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ABSTRACT To address issues such as low detection accuracy and limited real-time performance in
road scene detection, a novel road scene detection algorithm based on CMS-YOLO is proposed in this
paper. In this algorithm, an efficient backbone called the cross-stage partial DWNeck is devised. By using
large-scale depthwise separable convolutions and residual structures, it enables the acquisition of more
comprehensive feature information, thereby increasing both the receptive field and the richness of extracted
features. Meanwhile, a feature pyramid called the multi-scale fusion feature pyramid network is designed
to strengthen the fusion of shallow and deep-level information, effectively preventing the loss of feature
information in the transmission process. Besides, a new decoupled head structure called the special decoupled
head is introduced, which effectively addresses the conflict between classification and regression tasks
through a three-layer joint output structure. Finally, experiments were conducted on two publicly available
datasets, namely Udacity Self-Driving and BDD100K. Experimental results indicate that the CMS-YOLO
algorithm achieved an impressive detection accuracy of 90.3% and 59.1% in mAP@0.5, demonstrating a
remarkable improvement of 4.2% and 7.2% over YOLOv5 respectively. Moreover, in real-world scenarios,
the algorithm achieves an impressive real-time detection speed of 34.5 frames per second. These results
demonstrate that CMS-YOLO not only meets but also surpasses the requirements for detection accuracy and
real-time performance for object detection in autonomous driving scenarios.

INDEX TERMS Autonomous driving, road scene detection, YOLO, cross stage partial DWNeck, multiscale
fusion feature pyramid networks, special decoupled head.

I. INTRODUCTION
In recent years, the rapid development of deep learning has
led to the widespread adoption of object detection techniques
across various domains, attracting considerable interest in
the field of autonomous driving vehicles. The integration of
cameras with object detection algorithms provides a more
accurate and cost-effective approach to object recognition,
making it highly suitable for large-scale deployment in
future autonomous driving systems [1], [2], [3]. Therefore,
the current research focuses on developing object detection
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algorithms that strike a balance between real-time perfor-
mance and high detection accuracy, meeting the specific
requirements of autonomous driving applications. In this
context, deep learning-based object detection algorithms
have emerged as a crucial and prominent research area [4].

Within the scope of the current research, target detection
algorithms based on convolutional neural networks can be
mainly categorized into two types: one-stage and two-stage
detection algorithms. The first category, represented by
YOLO and SSD, employs a regression strategy to facilitate
target detection by bypassing the region proposal phase and
directly regressing the classification and bounding boxes
of the targets [5], [6]. The second category, represented
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by R-CNN, SSP-Net, and Fast R-CNN, initially traverses
the entire image to obtain the proposed region boxes and
subsequently performs classification and detection tasks on
the targets. Though these two-stage detection algorithms
exhibit higher accuracy in target detection, they tend to have
slower detection speeds. Consequently, their applicability
in autonomous driving applications is limited [7], [8], [9].
One-stage detection algorithms are end-to-end algorithms
that utilize bounding box regression. These algorithms have
advantages in real-time performance, albeit at the cost of a
slight reduction in detection accuracy. However, they face
challenges in detecting small objects and tend to causemissed
detections [5]. In recent years, J. Redmon et al. have made
remarkable progress in improving the YOLO algorithm.
They have significantly enhanced the algorithm’s detection
accuracy by integrating the anchor mechanism, incorporating
the feature pyramid network (FPN), and replacing the
backbone. However, the improved algorithm still cannot meet
the specific application requirements of industrial scenarios,
indicating that further improvements are needed [10], [11].
In 2020, A. Bochkovskiy et al. made notable progress in the
YOLO algorithm. They introduced the FPN+PAN structure
as the Neck component and replaced the Backbone with
the CSPDarknet-53 architecture. These changes substantially
enhanced both detection speed and accuracy [12]. Drawing
on this progress, in 2021, Ge et al. addressed the issue
of classification and regression conflict by replacing the
coupled head with a decoupled head, leading to a significant
improvement in detection accuracy [13]. In 2022, Li et al.
made a great contribution by incorporating the RepVGG
structure into YOLO, thus substantially improving detection
speed [14]. In the same year, Wang et al. elevated the YOLO
series algorithms for industrial applications. They integrated
the E-ELAN as the Backbone and fused the MP struc-
ture for downsampling, which greatly enhanced detection
accuracy [15].
With the continuous advancement of deep learning-based

object detection algorithms, more and more exceptional
algorithms are being applied to autonomous driving. For
example, Chen et al. proposed the DW-YOLO algorithm,
which aims to improve the detection accuracy of road
scene objects by increasing the depth and width of the
network. However, this approach involves a large number
of parameters, which can hinder real-time performance [16].
H. Wang et al. proposed the MobileNet-YOLOv4 algorithm,
which has been applied to autonomous driving to enhance
detection speed. However, it incurs a loss in detection
accuracy and still has difficulties in detecting small objects,
leading to missed detections or false alarms [17]. Cai et
al. introduced YOLOv4-5D and applied it to autonomous
driving. This approach utilizes five scale detection layers and
replaces the original backbone network with DCN, leading
to improved detection accuracy for small objects. However,
it suffers from a large parameter count and reduced real-time
performance [18]. Consequently, finding a balance between

detection accuracy and speed has become a significant
research focus in the field.

