used. Maximization of evidence
lower bound (ELBO) has the same effect of minimizing KL
divergence:

LVI (θ ) =

∫
qθ (w)logp(Y |X ,w)dw− KL(qθ (w)||p(w)) (4)

During the training of BNN, stochastic sampling is made
from weight parameters of qθ (w) and p(w) distributions, with
the objective of minimizing the KL-divergence between these
two distributions. The qθ (w) is defined as a data distribution
q(θ ) = N (µ, σ ) with having mean µ and variance σ .
In weight perturbation-based variational inference methods,
sampling from the distribution is made using a weight
perturbation variable ϵ at each sampling with w = µ+σ ⊙ϵ.
The Flipout [35] method samples weight perturbations

for each sample in the training minibatch with a flip-the-
coin effect w = µ ± σ ⊙ ϵ. With flip the coin, the sign
of perturbation that will be used in weight perturbation is
decided stochastically. This flipout process yields decorre-
lated gradients and low variance in the gradient descent
algorithm that results in achieving faster convergence during
training.

Deep Ensembles are proposed as an alternative to BNNs
to estimate the uncertainty of the DNNmodels [34]. They are
easy to implement and require less hyperparameter tuning.
In the Deep Ensemble method, multiple DNNs having the
same architecture are trained separately. Each DNN learns
a distinct set of hyperparameters by conducting the training
with randomly initialized model weights. After the models
have been trained, the uncertainty metric values for test data
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are calculated. For this purpose, each test data instance is fed
to the trained models, and then metric values calculated from
each model are ensembled.

IV. METHODOLOGY
Fig. 1 provides a high-level overview of our testing frame-
work. The phases in this approach are essential in testing
DNN models rigorously. Each phase of this framework,
we believe, may be applied to any kind of DNN model. The
methods used in each phase can be chosen based on the
properties of the DNN model and its input data.

The goal of the Test Input Generation phase is to create
a diverse and comprehensive test dataset. Since the original
test dataset used in model development is limited, enhancing
this dataset is needed to increase trust in the model. The
test dataset can be enlarged by collecting test data from the
real world or by generating them synthetically. Although the
generation of realistic test data synthetically is challenging,
especially for high dimensional data such as image data,
their automated behavior makes them good choices. The
original test data can be used as seed inputs to data generation
methods to create new data. According to selected test
generation methods, test data for representing real-world
scenarios or malicious intention attacks can be generated,
and the reliability and robustness of DNN models can be
evaluated.

FIGURE 1. Overview of our study.

With limited resources and time, testing the DNN model
with all generated test inputs may not be feasible since
labeling all the data is a costly process. In the Test Selection
phase, the most critical and representative test inputs that will
provide useful insights into the DNNmodel’s weaknesses are
identified.

We consider test selection in two stages: 1) identifying a
subset of data from an unlabeled dataset and 2) prioritizing
the most useful data within that subset for testing.

When a DNN produces an incorrect prediction for an
input, the question arises as to whether the error is due to
a weakness of the DNN model or whether the input data

are invalid or from a different data distribution than the
training data. It is important to differentiate between the
different sources of incorrect predictions. The distribution
of training data determines what data can or cannot be
correctly predicted by the DNN. By distinguishing between
the mispredictions caused by in-distribution or out-of-
distribution data, developers can gain insights into the DNN’s
performance and identify specific areas for improvement.

With our proposed framework, our aim is primarily to
focus on the reliability of the DNN model on the data
it is intended to work on. These are data coming from
similar data distribution with the training dataset, that is, in-
distribution data. The performance of the DNN model may
be tested for different levels of data distribution shifts after
testing with the in-distribution test dataset and trusting the
reliability of the DNN models on this dataset. This approach
is analogous to performing functional testing on a traditional
software program first, followed by robustness tests. It can be
misleading to test the DNNmodel with a dataset that does not
resemble the training data without being sure of the model’s
reliability with these data.

Therefore, in the first stage of test selection, we employ
Out-of-Distribution (OOD) data detection method. We apply
out-of-distribution detection to test data and only use the ones
not classified as OOD. By doing so, we aim to evaluate the
DNN model using a more targeted test dataset. As a result,
unnecessary effort is not spent in labeling and investigating
incorrect predictions for unintended data.

After eliminating OOD data instances from the generated
test dataset, we prioritize them by giving higher priority to
test data that are more likely to be incorrectly predicted by the
DNNmodel under test. This prioritization will allow labeling
efforts to be spent first on test data with a higher priority
and then, if necessary, on test data with a lower priority.
Additionally, testing the model with prioritized test data will
help to reduce the time required to identify the model’s
weaknesses. The final step is the analysis of the incorrect
predictions of the model under test. Because DNNs are black
boxes, interpreting their behavior is difficult. Understanding
why a DNN made a specific prediction can be difficult with
complex DNN models. At this phase, to gain insight into the
cause of the model’s misprediction for the test data, we use
post-hoc methods in DL explainability.

V. EXPERIMENTS
We conducted experiments to evaluate the proposed method-
ology. We have chosen image classification as the use
case and used two well-known image classification datasets
with two distinct DNN models for these datasets in our
experiments (Section V-A). We implemented each phase of
the framework for the selected use case (Section V-B) and
reported the evaluation results (Section V-C).

A. TEST DATASETS AND DL MODELS
We selected two popular image classification datasets,
MNIST [68] and CIFAR-10 [69]. MNIST is a handwritten
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TABLE 1. Datasets and DNN models.

TABLE 2. Test data generation methods.

digit dataset with a resolution of 28 × 28 pixels. Images are
labeled from 0 to 9. The dataset contains 60,000 training and
10,000 test images. We selected the LeNet-5 and LeNet-1
[70] networks from the LeNet family as the model under test
and trained the model with the whole MNIST training dataset
for 25 epochs.

