
Received 27 September 2023, accepted 18 October 2023, date of publication 26 October 2023,
date of current version 10 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3327817

metaSafer: A Technique to Detect Heap Metadata
Corruption in WebAssembly
SUHYEON SONG 1, SEONGHWAN PARK1, AND DONGHYUN KWON 2
1Department of Information Convergence Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
2School of Computer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

Corresponding author: Donghyun Kwon (kwondh@pusan.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government [Ministry of
Science and ICT (MSIT)] under Grant RS-2023-00217689, and in part by the MSIT, Korea, through the Information Technology Research
Center (ITRC) support program supervised by the Institute for Information Communications Technology Planning Evaluation (IITP) under
Grant IITP-2023-RS-2023-00259967.

ABSTRACT WebAssembly (Wasm), a technology enabling efficient native code execution in web browsers,
has seen a significant rise in adoption as a popular compilation target. This has led to the emergence of
lightweight web services powered by Wasm, characterized by their small binary size and reduced data
transfer overhead, thanks to the inherent efficiency of Wasm. Despite their lightweight nature, these services
can deliver powerful features like image/video processing, AI and graphical application that surpass the
capabilities of JavaScript. To ensure lightweight web services and enhance the overall web experience,
Wasm has been extensively optimized. However, these optimizations have raised concerns about memory
safety, leading to memory-related vulnerabilities. Wasm’s characteristic memory structure, linear memory,
has vulnerabilities that provide various attack vectors to attackers. In particular, it presents various attack
possibilities through metadata modification containing memory structure information. Attackers can exploit
heap memory overflow in Wasm applications, allowing them to target arbitrary memory addresses, modify
data, or execute arbitrary code. Such overflows can corrupt memory metadata, resulting in incorrect memory
behavior. While research has mitigate memory-related weaknesses in languages such as C and C++ and
architectures like X86 in recent decades, the direct application of security solutions designed for different
domains to Wasm is not a practical approach. Consequently, allocators in Wasm remain vulnerable to issues
like heap overflow and metadata corruption. Thus, there is a pressing need for tailored memory safety
techniques and solutions that accommodate Wasm’s architecture-agnostic and linear memory structures.
In this paper, we propose metaSafer as a solution. By shadowing metadata from Wasm linear memory
to JavaScript virtual machine memory and conducting metadata verification, metaSafer effectively blocks
attack attempts and vectors. Notably, our solution achieves fast memory shadowing and validation while
maintaining a small code size. Through various verification processes, we measured the performance and
code size of metaSafer, revealing that it is a software-only security solution with no additional hardware
requirements. metaSafer demonstrates robust metadata protection for Wasm applications with an acceptable
performance overhead of up to 8% in SQLite speed tests and Polybench benchmarks.

INDEX TERMS WebAssemlby, javaScript, security, spatial memory safety, metadata corruption.

I. INTRODUCTION
As the web environment matures, recent web services are
increasingly equipped with web applications that provide

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh .

quality content, such as user interaction or visual graphics in
the browser.

Accordingly, the WebAssembly(Wasm) [1] appeared in
2015. Rather than a web application driven by JavaScript,
a high-performance and functional web application devel-
oped in a language that provides more diverse features and

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 124887

https://orcid.org/0009-0005-6220-0264
https://orcid.org/0000-0002-7507-3111
https://orcid.org/0000-0003-4704-5364

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

extensibility, such as C, C++, and RUST, is executed in the
web environment leveraging a Wasm. It runs native code in
the browser, and the execution speed is similar to native code.
Therefore, users can enjoy advanced applications that provide
various interactions and visual graphics through Wasm in a
web browser without downloading or installing them on the
local machine. In addition, there is an advantage of providing
broad compatibility that allowsWasm applications to be used
through a browser without depending on the architecture of
the host machine or a specific runtime.

As a result of these advantages, Wasm is being used to
create a wide variety of high-performance web applications,
including games, video editing, and machine learning [2].
The significance of Wasm in the evolving web environment
is that it allows developers to create high-performance appli-
cations that can run on the web without having to sacrifice
security or portability. However, due to Wasm’s optimized
components, it lacks many security features. Therefore,
various old security problems solved when performing in the
existing legacy environment are reappearing in the Wasm
environment [3]. By this problem, despite the short history
of Wasm, many security and defense techniques studies are
being conducted [4], [5], [6], [7], [8].