To address the above issues in existing algorithms,
this paper proposes the CMS-YOLO algorithm. Firstly,
it introduces the Cross-stage partial DWNeck (CD) module
to replace the original C3 module in the network backbone.
The CD module utilizes larger convolutional kernels and
more residual connections, leading to a larger receptive
field and richer feature information compared to the C3
module. Secondly, a Multi-scale Fusion Feature Pyramid
Network (MFFPN) is proposed to replace the FPN+PAN
structure in the original network. The MFFPN effectively
integrates contextual and feature information across different
feature layers, which helps to enhance the richness of
feature information and mitigate information loss during
propagation. Additionally, a novel detection head structure
called Special DecoupledHead (SDH) is developed to replace
the coupled head structure in the original network. The SDH
adopts a three-layer joint output structure for decoupling,
thereby effectively addressing the conflict between local-
ization and classification tasks. Compared to the decoupled
head structure in YOLOX, the SDH demonstrates better
decoupling capability and detection accuracy. Overall, the
proposed CMS-YOLO algorithm achieves higher detection
accuracy while maintaining a fast detection speed.

II. MODEL ARCHITECTURE
The YOLOv5 model has many variants in terms of depth
and width, including YOLOv5-s, YOLOv5-m, YOLOv5-
l, and YOLOv5-x. Considering the real-time requirements,
YOLOv5-s is selected in this paper as the base model
for modifications. The overall structure of YOLOv5-s
consists of four main components: Input, Backbone, Neck,
and Head. The Input component incorporates various data
augmentation techniques, such as adaptive image scaling
and translation, random horizontal flipping, and mosaic.
Meanwhile, it involves the calculation of adaptive anchor
boxes using K-means. The Backbone comprises the CBS
module, C3 module, and SPPF spatial pyramid pooling
module. These modules utilize a series of convolutional
operations to extract feature representations from the input
images. The Neck network adopts the FPN and PAN
(Path Aggregation Network) structures to fuse the extracted
image features through path aggregation, thereby achieving
effective feature fusion. The Head component comprises
three detection heads, each corresponding to an object scale:
large, medium, and small. The output of the detection heads
includes class probabilities, classification information, and
coordinate information of the detected objects. Overall, the
YOLOv5-s model combines these components to realize
efficient and accurate object detection, making it suitable for
various applications.

In this section, the CMS-YOLO architecture is proposed,
which builds upon the traditional YOLOv5 network structure
and optimizes the C3 module, feature fusion structure, and
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FIGURE 1. The Architecture of the CMS-YOLO Network. In the diagram,
the CBS module consists of a 3×3 ordinary convolution layer, a batch
normalization (BN) layer, and the SiLU activation function. The CD module
represents the backbone network module proposed in this study. The
light purple lines and connected upsampling depict the feature fusion
structure known as MFFPN, introduced in this paper. The SDH module
represents the proposed detection head, and the orange lines, along with
the final CBS and CD modules in the Neck, indicate the output of the SDH.
It is noteworthy that these components do not participate in feature
extraction and fusion within the network.

detection heads. The objective is to overcome the challenges
encountered in detecting road scenes for autonomous driving,
such as low detection accuracy and poor real-time perfor-
mance. The CMS-YOLO architecture is illustrated in Fig.1
As shown in this figure, the C3 module is replaced with the
CD module (depicted as the golden block). This replacement
leads to a larger receptive field and facilitates the extraction
of more semantic features, thereby preparing the network
for subsequent feature fusion. Meanwhile, the FPN+PAN
structure is replaced with the MFFPN structure (represented
by the light purple lines and connected upsampling), enabling
a comprehensive fusion of shallow and deep-level feature
information. This fusion improves the recognition accuracy
of small objects in road scenes. Besides, the three detection
heads are replaced with four detection heads, and the original
coupled head is replaced with the SDH detection head
(depicted as the white block in the figure). The orange lines in
the figure represent the output of the SDH, which are separate
from the feature extraction and fusion process within the
network. This replacement allows the effective use of feature
information from both higher and lower layers to address the
conflict between classification and localization tasks, thereby
improving detection accuracy for challenging objects in road
scenes.

To sum up, by incorporating optimizations in the C3
module, feature fusion structure, and detection heads, the
CMS-YOLO architecture improves detection accuracy and
real-time performance for road scene detection in intelligent
driving applications.