CIFAR-10 is a ten-class image dataset with 50,000 training
and 10,000 test images. The images are colored with a
resolution of 32 × 32 pixels. For CIFAR-10, we trained a
ResNet-32 [71] model for 200 epochs and a VGG-16 [72]
model for 150 epochs and used them as the model under test
in the experiments. Real-time data augmentation is applied
to training images during training by randomly flipping
or shifting the images in horizontal or vertical directions.
We implemented the ResNet-32 [71] architecture proposed
for CIFAR-10 and theVGG-16 [72] architecture with an input
layer accepting data having a size of 32 × 32x3.
These datasets and models are widely used by the research

community and provide a solid foundation for evaluating the
efficacy of test selection. The high accuracy of these models
makes them good candidates for assessing the fault-revealing
capabilities of test selection methods. Since there will be
less misclassified data with these models, it will be easier to
observe the success of the test selection in the experiments.
Table 1 summarizes each studied dataset, its corresponding
DNN model, and the accuracy attained for the original test
dataset after training.

B. IMPLEMENTATION OF THE FRAMEWORK
This section provides implementation details for each phase
of the framework. We selected the methods and strategies
used in each phase by considering the properties of image

classification models and datasets. Some of the methods used
already exist in the literature but have not been used in
the context of DNN testing, such as using Deep Ensemble
and Variational Inference to prioritize test data or using
explainability methods to evaluate test results.

1) TEST INPUT GENERATION IMPLEMENTATION
We employed three types of image generation techniques in
the Test Input Generation phase to have a diverse test dataset:
Image Transformations, Adversarial Attacks, and Generative
Models. These are the most common methods used in the
literature for generating test data, and eachmethod has unique
properties. The selected image generation methods are listed
in Table 2.
In the first group, we use pixel transformations and

affine transformations. These transformations are generally
used to mimic real-world conditions like changing lighting
conditions in the environment or the rotation of a camera in an
autonomous vehicle. Pixel transformations change the values
of pixels in the image, whereas affine transformations move
the pixels of the image. We select translation and rotation
as affine transformation and blurring and brightness change
as pixel transformation. New test datasets are generated for
each type of transformation by applying the transformation
to seed inputs that are randomly selected from the original
test dataset.

Adversarial attacks are decisive methods that try to fool
the DNN models by introducing small, artificially crafted
perturbations to images. In this study, the following adver-
sarial attack techniques are employed: Fast Gradient Sign
Method (FGSM) [21], Carlini & Wagner (C&W) [73], and
Projected Gradient Descent (PGD) [74]. We use Cleverhans
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[75] library for applying adversarial attack methods to
images.

In the last group of image generation techniques, we use the
generative adversarial networks (GANs), which were devised
by Goodfellow et al. [76]. We trained three different types
of generative models for the MNIST dataset: Generative
Adversarial Network (GAN [76]), Auxiliary Classifier GAN
(ACGAN [77]), and Deep Convolutional GAN (DCGAN
[78]). Then we used their generator networks to generate new
synthetic images.

For the CIFAR-10 dataset, since it is more challenging to
generate realistic synthetic images and developing a GAN
model is not our core focus, we preferred to use pre-trained
GAN models. There are several successful studies conducted
on this topic. While choosing CIFAR-10 GAN models,
we considered the reported Fréchet Inception Distance (FID)
and Inception Score values which are associated with the
realism of the generated images. In this context, we employed
Diffusion Projected GAN and Diffusion StyleGAN2 [79]
models to generate CIFAR-10 data.

While generating the test datasets, we aimed to obtain
images that are as realistic as possible, and that can represent
images under different conditions.

2) TEST INPUT SELECTION IMPLEMENTATION
Test input selection is performed in two stages. At first, OOD
data are eliminated from the generated test datasets then they
are prioritized according to their uncertainty.

a: OUT OF DISTRIBUTION DETECTION
We employed Variational Autoencoders (VAEs) [80], a type
of generative model, for OOD data detection. The objective
of generativemodels is to learn the distribution of the data and
generate new data instances from this distribution. For OOD
data detection, the VAE model is trained in an unsupervised
manner with the training dataset, and it learns the intrinsic
properties of the data. Then, if data from a different data
distribution than the one that VAE was trained on is fed to the
VAE model, it is expected that the reconstruction probability
of the model will be lower and allow it to be distinguished
as OOD data. Unsupervised training creates ease of use for
VAEs and saves labeling effort.

We performed OOD data detection by using a VAE with
probabilistic encoder and decoder networks as proposed by
An et al. [81]. We train a variational autoencoder with
the training dataset, and with this model, we calculate
the reconstruction probabilities for the original test dataset
first. The reconstruction probability is the probability of
generating input data from the distribution parameters that the
decoder network produces as output for this input data. Next,
we choose a dataset distinct from the one used to train the
VAE model as the OOD dataset. The selected OOD dataset
is expected to have an identical image size to the training
dataset. We then calculate the reconstruction probability
values for this OOD dataset. Using the reconstruction
probability values of the original test dataset and OOD

dataset, a threshold value is empirically determined to
differentiate the OOD data from the in-distribution data. The
original test dataset and OOD dataset instances are classified
as out-of-distribution or in-distribution data according to
several threshold values, and the number of correct/incorrect
classifications is determined for each threshold value. We use
the F1-score metric, which is a harmonic mean of precision
and recall, to determine the threshold value that best
distinguishes OOD data from in-distribution data.

Then, we performed OOD data detection on generated test
data using the threshold valuewith the highest F1-score value.
The data instances classified as OOD are eliminated from the
generated test datasets.

b: TEST DATA PRIORITIZATION
We employed uncertainty-based prioritization to identify the
fault-revealing inputs in the next stage of Test Selection. The
use of uncertainty in test input selection is based on the idea
that model predictions are more likely to be incorrect for
inputs with higher uncertainty values.

We evaluate three metrics with three methods for mea-
suring the DNN model’s uncertainty. In the first method,
we calculate the metric values for each test data using
only the output of the model under test. In this study,
we use the ‘‘Model Under Test (MUT)’’ expression, which
is adapted from the ‘‘System Under Test (SUT)’’ a term
used in software engineering testing, to represent the DNN
model that is evaluated with the test dataset(s). As the
second and third methods, we employ Deep Ensemble (DE)
and Variational Inference (VI) with Flipout methods to
prioritize the test data based on the prediction uncertainty
of the model. Deep Ensemble (DE) is a sampling-based
method, whereas Variational Inference (VI) is a Bayesian
approximation method used to estimate uncertainty. In these
two methods, we calculate metric values by aggregating
multiple output values for the same test data, unlike the use of
the MUT in which the metric values are calculated using only
a single output value for each test data. These methods are
among the state-of-the-art methods proposed to be successful
in uncertainty quantification [41], [45].

For Deep Ensemble, we train several DNN models having
the same architecture as the tested model, initializing their
parameters with different initial values. After training the
DNN models, the same test data is fed into all the ensemble
models. The uncertainty metrics are calculated from the
probability distribution output of each model. Then, the mean
of each uncertainty metric is calculated, and this mean value
is used in the prioritization of the test data.

For Variational Inference (VI), we utilize Flipout [35],
which is a weight perturbation-based method. In Tensorflow
2, Flipout is implemented as a DNN layer and provided by
the Tensorflow Probability Library. In our study, we have
implemented Flipout with the use of this library. Follow-
ing the works [41], [82], we created new models with
Flipout layers corresponding to each tested DNN model for
Variational Inference. The difference in these new models is
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the replacement of convolutional and/or dense layers with
their Flipout counterparts in TPL. We replaced each dense
and convolutional layer with Flipout layers in the LeNet-5
and LeNet-1 models. For ResNet-32, we replaced only the
last convolutional layer in each residual block with a Flipout
layer, and for VGG-16, we replaced all convolutional layers
with Flipout layers.

After training the model with Flipout layers, aMonte Carlo
approach is implemented by conducting multiple forward
passes for the same input and aggregating the results of
these forward passes. During these passes, uncertainty metric
values for each test data are calculated, and these values are
aggregated in the sameway as in the Deep Ensembles method
and used in the prioritization of the test data.

Uncertainty metrics are used to provide a quantifiable
measure for the uncertainty of the model associated with
its prediction. We selected the metrics that are calculated
using the prediction probabilities of DNN models for the
classes. We utilize Least Confidence, Margin, and Entropy
as uncertainty metrics.
Least Confidence: Confidence is the basic metric for

determining how challenging an input is for the model. The
final layer of a DNN used for classification problems outputs
a probability distribution over the classes. These values are
the probability scores for each class, with values ranging
from 0 to 1.0. The probability scores for all classes add up
to 1.0. If the model’s prediction probability is close to 1 for
a class and close to 0 for other classes, it is said to have
high confidence in its prediction. In the worst-case scenario,
if the model’s probability scores for different classes are
nearly equal, then the model is said to be unconfident in
its prediction. As a result, maximum likelihood values for
classes are used as a measure of confidence for the input; the
higher the Least Confidence value, the higher the uncertainty
of the model.

Least Confidence = 1 − max(pi)

pi : predicted probability for class i
(5)

Entropy: Entropy, a widely used metric in information
theory, is also used to measure the uncertainty of DNN
models. In information theory, entropy represents the amount
of information required to encode a distribution. In the scope
of model uncertainty, entropy is adopted to represent the
information in the last layer. The higher entropy values
signify more uncertainty. Entropy has the highest value when
the model is less certain about its prediction and its output
probability distribution is uniform (all classes have the same
probability score). Entropy is lowest when the model is more
certain about its prediction and the model’s output probability
distribution is peaked (the probability score of all classes
except one is 0, and this class has a probability score of 1.0).

Entropy = −

∑
i

pilogpi

pi : predicted probability for class i (6)

Margin:Margin is the difference between the probabilities
of the first and secondmost probable classes. A highermargin
signifies that there is a clear separation between the highest
prediction probability and the second one. If the probability
values of the two classes with the highest probability scores
are close to each other, it means the model is having difficulty
making a decision between these two classes. In this case, the
margin value will be low as well. The smaller margin signifies
more uncertainty.

Margin = pk − pj
k : class having maximum probability,

j : second most probable class (7)

For each generated test dataset, all metric values are
calculated employing the threemethods. Test data with higher
uncertainty score values are given higher priority, and test
datasets are ordered according to these priorities. As a result,
with the use of three different metrics in three different
methods, we have datasets sorted according to nine test
prioritization strategies.

We compared these prioritization strategies with the state-
of-art test selection approaches Likelihood-based Surprise
Adequacy (LSA), Distance-based Surprise Adequacy (DSA)
[27], DeepGini [28], and multiple-boundary clustering and
prioritization (MCP) [29]. These approaches have been
frequently employed for comparison in DNN test data pri-
oritization studies.

To create the activation traces for both DSA and LSA,
we used the activation values of neurons in the layer before
the last layer of the DNNs.

Additionally, to evaluate the success of the uncertainty-
based test selection, test datasets are sorted by random
selection, and experiment results gathered with random
ordering are used as the minimum performance baseline.
Random: The test dataset is sorted by drawing test data

at random from the test dataset. Each test data has an equal
probability of being selected.