A. THE CD MODULE
In road scene detection tasks, dense objects usually occupy a
limited number of pixels and are susceptible to background
interference. The C3 module in YOLOv5 is prone to
losing important feature information or being affected by
background pixels during feature extraction. The proposed
CD module in this paper can address these issues effec-
tively. The CD module has a larger receptive field, more
efficient residual connections, and superior feature extraction
capabilities, all while maintaining a minimal number of
parameters. When applied to road scene object detection,
the CD module mitigates issues related to the loss of
feature information and interference from background pixels,
significantly enhancing the accuracy of detecting densely
packed or obscured vehicles and pedestrians. As shown in
Fig. 2, all BottleNeck components in the C3 module are
replaced with the proposed CD module, which mitigates
the loss of critical features and minimizes the impact of
background pixels.

FIGURE 2. The Structure of the Proposed CD Module. The CD module
structure showcases the replacement of the BottleNeck modules in the
C3 module with the proposed DWNeck module.

FIGURE 3. Different Base Modules. (a) BottleNeck: The base module used
in YOLOv5. (b) DWNeck: The base module in the network proposed in this
paper. (c) RepConv: The base module used in YOLOv6. (d) E-ELEN: The
base module used in YOLOv7. The figure illustrates the distinctive
structural characteristics of the base modules used in different versions
of the YOLO series.

Having a larger receptive field in the network helps to
capture more comprehensive contextual feature information,
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thereby enhancing the detection accuracy of dense objects
in road scene detection tasks. However, large kernel con-
volutions are computationally intensive, which limits their
practical use in real-time detection tasks [19], [20]. Recent
studies have shown that it is possible to expand the receptive
field by using large-kernel depthwise separable convolutions
(DW) while minimizing computational costs [21]. Inspired
by these findings, this paper introduces the CD module
as a replacement for the BottleNeck modules in the C3
module of the original network. As illustrated in Fig.3 (b),
the CD module incorporates a 5×5 DW convolution to
increase the receptive field of the base module. The 1×1
convolutions are replaced with 3 × 3 convolutions, and
an additional 3×3 convolution is introduced with an extra
residual connection on the residual branch. The output of
the first 3×3 convolution serves as a residual branch output,
and the Add operation is replaced with the Concat operation.
Additionally, a 1×1 convolution is added to adjust the output
channel count. This approach enables a more comprehensive
extraction of contextual information, leading to a significant
increase in detection accuracy.

Compared to the module in Fig. 3(a), the module proposed
in this paper (Fig. 3(b)) provides a significantly larger
receptive field, enabling the extraction of more comprehen-
sive feature information and establishing a solid foundation
for subsequent feature fusion. Compared to the module in
Fig. 3(d), the proposedmodule uses a similar residual concept
but reduces the number of 3×3 convolutions. The use of two
3×3 convolutions and one 5×5 DW convolution for feature
extraction effectively reduces the parameter count while
preserving the richness of extracted features. Meanwhile,
the module in Fig. 3(c) represents the currently popular
reparameterization structure, which is considered a tool
for improving detection accuracy with no additional cost.
However, it introduces challenges such as longer training
time, higher hardware consumption, and larger quantization
errors after model compression. In comparison, the module
proposed in this paper provides a simpler and more efficient
alternative. It requires fewer training resources and exhibits
smaller quantization errors after model compression.

B. MFFPN
In YOLOv5, the FPN+PAN feature pyramid structure
is utilized to fuse shallow-level and deep-level feature
maps, thereby combining their rich semantic and positional
information for road scene detection. However, this approach
suffers from information loss in the unidirectional feature
enhancement process. To address this issue, this paper
proposes the MFFPN. Illustrated in Fig. 4 and represented by
the light purple lines in Fig. 1, the MFFPN structure provides
several enhancements. The MFFPN structure addresses
the problem of extracting feature information from small
objects within the FPN+PAN structure. By employing
an up-sampling feature fusion approach, it resolves the
issue of feature loss commonly encountered in traditional

FIGURE 4. The Structure of the Multi-scale Fusion Feature Pyramid
Network. The red lines form the FPN structure, transmitting deep feature
information to shallower layers, enhancing semantic representation at
multiple scales. The blue lines constitute the PAN structure, transmitting
shallow information to deeper layers, enhancing localization capabilities.
The golden lines fuse shallow and deep information, addressing
information loss issues and augmenting the diversity of feature
information.

convolutional down-sampling feature fusion. In the task of
road scene object detection, the MFFPN structure greatly
improves the accuracy of detecting small objects while
ensuring the integrity of information during feature fusion.

The MFFPN structure introduces an additional output of
size 160×160, thereby expanding the original three-level
feature map output to four levels. This expansion enables
capturing more detailed feature information related to small
and densely packed objects in the shallow-level feature maps.
Meanwhile, the shallow-level feature information of sizes
80×80 and 40×40 is directly connected to the output and
fused with the deep-level feature information. Besides, the
shallow-level feature information of size 20×20 is fused
with the deep-level feature information of size 40×40 and
80×80, as indicated by the golden section in the figure.
This comprehensive fusion of shallow-level and deep-level
features effectively addresses the issue of information loss,
leading to improved detection accuracy. It is important to
note that the MFFPN structure diverges from the fully
connected structure between shallow-level and deep-level
feature maps used in BiFPN. This deviation is mainly due
to concerns about parameter overload caused by multiple
Concat operations. Such concerns make the fully connected
structure less suitable for autonomous driving applications.
In contrast, the proposedMFFPN structure achieves a balance
between feature fusion and computational efficiency, which
improves the detection accuracy for small and densely packed
objects in road scenes.