Then, we evaluate these test data prioritization strategies’
capability in identifying fault-revealing test data. The success
of test data prioritization in terms of finding test data
instances that cause misprediction is assessed in three ways:
Average Percentage of Fault Detected Evaluation: The

Average Percentage of Fault Detected (APFD) value is used
in testing to measure the fault-revealing capability of test
selection methods. Let T be a test dataset with n test samples.
The model makesm incorrect predictions for this dataset, and
wi is the order of test data that causes the ith misprediction.
The score of APFD is defined as follows:

APFD = 1 −

∑m
i=1 wi
nm

+
1
2n

(8)

APFD metric is used to compare the fault detection speed
of test selection methods and metrics [26], [28] [83]. The
range of APFD is between 0 and 1. Higher APFD values
indicate faster fault detection rates.
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Fault Detection Ratio Evaluation: The fault detection ratio
is another performance metric that measures the success of
test selection criteria. When test data are randomly selected,
the percentage of mispredictions is linear with the percentage
of test data selected. The test selection metric is considered
to be more successful when fewer test data are required to
identify all mispredictions.
Statistical Correlation between Misprediction and Met-

rics: The statistical correlation between the mispredictions
for the selected test data and test selection metric values is
another indicator of the success of test data prioritization.
We conduct a Point-Biserial correlation and Spearman
correlation tests to evaluate the correlation between the
metric values for test data and the correctness of predictions.
In order to measure correlation, predictions of the model are
encoded as 0 if the model makes an incorrect prediction and
1 otherwise. The higher correlation values indicate the more
successful metric in fault detection.
Ratio of Area Under Curve (RAUC): In ideal, the

prioritization techniques will assign higher scores to all test
data that are incorrectly predicted by the tested DNN model
than to test data that are correctly predicted. As a result,
we would ideally expect a linear relationship (y=x for x <=
total number of incorrectly predicted test data) on a graph
where the x-axis represents the number of prioritized test
data, and the y-axis represents the number of incorrectly
predicted test data in prioritized test data. In practice, this
graph may not be linear for a particular test prioritization
strategy. RAUC is the ratio of the area under the prioritization
technique’s curve to the area under the ideal curve [27],
[84] [85]. RAUC is calculated based on the budget for
prioritized test data. For example, RAUC100 is the RAUC
value when the first 100 prioritized test data are used in
the performance evaluation of the prioritization technique.
RAUC has a value between 0 and 1, and larger is better.
In our study, we used RAUC300, RAUC500, RAUC1000, and
RAUCall . RAUCall represents the RAUC value when all test
data is used.

3) TEST RESULTS INTERPRETATION IMPLEMENTATION
We employed visualization techniques as a post-hoc DNN
explainabilitymethod. These techniques highlight the regions
of the input that are most influential in the prediction of
the DNN model. These visual representations are easy for
humans to understand and interpret. Selected visualization
techniques are model-agnostic techniques which means that
they can be applied to any pre-trained model with some
restrictions only. These methods also do not require access
to training data or retraining of the model.

The visualization techniques that are employed are as
follows:
Grad-Cam [36]: This method is proposed for CNNs and

requires the model’s final layer activation function to be a
differentiable function. The outputs of the DNN model’s last
convolutional layer are used as feature maps of the input,

which are assumed to be high-level representations of the
image. The gradients of the model’s highest probability score
(probability score of the predicted class) with respect to the
feature maps are then computed. The gradients indicate how
changes in the feature maps affect the probability score of the
predicted class. Then, the relative importance of each feature
map is determined by taking the global average pooling of the
gradients. The class activation map (CAM) is the weighted
sum of feature maps with weights based on the importance
values. CAM is used to generate a heatmap, which is
overlaid on the original input image. The heatmap shows
the regions that have the highest influence on the model’s
prediction.
Grad-Cam++ [37]: This method is an enhancement to

Grad-Cam, which better localizes the objects in the input
image. Grad-Cam++ uses a weighted average of positive
gradients instead of a global average pooling used in Grad-
Cam during the calculation of CAM. This approach also
presents a solution for the shortcomings of Grad-Cam when
there are multiple occurrences of objects belonging to the
same class in the same image.
Score-Cam [38]: This method is a perturbation-based

algorithm. The feature maps of the input image are produced
in the same way as the Grad-Cam. However, unlike Grad-
Cam, gradients are not calculated to construct the CAM.
Instead, the CAM is calculated from the weighted sum of
feature maps. Using the feature maps as masks on the input
image, perturbations on the masked regions of the image are
made. Then, the increase in the confidence score is calculated,
which is defined as the difference between the probability
score of the perturbated image and the original image for the
predicted class. The weights of feature maps are determined
according to the increase in the confidence score. The CAM is
used to generate a heatmap, and the heatmap is overlaid on the
input image. This method eliminates the need for gradients
but necessitates a forward pass for calculating the weight of
each feature map.

C. EXPERIMENT RESULTS
We applied each image generation method given in
Section V-B1 independently and produced an additional
1000 (one thousand) images with each method. For this
purpose, we have selected 1000 seed images with equal
image count for each class from the original test datasets
randomly and used them as inputs for Image Transformation
and Adversarial Attacks methods. In our experiments,
we adjusted the parameters used for Image Transformation
methods such that the images generated by transformation
on the seed images do not need to be manually labeled,
and the same label with the seed image can be used. Also,
since the adversarial attacks make small perturbations to
seed images, although they deceive the DNN models, the
labels of the perturbated images do not change. Therefore,
we have assigned the same labels to the perturbated images as
the originals. The parameters for Image Transformation and
Adversarial Attacks are given in Appendix A. Additionally,
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TABLE 3. Details of generated datasets.

we used the generator networks of each GAN selected and
generated 1000 images from each of them. We manually
labeled the images generated using GANs for both MNIST
and CIFAR-10. The generated test datasets are listed in
Table 3, where ‘‘Original’’ refers to seed data captured from
the original test dataset. The ‘‘+’’ symbol in front of the
methods in the table indicates that they have been applied on
the Original test dataset.

Then, we identified the out-of-distribution images in the
generated test datasets as the first step of test selection. For
this purpose, we designed two separate VAE networks for
MNIST and CIFAR-10 and trained them using the original
training datasets. In this way, we aimed for VAEs to learn the
distribution of the training datasets. The structure of VAEs is
given in Table 4.
We selected the Fashion MNIST [86] dataset as the

OOD dataset for MNIST. The Fashion MNIST dataset
consists of grayscale images with the same image size as
MNIST. Since Fashion MNIST contains clothing images
instead of handwritten digit images, its data distribution
differs from that of MNIST. Thus, the VAE trained with the
MNIST training dataset will produce lower reconstruction
probabilities for images from Fashion MNIST. In the same
way, we selected the SVHN [87] dataset as the OOD dataset
for the CIFAR-10 dataset.

Using VAEs, we obtained the reconstruction probabilities
of the images in the original test datasets and OOD datasets.
As described in Section V-B2a, the reconstruction probability
threshold values that best separate OOD datasets from in-
distribution datasets are determined. The best F1-Score
values for threshold values are given in Table 5 for MNIST
and CIFAR-10.

TABLE 4. Variational autoencoder models used for OOD data detection.

TABLE 5. Best F1-score values for VAEs.

RQ1. Which test generation method is more likely to
generate OOD data?

We classified the generated test images as OOD and
in-distribution data according to the chosen reconstruction
probability threshold values and respective reconstruction
probability of each image in the datasets. Fig. 2 depicts the
percentage of OOD data for each dataset.

For theMNIST andCIFAR-10, nearly all images generated
by the FGSM and PGD adversarial attack methods are
identified as OOD data. C&W attack generates adver-
sarial images with smaller perturbations than FGSM and
PGD; consequently, images generated by C&W attack may
resemble the distribution of training data. Images generated
by the C&W attack are determined to be mostly in-
distribution for both datasets (83.5% in CIFAR-10 and 99%
in MNIST).
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FIGURE 2. OOD data percentages in generated test datasets.

TABLE 6. Accuracy values of models for generated test datasets.

Although the same transformation settings are used for test
data in both datasets with Image Transformation methods,
as shown in Table 2, the percentage of the OOD data in
generated datasets differs between the MNIST and CIFAR-
10 datasets. Following adversarial attack methods, images
generated with the Translate method have the highest
percentage of OOD data for the MNIST, with 54.2%.
Translate is an affine transformation that shifts pixels without
changing their values. The high OOD ratio of Translate
may be due to the fact that the majority of digits in
the training images of MNIST are located in the center
of the image, whereas Translate generates images with
digits located in other positions. In contrast, Blurring is the
image transformation technique that produces the most OOD
data for the CIFAR-10 dataset. The CIFAR-10 Dataset is
colored, and Blurring alters the pixel values in all image
channels. We believe that because this transformation is
applied randomly to each pixel, it causes the image to deviate
from the training data distribution and be classified as OOD
data.

In both CIFAR-10 and MNIST datasets, images generated
synthetically by Generative Models do not produce a
high number of OOD data. During their training pro-
cess, generative models learn the training data’s fea-
tures and generate images, resulting in in-distribution
images.

Result for RQ1:Observations regarding RQ1 indicate
that different image generation methods produced a
substantial amount of OOD data in the generated
test datasets. In particular, adversarial attacks generate
a large amount of OOD data, whereas the amount
of OOD data generated by Generative Models is
moderate. Among the image transformation methods,
the test generation method that generates the most
OOD data depends on the image dataset properties;
there is no single answer.

RQ2:How effective are uncertainty-based test selection
metrics for prioritizing the fault-revealing data instances
in datasets that are generated with different techniques
and identified as in-distribution data?

We eliminated OOD data from generated test images and
created three test data groups based on the test generation
technique. In Table 6, the accuracy of the respective models
under test for the generated test datasets after OOD data
elimination is given. Although the OOD detection method
identifies most of the images generated by C&W adversarial
attacks as in-distribution data, it is clear that these images
deceived the DNN models, resulting in a very low level of
accuracy of 7% in LeNet-1 and VGG-16.

An additional subset of 1000 images from the original
test data are added to each test data group in order to better
observe the choice of test selection metrics between data that
the model would misclassify and data that would be correctly
classified. Since the models had a very high accuracy rate for
the original test data, these additional images were considered
as a dataset that the model would not have difficulty
classifying correctly. In each test data group, we analyzed the
performance of test selection methods and metrics in terms of
fault identification. For this purpose, the uncertainty metric
values of each test dataset are calculated using the MUT,
DE models, and VI models separately. Previous research
on uncertainty quantification [41] has demonstrated that a
sample size of five provides good results for both the DE
and VI methods and that increasing the sample size has
diminishing positive effects. Therefore, for the DE method,
experiments were conducted with a five-member ensemble,
and for the VI method, tests were conducted by collecting
five samplings from the VI model’s pass-throughs.

When calculating metric values with MUT, the predicted
probability values of the model for test data are used. For the
DE method, each test data is fed into DE models, and the
outputs of the models are aggregated and used to determine
the value of each metric. Similarly, each test data is fed to
the VI model five times, and the output values are aggregated
and used to calculate metric values. Then, the test datasets are
ordered according to the metric values and fed to the model
under test according to this order. Test images are categorized
as misclassified or correctly classified based on their ground
labels and prediction of the model under test.

We evaluate the fault-revealing capability of the test
prioritization strategies based on the Average Percentage
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TABLE 7. Average percentage of fault detected values for generated test datasets.

of Fault-Detected (APFD) values for each test dataset.
As described in Section V-B2b, the APFD value represents
the fault detection speed of the test dataset. The APFD
values for each test data group are given in Table 7.
The results of experiments are listed according to the test
prioritization strategies, which are identified with method-
metric tuple values, e.g., we use MUT-Entropy naming
for the experiments conducted using Entropy metric with
employing probability output of the model under test or
use DE-Confidence for the experiments conducted using
Least Confidence metric obtained from the outputs of deep
ensemble models. The best three values for each dataset are
shown in bold. The closer to 1.0 the APFD values are, the
more successful the prioritization of fault-revealing test data.
APFD values for CIFAR-10 are smaller than those for the
MNIST dataset; likewise, the accuracy of the model under
test for CIFAR-10 is less than for MNIST.