C. SPECIAL DECOUPLED HEAD
In recent years, the decoupled head structure has become
a preferred choice in object detection algorithms, such as
YOLOX, YOLOv6, YOLOv8, and DOOD [13], [14], [22].
YOLOX introduces the decoupled head structure to the
YOLO series to solve the problem of conflicting attention
between classification and regression tasks in the coupled
head structure. This has significantly improved both the

VOLUME 11, 2023 121193



Z. Lv et al.: Road Scene Multi-Object Detection Algorithm Based on CMS-YOLO

detection accuracy and convergence speed of the algorithms.
In addition to YOLOX, YOLOv8 further optimizes the
decoupled head structure by introducing a new approach
that eliminates the Objectness branch, thereby achieving
higher detection accuracy. In this approach, deformable
convolutions are utilized with learnable offsets in each
branch to enable the adaptive selection of spatial features for
each output detection head [22]. However, it is noteworthy
that most existing algorithms still rely on the conventional
decoupled head structure. Although these algorithms utilize
separate parameters to learn task-specific features, they
fail to fundamentally address the inherent conflict between
classification and regression tasks. This is primarily due
to the varying semantic and spatial details captured by the
output feature maps of different layers. Though shallow-level
feature maps excel at capturing fine edge details, they
lack semantic context, whereas deep-level feature maps
contain rich semantic information but exhibit coarse spatial
resolution. As a result, fully leveraging the advantages of
the decoupled head structure becomes challenging due to the
mismatched characteristics of these feature maps.

FIGURE 5. The Structure of the Special Decoupled Head (SDH). In this
figure, only the {P2, P3, P4, P5} layers are shown, and each layer requires
the incorporation of contextual feature information from the upper and
lower layers (represented by dashed lines, indicating the connection of
SEC and DEL modules with contextual feature information).
DW represents 3×3 depth-wise separable convolutions.

To address the above issues, this paper proposes the Special
Decoupled Head (SDH). At each output layer, the SDH
incorporates the Semantic Encoding for Classification (SEC)
and Detail Encoding for Localization (DEL) modules to com-
bine more suitable contextual semantic information for their
respective tasks, as illustrated in Fig. 5. In the classification
branch, the objective is to determine the category based on
the image’s feature information, and it is crucial to utilize
feature maps with richer semantic information. Therefore,
the SEC module, which enriches semantic information while
sacrificing some spatial details, is used for the classification
task. In the localization branch, where capturing finer edge
details is vital for accurate bounding box regression, the
DEL module is utilized, which emphasizes edge details at

the cost of some semantic information. Experimental results
indicate that the proposed SDH detection head effectively
resolves the conflict between classification and regression
tasks, and it outperforms both traditional decoupled and
coupled head structures in addressing this issue. In road
scene object detection tasks, the SDH three-layer joint output
structure seamlessly resolves the conflict between the focus
on classification and regression tasks. It efficiently detects
occluded targets and accurately determines their respective
categories, thereby enhancing the precision of road scene
object detection.

1) THE SEC MODULE
In existing algorithms, the classification task often focuses
on determining the features of the object’s key and salient
parts but ignores the sparsely distributed feature regions of
the key parts. This can lead to feature redundancy. This
paper believes that during classification, the surrounding
contextual features also help to infer the object’s category.
For example, the presence of cars often coincides with the
presence of buses, allowing the recognition of occluded or
distant car objects by utilizing features from a larger region.
Therefore, this paper introduces the SECmodule, which aims
to leverage feature maps with richer semantic information for
the classification task, as depicted in Fig. 6. In this figure, the
output feature map P undergoes a downsampling operation
using a convolutional operation with a kernel size of k=3
and a stride of s=2. Then, the downsampled feature map is
concatenated with the deep-level feature map, as shown in
Equation (1). It is noteworthy that the SEC module not only
utilizes the key features from the P layer but also integrates
richer semantic information from the deep-level featuremaps.
Experimental results indicate that this design is effective for
inferring the object’s category.

Out = Concat (P+ 1,CBS (P)) . (1)

FIGURE 6. The structure of the SEC module.