Table 7 also shows a comparison of the techniques with
the state-of-the-art test selection approaches in the last four
rows. We used LSA, DSA, DeepGini, and MCP approaches
to prioritize the generated test datasets and incorporated their
results for the performance comparison. Table 7 shows that

except for the adversarial attack test datasets, the DE method
yields high APFD values ranging from 0.887 to 0.919 for
MNIST and 0.792 to 0.830 for CIFAR-10. However, for
adversarial attack test datasets, metrics acquired using the
MUT, DeepGini, LSA, and DSA produce the best results.
The APFD values for MUT-Entropy, MUT-Confidence, and
MUT-Margin are very close to each other for the adversarial
attack test datasets, with a difference of less than 0.007.
The adversarial attack test datasets are generated using the
MUT as input to attack methods, so the generated images
are specialized according to the parameter values of the MUT
to fool the network. Therefore, these images are unlikely to
deceive the models used in DE or VI-F methods since they
have different parameter values, and the uncertainty metric
values acquired with these methods do not provide adequate
guidance for fault detection. To measure the uncertainty,
DeepGini uses a formula similar to MUT-Entropy; both
employ the probability score of each class in the output.
As expected, they have similar APFD values, with an average
difference of 0.016. DSA has APFD values that are among
the top three APFD values in test datasets created with
adversarial attacks. From this, we can judge that, despite the

119494 VOLUME 11, 2023



D. Demir et al.: Distribution Aware Testing Framework for Deep Neural Networks

FIGURE 3. Fault detection ratios according to the size of generated test datasets.

small perturbations generated by the adversarial attacks, the
activation traces of the corresponding data differ from the
activation traces of the training data, and this is detected by
DSA.

Fig. 3 shows the Fault Detection Ratio values for each
test prioritization strategy relative to the test dataset size.
The generated test datasets are sorted by metric values and
divided into ten bins, with 10 percent of the combined test
data contained in each bin. The first bin contains test data

instances with the highest priority, while the last bin contains
images with the lowest priority. As the size of the test dataset
increases from 10% to 100%, so does the ratio of detected
faults. The prioritization metric that assigns high-priority
values to the test data that will be misclassified by the DNN
model will have a higher fault detection ratio for the same
size of test data.

The detailed percentage of faults detected for each type of
generated test dataset is shown in Fig. 3. It is evident that
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TABLE 8. Ratio of area under curve values for generated test datasets (MNIST).

when test data are sorted according to uncertainty metrics,
faults are detected earlier in all test datasets compared to
when data are selected at random. Except for the adversarial
attack dataset of CIFAR-10, this difference is very substantial
for all datasets. By using the uncertainty metrics with DE,
30% of the test dataset captures more than 95% of the
whole faults in test datasets generated by Generative Models
and Image Transformations for MNIST. The percentage
of test data required to find the equivalent percentage of
faults in the CIFAR-10 dataset is 50%. While DE methods
have the highest fault detection ratios for test datasets
generated by Generative Models and Image Transformations,
prioritizationwith DSA,DeepGini, andmetrics acquiredwith
MUT methods have higher fault detection ratios than other
methods for datasets generated by Adversarial Attacks. The
performances of uncertainty metrics obtained with the VI
method and MCP are poorer than those of other approaches.
The difference between fault detection rates of prioritization

approaches employing VI and the nearest fault detection
rate of other approaches changes in the average of 4.03%
to 13.06% for MNIST test datasets. In the case of MCP,
the difference is between 2.28% and 18.54% on average.
The fault detection rate of LSA is also low compared to
other methods except for the experiments made with the
VGG-16 model. It has the lowest fault detection ratios with
the experiments performed with the ResNet-32 model for the
test data sets generated by the Generative Model and Image
Transformation, and it has more than 10% difference from the
nearest approach.

We calculated the Ratio of Area Under Curve value
for each generated test dataset with the prioritized test
dataset size of 300, 500, and 1000 and with all test data.
Tables 8 and 9 show the RAUC values for MNIST and
CIFAR-10. The best three values are shown in bold for
RAUC values calculated for different test data sizes, with
a total of 24 best RAUC values for each generated test
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TABLE 9. Ratio of area under curve values for generated test datasets (CIFAR-10).

dataset. The prioritization strategies that employ the DE
method achieve the best RAUC values for the test dataset
generated by Generative Models for MNIST with a ratio of
19/24 and for CIFAR-10 with a ratio of 17/24. Similarly,
for the test dataset generated by Image Transformations
for MNIST, the prioritization strategies with DE achieved
the highest RAUC value ratio of 18/24. On the contrary,
for the CIFAR-10 test dataset that is generated by Image
Transformations, the MUT-Entropy, MUT-Confidence, and
DeepGini have the best results. The distance-based methods
(LSA/DSA) and techniques that use uncertainty metrics with
MUT outperform the other prioritization techniques in the
case of test datasets generated by Adversarial Attacks.

Additionally, the statistical correlation between misclas-
sifications and metric values is used to evaluate the fault
detection capability of test prioritization strategies. For this
purpose, we encoded the model’s prediction for a given test
data as 1 for misclassification and 0 for correct classification

of the model under test. The correlation degrees between
the metric values of the test dataset and the corresponding
classification results are calculated for each metric.

We employed the Point-Biserial correlation, which mea-
sures the strength of the relationship between a continuous-
level variable and a binary variable since metric values are
continuous data, while misclassifications are binary data in
our situation. In addition, we also conducted the Spearman
correlation, which is used to analyze how effectively a
monotonic function describes the relationship between two
variables.

Table 10 and 11 show that there is a moderate correlation
between the uncertainty metrics obtained using the DE
method and the misclassifications for the test datasets gen-
erated using Generative Models and Image Transformation
techniques. Besides, for the test dataset generated with
Adversarial Attacks, the correlation coefficient is highest for
MUT-Margin, MUT-Confidence, and DeepGini for MNIST.
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TABLE 10. Correlation between test prioritization strategies and misclassifications (MNIST).