2) THE DEL MODULE
In existing algorithms, the localization task is usually
performed by regressing the corner points of the bounding
boxes based on the edge details in the P-layer feature map.
However, relying only on the P-layer feature information can
cause errors in the predicted bounding boxes. To solve this
problem, this paper proposes the DEL module, as shown in
Fig. 7. It is believed that deep-level featuremaps containmore
comprehensive edge detail information, which is crucial for
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accurate bounding box regression. Meanwhile, shallow-level
feature maps have larger spatial dimensions, allowing the
capturing of the entire object and providing more information
to determine the object’s shape and size. In Fig. 7, the P-layer
output incorporates feature information from both the P+1
and P-1 layers. The P+1 layer contributes more edge detail
information, while the P-1 layer provides a broader feature
map. This integration is performed according to Equation (2).
Experimental results indicate that the SDH structure, con-
sisting of the SEC and DEL modules, effectively leverages
richer semantic and edge detail information, thus decoupling
the classification and localization tasks and improving their
performance.

Out = CBS (CBS (P− 1) + CBS (Upsample (CBS (P))))

+ CBS (Upsample (P+ 1)) + CBS (P) . (2)

FIGURE 7. The Structure of the DEL Module. In the figure, the upsampling
operation (Upsample), 1×1 convolution, and 3×3 convolution are all used
to adjust the channel number and dimensions of the feature maps to fit
the Add operation.

III. EXPERIMENTS
A. DATASETS
To validate the effectiveness and authenticity of the proposed
CMS-YOLO algorithm for autonomous driving applications,
experiments were conducted using the publicly available
datasets, namely Udacity Self-Driving and BDD100K. The
input image size was adjusted to 640×640.

The Udacity Self-Driving dataset is designed by
Udacity specifically for autonomous driving algorithm
competitions. It provides 2D annotations for consecu-
tive video frames. The dataset consists of 11 classes,
including biker, car, pedestrian, trafficLight, trafficLight-
Green, trafficLight-GreenLeft, trafficLight-Red, trafficLight-
RedLeft, trafficLight-Yellow, trafficLight-YellowLeft, and
truck. However, since is a limited number of labels for the
trafficLight-YellowLeft class, which results in fluctuations
in model performance, this class was not involved in
the experiments, and the evaluation was performed using
10 classes. The dataset contains a total of 29,800 images with
a resolution of 512×512. These images were randomly split
into a training set (26,579 images) and a validation set (3,221
images) at a ratio of 9:1.

BDD100K is one of the widely used datasets for
autonomous driving. It consists of 100,000 images in
total, and 80,000 images have been annotated. Among the
annotated images, 70,000 were used as the training set, while
the remaining 10,000 images were used for validation. The
BDD100K dataset includes 10 classes: Person, Rider, Car,
Bus, Truck, Bike, Motor, Train, TrafficLight, and Traffic
Sign. However, due to the lack of instances for the Train
class, it was excluded from the experiments. Additionally,
considering the need to identify specific traffic light states
such as green, red, yellow, or none, the class TrafficLight
was further divided into TrafficLight-Green, TrafficLight-
Red, TrafficLight-Yellow, and TrafficLight-None. Thus, the
final version of the BDD100K dataset used for experiments
comprises 12 classes: Person, Rider, Car, Bus, Truck, Bike,
Motor, TrafficLight-Green, TrafficLight-Red, TrafficLight-
Yellow, TrafficLight-None, and Traffic Sign. Fig. 8 presents
some images in the Udacity Self-Driving and BDD100K
datasets.

FIGURE 8. Images from the udacity self-driving and BDD100K datasets.

B. EVALUATION METRICS AND EXPERIMENTAL SETUP
The evaluation metrics used in this study include precision
(P), recall (R), mean average precision at IoU threshold 0.5
(mAP@0.5), parameter count (Parameters), and frame per
second (FPS). The specific calculation formulas are shown
below:

P =
TP

TP+ FP
. (3)

R =
TP

TP+ FN
. (4)
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mAP@0.5 =

Nclass∑
i=1

∫ 1
0 PiRidR

Nclass
. (5)

Formulas (3) and (4) show the evaluation metrics used in
this study. P represents precision, which denotes the ratio
of correctly predicted positive samples among the predicted
positive samples. R represents recall, which denotes the ratio
of correctly predicted positive samples among all actual
positive samples. TP refers to the number of true positive
detection boxes with an intersection over union (IoU) greater
than the specified threshold. FP refers to the number of false
positive detection boxes with an IoU less than or equal to the
threshold. FN refers to the number of false negative cases
where ground-truth boxes are not detected. In Formula (5),
@0.5 denotes the threshold set for IoU at 0.5.Nclass represents
the total number of classes.

∫ 1
0 PiRidR represents the accuracy

of detecting the target in the i-th class, and mAP refers to
the mean average precision, which represents the average
accuracy across all classes.