In the case of CIFAR-10, MUT-Entropy, LSA, DSA, and
DeepGini have the highest correlation coefficient values. The
correlation results are in harmony with those derived from
APFD values.

Result for RQ2: Uncertainty-based test selection is
an effective technique for prioritizing the test data in
order to identify fault-revealing inputs. The best prior-
itization results are obtained when uncertainty metrics
are used with the Deep Ensemble method for Image
Transformation and Generative Model datasets. For
test datasets generated by Adversarial Attacks, metrics
gathered from Model Under Test give the best results.
Additionally, distance-based methods (LSA/DSA) and
DeepGini effectively prioritize test datasets generated
by Adversarial Attacks. The VI method has the
lowest performance in terms of uncertainty-based test
prioritization in prioritizing fault-revealing test data in
all datasets.

RQ3: Does the existence of OOD data in the test dataset
impact the success of the test selection methods?

We repeated the experiments without removing the OOD
data from the generated test datasets to determine whether the

same metrics and methods effectively prioritize test datasets
that contain OOD data. In these experiments, all generated
test data were combined and used as a single dataset.
In Table 12, the best APFD values from the experiments are
given, and in Fig. 4, the fault detection ratios are displayed.
The APFD values of test prioritization methods for test
datasets with OOD data are lower than those for test datasets
without OOD data. DSA has the highest APFD values for test
datasets with OOD data, which indicates that the OOD test
data have activation traces different from the training data.
The uncertainty metrics employed with the Deep Ensemble
and Model Under Test are also efficient ways for prioritizing
test data in datasets containing OOD data, similar to datasets
in which OOD data have been eliminated.

As Fig. 4 shows, the fault detection rate of uncertainty
metrics is decreased compared to datasets where OOD data
are removed. This decrease is especially significant for the
CIFAR-10 dataset, where the performance of uncertainty
metrics deteriorates to a level close to random sampling.

As Table 13 shows, the accuracy of the tested models
for test datasets containing OOD data also decreased, from
65.5% to 49.3% for CIFAR-10 (ResNet-32) and from 84.1%
to 78.4% forMNIST (LeNet-5). This is due to the fact that the
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TABLE 11. Correlation between test prioritization strategies and misclassifications (CIFAR-10).

TABLE 12. Average percentage of fault detected values for generated test
dataset including OOD data.

model is more exposed to datasets from distributions different
than the one it was trained on.

Result for RQ3: The performance of uncertainty met-
rics decreases in prioritizing test datasets containing
OOD data compared to datasets in which OOD data
have been removed.

TABLE 13. Accuracy values for generated test dataset including OOD data.

RQ4: Is it possible to use post-explainabilitymethods in
testing to understand the cause of test failures?We inves-
tigated the misclassifications in test datasets to understand
the rationale behind the model’s incorrect decision-making.
We analyzed the results from the CIFAR-10 dataset with
the ResNet-32 model and determined the predicted versus
actual classes of misclassified test data for each test dataset
generated. Confusion matrices for predicted and correct
class labels are displayed in Fig. 5. The highest number of
misclassified test data in the Generative Model test dataset
are those whose actual class is Dog but was predicted as
Cat or vice versa. Again, the highest number of misclassified
test data instances in the Image Transformation test dataset
are test data instances that are predicted as Cat but actually
belong to theDog class. Also, test images of theDeer class are
wrongly predicted as Bird or Frog, whereas test data instances
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FIGURE 4. Fault detection ratios according to the size of generated test dataset including OOD data.

FIGURE 5. Predicted vs correct classes of misclassified test data.

of the Airplane class are incorrectly classified as Automobile
or Ship in the Image Transformation test dataset.

As adversarial attacks are artificial perturbations designed
to deceive the model, there is a high number of misclassified
test images in all classes, ranging from 64 to 108, as shown
in Fig. 5c.

We examined the classification error that occurs most
frequently between the Dog and Cat classes in detail. First,
we apply the visualization methods to images of Dog and
Cat classes from the original test dataset, which are correctly
classified. This aims to identify the regions of the images that
have the greatest impact on themodel’s prediction. According
to the analysis results, we think that for the Dog class, the face
of the dogs in images, specifically the nose region, affects the
model’s decision. Again, for the Cat class, the face of the cats
mostly influences the decision of the model, but not the nose
region in this case. In some of the images, the body of the
cats was also factored into the decision-making of the model.
In Fig. 6 and 7, the outcomes of these analyses conductedwith
the Grad-CAM, Grad-CAM++, and ScoreCAM techniques
are depicted.

Then, we applied visualization techniques to the sample
images that have been incorrectly classified as Cat when
they actually belong to the Dog class, which is demonstrated
in Fig. 8. The analyzed images belong to the Image
Transformation test dataset and were generated with Rotate
method. In the first row of images, the body of the dog is
identified as the image region that affects the decision of
the model. For the image on the third row, the highlighted
region by visualization methods does not include the nose
of the dog, and for the image on the fourth row, the ears
of the dog are highlighted, as well as the face of the dog.

119500 VOLUME 11, 2023



D. Demir et al.: Distribution Aware Testing Framework for Deep Neural Networks

FIGURE 6. Correctly classified Cat images from the original CIFAR-10 test
dataset.

FIGURE 7. Correctly classified Dog images from the original CIFAR-10 test
dataset.

Contrary to the images in Fig. 8, although the body of the
dog is not seen in the last image row of Fig. 7 since the model
recognizes the dog’s nose in the image, it is classified as Dog.
We hypothesize that when the model fails to identify the nose

region in the dog images or when additional patterns that
belong to other classes are also identified, the DNN model
struggles to correctly classify the image in the Dog class.
Images of dogs where the dog’s nose does not appear properly
or the color of the nose is not black can be considered to be
added to the training data to overcome this misclassification
case.