The experimental configuration and environment for the
study were as follows: The GPU model used was NVIDIA
RTX 4090 with 24 GB memory, and the CPU model was
Intel i7-13700KF. The software used were PyTorch 1.13.1,
Python 3.9, and Cuda 11.7.1. The operating system used
was Windows 10. The training parameters were set as
follows: the input image size was configured to 640×640
pixels, and the pre-trained weight used was yolov5s.pt. The
maximum number of iterations was set to 300, with a
batch size of 16 and 8 num_workers for multi-threading.
The optimization algorithm chosen was stochastic gradient
descent (SGD) with a momentum of 0.937 and a weight
decay coefficient of 0.0005. Additionally, the initial learn-
ing rate was set to 0.01 and dynamically decayed using
the cosine annealing algorithm, reaching a final learning
rate of 0.002.

C. RESULTS AND ANALYSIS
1) ABLATION EXPERIMENTS
To verify the effectiveness and authenticity of the proposed
CMS-YOLO algorithm, ablation experiments were con-
ducted on the Udacity Self-Driving and BDD100K datasets.
These experiments evaluated the impact of various modules
and techniques on the overall performance of the algorithm.
The experimental results are listed in Table 1 and Table 2,
where the symbol ‘‘✓’’ indicates the use of a specific module
or technique.

As shown in Table 1, the experimental results on
the Udacity Self-Driving dataset demonstrate the signif-
icant improvements achieved by each enhancement of
the CMS-YOLO algorithm compared to YOLOv5. Specif-
ically, in Scheme 0, using YOLOv5 as the baseline,
the algorithm achieves a mAP@0.5 of 86.1% and a
mAP@0.5:0.95 of 55.8%. In Scheme 1, replacing the
network’s backbone with the CD structure leads to a 2.2%
improvement in mAP@0.5 and a 1.8% improvement in

mAP@0.5:0.95. Scheme 2, which incorporates the MFFPN
as the feature fusion module, shows an increase of 2.9%
in mAP@0.5 and 3.5% in mAP@0.5:0.95. In Scheme 3,
the SDH is introduced by modifying the original coupled
head, leading to a 2.8% improvement in mAP@0.5 and a
5.3% improvement in mAP@0.5:0.95. Combining CD with
MFFPN in Scheme 4 improves the mAP@0.5 by 3.6%
and mAP@0.5:0.95 by 4.9%. Scheme 5 combines CD with
SDH, achieving a 3.5% improvement in mAP@0.5 and a
5.8% improvement in mAP@0.5:0.95. Finally, in Scheme
6, the CMS-YOLO algorithm incorporates all three mod-
ules together, and it improves mAP@0.5 by 4.2% and
mAP@0.5:0.95 by 6.5%. These results demonstrate the effec-
tiveness and performance gains of the CMS-YOLO algorithm
across different modules and configurations, verifying its
superiority over YOLOv5 on the Udacity Self-Driving
dataset.

The experimental results on the BDD100K dataset demon-
strate that each enhancement in the CMS-YOLO algorithm
brings a significant performance improvement compared to
YOLOv5. In Scheme 1, replacing the original backbone
with the CD structure leads to a 1.8% improvement in
mAP@0.5 and a 2.7% improvement in mAP@0.5:0.95.
Scheme 2, which replaces the FPN+PAN structure with
MFFPN, achieves a remarkable improvement of 4.7% in
mAP@0.5 and 3.5% in mAP@0.5:0.95. In Scheme 3,
incorporating the SDH structure as the detection head leads
to a substantial improvement of 5.7% in mAP@0.5 and
4.9% in mAP@0.5:0.95. Combining the CD structure with
MFFPN in Scheme 4 leads to a significant improve-
ment of 6.4% in mAP@0.5 and 5.0% in mAP@0.5:0.95.
Scheme 5, which combines CD with SDH, shows an even
greater improvement of 6.8% in mAP@0.5 and 5.6% in
mAP@0.5:0.95. Finally, in Scheme 6, the CMS-YOLO
algorithm achieves the highest performance by combining all
three modules, with a significant improvement of 7.2% in
mAP@0.5 and 5.9% in mAP@0.5:0.95. These results fully
demonstrate the effectiveness of the CMS-YOLO algorithm,
showing its superiority over YOLOv5 in various modules and
configurations when evaluated on the challenging BDD100K
dataset.

In Tables 3 and 4, regardless of the consideration of target
size, CMS-YOLO consistently outperforms other models,
achieving higher AP and AR values across various IOU
thresholds. When we factor in the target size, CMS-YOLO’s
superiority becomes even more apparent, with significantly
higher AP and AR values compared to YOLOv5s. To elab-
orate further, CMS-YOLO attains remarkable AP values of
52.8% and 18.8% for small object detection, showcasing
improvements of 2.3% and 9.1%, respectively, compared
to YOLOv5s. The AR values for CMS-YOLO in small
object detection reach impressive figures of 65.5% and
24.1%, demonstrating substantial improvements of 5.4%
and 10.3%, respectively. These experimental results confirm
the effectiveness of CMS-YOLO in detecting small objects
within road scenes.
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TABLE 1. Ablation experiments of the CMS-YOLO algorithm on the udacity self-driving dataset.

TABLE 2. Ablation experiments of CMS-YOLO algorithm on BDD100K dataset.

TABLE 3. Comparison of object detection performance on different-sized objects between YOLOv5s and CMS-YOLO using the udacity self-driving dataset.

TABLE 4. Comparison of object detection performance on different-sized objects between YOLOv5s and CMS-YOLO using the BDD100K Dataset.

Fig. 9, 10, 11, and 12 show the comparison of
mAP@0.5 between CMS-YOLO and YOLOv5s, YOLOv8s
for each class on the Udacity Self-Driving and BDD100K
datasets, respectively. The results exhibit great performance
improvements, particularly in classes like biker, pedestrian,
person, and Traffic Sign, where dense small objects are
prevalent. The experimental results fully demonstrate the
efficacy of the CD structure, which enables the network
to capture a larger receptive field and extract more
comprehensive and informative features. The MFFPN
structure plays a crucial role in fusing shallow and deep
features, contributing to enhanced feature representation
and improved performance. Besides, the SDH structure
effectively resolves the conflict between classification and

regression tasks, thereby improving the network’s perception
and discrimination abilities. The CMS-YOLO algorithm
effectively reduces both false positives and false negatives
and greatly enhances the detection accuracy of dense small
objects in road scenes. It is verified to be highly effective
in capturing intricate details and significantly improving
detection precision in challenging scenarios.

2) COMPARATIVE EXPERIMENTS
By conducting these comparative experiments on the Udacity
Self-Driving and BDD100K datasets, the detection capabil-
ities of the CMS-YOLO algorithm were comprehensively
evaluated. The current state-of-the-art algorithms were sep-
arately trained on the Udacity self-driving and BDD100K
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FIGURE 9. Comparison of Results between CMS-YOLO and YOLOv5s on
the Udacity self-driving dataset for each class. The class numbers and
their corresponding class names are as follows: 1: biker, 2: car, 3:
pedestrian, 4: trafficLight, 5: trafficLight-Green, 6: trafficLight-GreenLeft,
7: trafficLight-Red, 8: trafficLight-RedLeft, 9: trafficLight-Yellow, 10: truck.

FIGURE 10. Comparison of Results between CMS-YOLO and YOLOv5s on
the BDD100K dataset for each class. The class numbers and their
corresponding class names are as follows: 1: Person, 2: Rider, 3: Car, 4:
Bus, 5: Truck, 6: Bike, 7: Motor, 8: TrafficLight-Green, 9: TrafficLight-Red,
10: TrafficLight-Yellow, 11: TrafficLight-None, 12: Traffic Sign.

datasets, and the results were then compared to provide a
detailed analysis of their respective performance advantages
and disadvantages.

Table 5 presents a comparative analysis of the proposed
CMS-YOLO algorithm and current state-of-the-art algo-
rithms on the Udacity Self-Driving dataset. CMS-YOLO
outperforms the popular two-stage detection algorithm,
Faster-RCNN, with a notable improvement of 11.7% in
mAP@0.5 and a substantial increase of 23.8 FPS in detection
speed. This signifies a significant improvement in both
accuracy and efficiency. When compared to the single-stage
detection algorithm, SSD, CMS-YOLO overcomes the
challenge of detecting densely packed small objects and

FIGURE 11. Comparison of results between CMS-YOLO and YOLOv8s on
the udacity self-driving dataset for each class.

FIGURE 12. Comparison of results between CMS-YOLO and YOLOv8s on
the BDD100K dataset for each class.

achieves a remarkable improvement of 38.2% in mAP@0.5,
accompanied by an increase of 12.7 FPS in detection speed.
These improvements successfully overcome the limitations
of SSD in handling such targets. Compared to YOLOv4,
CMS-YOLO demonstrates a noteworthy increase of 6.9%
in mAP@0.5, accompanied by a significant enhancement in
detection accuracy. Moreover, when compared to the four
versions of YOLOv5 (s, m, l, x), CMS-YOLO achieves
a substantial improvement of 4.2%, 3.8%, 3.2%, 2.5%
in mAP@0.5 and achieves a real-time detection speed
of 34.5 FPS. In the field of autonomous driving, this is
considered to meet the requirements of real-time detection,
as it surpasses the standard threshold of 30 FPS. Importantly,
this performance exceeds that of the l and x versions
by 13.3 FPS and 25.4 FPS, respectively. Against TPH-
YOLOv5, which incorporates a popular transformer struc-
ture, CMS-YOLO achieves a commendable 2.4% improve-
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ment in mAP@0.5 while maintaining comparable detection
speed. In comparison to YOLOv7, CMS-YOLO achieves
a commendable improvement of 2.2% in mAP@0.5 and
a simultaneous increase in detection speed by 14.5 FPS.
Although YOLOv7-tiny demonstrates high real-time detec-
tion speed, its detection accuracy lags. In contrast, CMS-
YOLO achieves an impressive improvement of 11.5% in
mAP@0.5, demonstrating a fine balance between speed and
accuracy. Additionally, when compared to YOLOv8s, one
of the latest algorithms in the YOLO series, the proposed
CMS-YOLO algorithm achieves a superior balance between
detection accuracy and speed, leading to an improvement of
3% in mAP@0.5.