FIGURE 8. Dog images misclassified as Cat.

Result for RQ4: Analysis performed with visualiza-
tion techniques used in DL explainability may help DL
developers/testers to understand the rationale behind
the model’s decision for the test failures. However,
this analysis requires manual and detailed assessment.
According to reasonings derived from this analysis,
actions to be taken in the DNN training to overcome
the weaknesses of the model can be planned.

VI. LIMITATIONS
There is no labeled data in OOD detection to indicate whether
data are OOD or not. The ability of an OOD detection method
to distinguish between two different datasets with similar
properties (e.g., picture resolution, color depth, etc.) is used
to evaluate its performance. However, there is no ground
truth about under what conditions the differences within the
same test dataset, rather than the differences between two
independent datasets, should be considered as OOD data.
Different OOD detection methods may produce different
outcomes when applied to the same datasets, and there is
no universally agreed metric for comparing OOD detection
approaches. Establishing standardized evaluation protocols
and metrics for OOD detection and then benchmarking these
methods on various types of datasets may aid in selecting and
integrating the best-fitting OOD detection method into the
DNN testing process for different problem domains. There
is a recent study that provides an initial benchmark for OOD
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detection methods; however, distinct data sets were used as
in-distribution and out-of-distribution sets in this study [88].

The dataset’s characteristics are critical for the effective-
ness of the OOD detection method. For example, a suitable
approach must be chosen to capture data created by
adversarial attack methods. While the data generated by
adversarial attack methods FGSM and PGD were mostly
detected as OODwith the VAEmethod utilized in the present
study, the data generated by the C&W adversarial attack
method were not detected as OOD. However, the accuracy
values of the models were rather low on the data indicated to
be not OOD.

Furthermore, the performance of test prioritizing tech-
niques is affected by the characteristics of test datasets.
The approaches that are independent of the tested model,
such as the Deep Ensemble method, are insufficient for
prioritizing fault-revealing data in test datasets generatedwith
white box adversarial attack methods on the tested model.
To prioritize this type of data, distance-based techniques such
as LSA/DSA or methods based on the variance of the tested
model’s outputs can be chosen.

Examining the outputs of post-hoc explainability methods
with the aim of determining the cause for the incorrect
prediction of the model could assist the developer in
uncovering weaknesses in the model or training dataset.
However, a manual review is required in this scenario. More
in-depth research in this area would be beneficial so that the
data acquired with post-hoc procedures could be processed
more quickly, reducing the amount of manual effort required.

VII. THREATS TO VALIDITY
The threat to external validity could originate from the
selection of datasets andmodels.We selected twowidely used
and publicly available datasets (i.e., MNIST and CIFAR-10)
and we employed well-known DNN architectures for each
dataset. We employed two distinct models for each dataset in
order to eliminate model dependence in the findings. Despite
this, it is possible that some of our results do not generalize
to other datasets and DNN models.

Another threat to validity could originate from the test
data generation methods we used. To address this threat,
we selected the three popular adversarial attacks in the liter-
ature and used their implementation in a well-known library.
Additionally, for image transformations APIs supplied in the
TensorFlow library were used.

The internal threat to validity lies in the implementation
of the test prioritization approaches selected for comparison.
To reduce this threat, we adopted the source code of the
compared approaches published by their authors.

The threat to construct validity could originate from the
measurements we used for assessing the effectiveness of
the test prioritization strategies. We selected the average
percentage of faults detected, RAUC, and fault detection ratio
measurements, all of which are accepted metrics in software
testing to evaluate the performance of test suites. Also,

we used two different correlationmethods for determining the
relation between the misclassifications and test prioritization
strategies.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a DNN test framework with
the consideration of data distribution in DNN models.
We demonstrated that popularly used test data generation
methods produce large amounts of OOD data. With the
addition of an OOD data detector to the testing process, this
OODdata can be eliminated from the test dataset, andwasting
effort in both labeling and investigating predictions for invalid
or unintended test data can be prevented. We conducted
uncertainty-based test data prioritization with nine different
strategies on three generated test datasets and compared
their effectiveness in identifying fault-revealing test data.
Experiments demonstrate that while prioritization strategies
that employ uncertainty metrics with the Deep Ensemble
perform better for Image Transformation and Generative
Model datasets, strategies that use metrics gathered from
the Model Under Test produces the best results for test
datasets generated with Adversarial Attacks. In all datasets,
the Variational Inference with the Flipout method has the
lowest performance in prioritizing fault-revealing test data.

Additionally, we evaluated the use of post-explainability
methods for determining the cause of misclassifications in
DNN models, analogues to debugging. CAM images can
provide a clue to understanding the decision of the model,
but these results are only relevant when assessed by an expert
person in the field and the intended functionality of the
model. Evaluating the CAM images can aid in detecting the
underrepresented or overrepresented datasets that influence
the model’s decision-making. We concluded that a detailed
analysis of the misclassified test data using visualization
methods, can help to discover the cause of failures, and rather
than adding all misclassified test data to the training dataset,
more helpful decisions can be taken for the retraining process.

With the framework proposed in this study, a step has
been taken to efficient use of time allocated for testing with
the systematic test selection, which enables the elimination
of OOD test data and the prioritization of fault-revealing
test data. In addition, although promising, more research is
needed on the use of post-explainability approaches with test
data that cause failure in DNN models and on the retraining
of models utilizing the inferences drawn from these analyses.
In the future, we will improve our work by using alternative
methods in the steps of the proposed testing framework.

APPENDIX A
TEST INPUT GENERATION PARAMETERS
The parameter values used for the adversarial attack functions
in the Cleverhans library are given in Table 14.

The transformation values given as ranges in Table 15 are
randomly applied to MNIST and CIFAR-10 datasets.
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TABLE 14. Adversarial attacks parameters.

TABLE 15. Image transformation parameters.
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