TABLE 5. Comparative experiments of the CMS-YOLO algorithm on the
udacity self-driving dataset.

Table 6 provides a comprehensive comparison between
the proposed CMS-YOLO algorithm and the current state-
of-the-art algorithms on the BDD100K dataset. CMS-YOLO
surpasses Faster-RCNN with a significant improvement of
16% in mAP@0.5. In contrast to YOLOv3, CMS-YOLO
achieves an impressive increase of 19% in mAP@0.5,
demonstrating its remarkable performance. Besides, CMS-
YOLO exhibits a noteworthy improvement of 7.9% in
mAP@0.5 when compared to YOLOv4. Similarly, when
compared to the four versions of YOLOv5 (s, m, l, x),
CMS-YOLO exhibits a substantial increase of 7.2%, 7%,
4.5%, 2.8% inmAP@0.5, highlighting its enhanced detection
capability. In comparison to TPH-YOLOv5, CMS-YOLO
shows a commendable improvement of 2.5% in mAP@0.5,
demonstrating its superiority. When measured against IMP
YOLOv5 and MCS-YOLO, CMS-YOLO outperforms both
with a 7.9% and 5.5% improvement in mAP@0.5, respec-
tively. Additionally, in contrast to YOLOv7, CMS-YOLO
achieves a commendable improvement of 2.3% inmAP@0.5,
demonstrating its remarkable performance. While there may
be variances in real-time detection speed, CMS-YOLO out-
performs YOLOv7-tiny with an impressive improvement of
8% in mAP@0.5, showing its enhanced detection accuracy.
Furthermore, when compared to YOLOv8s, the proposed
CMS-YOLO algorithm achieves a notable improvement of
4% in mAP@0.5. The experimental results fully verify
the superiority of CMS-YOLO to current state-of-the-art
algorithms: it achieves higher detection accuracy while
effectively fulfilling the demands of real-time detection
scenarios.

TABLE 6. Comparative experiments of the CMS-YOLO algorithm on the
BDD100K dataset.

3) DETECTION RESULT VISUALIZATION
To provide a more intuitive representation of the superiority
of the proposed CMS-YOLO algorithm, six images were ran-
domly selected from the Udacity Self-Driving and BDD100K
datasets for comparison. The comparative results are given in
Fig. 13 and 14, showcasing the algorithm’s performance in
detecting objects in real-world road scenes.

FIGURE 13. Visualization Comparison on the udacity self-driving dataset.

FIGURE 14. Visualization comparison on the BDD100K dataset.

Fig. 13 and 14 present the visual comparison results
of CMS-YOLO, YOLOv5s, YOLOv7, and YOLOv8s on

VOLUME 11, 2023 121199



Z. Lv et al.: Road Scene Multi-Object Detection Algorithm Based on CMS-YOLO

the Udacity Self-Driving and BDD100K datasets. It can
be seen that YOLOv5s, YOLOv7 and YOLOv8s have
several instances of missed detections or false detections for
objects such as traffic signals, traffic signs, and pedestrians.
In contrast, CMS-YOLO can accurately detect these objects.
Besides, the CMS-YOLO algorithm demonstrates higher
confidence and robustness in detecting dense small objects in
road scenes under varying weather and lighting conditions.
This remarkable performance advantage makes CMS-YOLO
well-suited for diverse autonomous driving scenarios.

IV. CONCLUSION
This paper addresses the issue of real-time and high-
precision object detection in autonomous driving scenarios by
proposing the CMS-YOLO algorithm, which aims to achieve
a balance between accuracy and efficiency. To accomplish
this, several key improvements have been introduced. Firstly,
the backbone of the original network is replaced with the
CD module to enable the network to extract features with a
larger receptive field and richer information. This prepares
the network for subsequent feature fusion. Secondly, the
MFFPN is designed to efficiently fuse shallow and deep-level
features, thereby avoiding feature information loss during
propagation. Lastly, the SDH is introduced to resolve the
conflict between classification and regression tasks, which
further enhances the algorithm’s performance. Experimental
results demonstrate the effectiveness of the CMS-YOLO
algorithm, and it achieves a mAP@0.5 of 90.3% and
59.1% on the Udacity Self-Driving and BDD100K datasets,
respectively, showing an improvement of 4.2% and 7.2% over
the baseline algorithms. Meanwhile, the proposed algorithm
achieves a real-time detection speed of 34.5 FPS, meeting
the requirements of accuracy and real-time performance
in autonomous driving scenarios. Compared to current
mainstream algorithms, the CMS-YOLO algorithm achieves
superior performance and is highly suitable for autonomous
driving applications. Besides, it has great potential for
practical implementation in real-world autonomous driving
systems.
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