Since Wasm applications are distributed and executed
through the web, the application size and performance are
essential considerations [9]. To satisfy these requirements,
Wasm applications often use simplified allocators such
as emmalloc, which does not provide memory protection
mechanisms or is used in limited coverage. In addition,
Wasm’s memory area consists of one large array, which is
managed by a region using metadata. Therefore, due to the
characteristics of these allocators and memory structures,
linear memory is vulnerable to heap overflow attacks and
allows arbitrary memory writes through attack vectors
such as metadata corruption attacks. These vulnerabilities
can lead to attack threats such as indirect control flow
divert [10].

In this paper, we propose metaSafer, which saves metadata
stored in the existing Wasm linear memory structure into
JavaScript virtual machine area to prevent various attacks
through metadata corruption. It shadows metadata to provide
metadata access control and protection from a malfunction of
the Wasm application.

metaSafer protects Wasm applications against attacks
using metadata corruption through conventional Wasm linear
memory overflow and, at the same time, guarantees execution
time similar to that of existing Wasm applications through
metadata handling optimization techniques. In addition, since
the metaSafer prototype was implemented with a small
code size of 7%, the existing advantages of Wasm can be
maintained.
Contribution: The contributions of metaSafer can be

summarized in three ways. First, metaSafer provides a robust
defense against attacks targeting the metadata contained
within Wasm linear memory. Second, metaSafer provides
high-level metadata security while minimizing the increase

in code size and providing optimized performance. Lastly,
since the security features are provided through JavaScript,
metaSafer has high compatibility that does not depend on a
specific architecture and runtime environment.

• Metadata protection metaSafer is a novel security
solution specifically designed to address the increas-
ing threat of attacks targeting Wasm linear memory.
In particular, metaSafer builds the defense from attacks
that exploit metadata containing memory structure
information. These types of attacks can be hazardous
as they can result in the execution of arbitrary code
and even enable an attacker to take control of a system.
metaSafer mitigates these attacks by isolating and
shadowing the metadata, making it much more difficult
for attackers to exploit.

• Optimization metaSafer is designed to optimize the
performance and minimize the code size increase when
porting from specific allocator functions written in C
to JavaScript that applied for metaSafer protection.
Regarding code size, metaSafer efficiently and flexibly
patches existing instructions through an API provided
in the form of a library. More specifically, all metaSafer
code is designed in statement units, maintaining a small
code size even when all protection functions are applied
throughout the application operation. So it detects
metadata corruption and defends against various attacks
with only an increase in file size of about 7%. This
optimization minimizes the overhead incurred when
distributing application packages. Regarding perfor-
mance optimization, We introduce optimized metadata
access between Wasm and JavaScript via the address
encoder. Using an address encoder allows access to
random addresses rather than a linear search method
for metadata stored in VM memory. It enables faster
metadata access in the JavaScript Virtual Machine and
leads to overall performance improvement of Wasm
application.

• Compatibility metaSafer is a software-only security
solution, delivering platform-agnostic security features
without the need for additional hardware extensions
or any alterations to the Wasm runtime. And it does
not require specific hardware extension and hardware
based security features. This inherent adaptability
enables ‘‘metaSafer’’ to seamlessly function across
diverse environments, all without being tethered to
any particular system configuration. Furthermore, the
inclusion of all security functions directly within the
compiled code guarantees a consistently high level of
stability and reliability in its security features. Therefore,
metaSafer ensures usability and applicability in various
environments without compromisingWasm’s scalability
and compatibility features.

In conclusion, metaSafer represents a novel approach/
solution in addressing the metadata corruption within the
WASM linear memory structure while effectively thwarting

124888 VOLUME 11, 2023

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

FIGURE 1. Overview of WebAssembly.

FIGURE 2. The Wasm module inside of JavaScript virtual machine and
Wasm linear memory in Wasm module.

FIGURE 3. Overview of unlink exploit attack.

potential attack vectors stemming from malicious metadata
manipulation. This software-only protective technique offers
a significant advantage in its independence from hardware
requirements. Delivered to developers as a library, metaSafer
seamlessly integrates into existing systems without requir-
ing runtime modifications. It achieves these deterministic
security defenses on Wasm linear memory while incurring
minimal performance overhead and maintaining a compact
code footprint.

metaSafer is a formidable and adaptable solution tailored
to combat a critical security vulnerability, memory-targeted
attacks onWasm-powered web applications. The significance
of metaSafer lies in its potential to elevate the security
standards for web-based systems, ensuring the integrity
and reliability of these platforms in the face of evolving
cybersecurity threats.

II. BACKGROUND
A. WEBASSEMBLY
The incorporation of JavaScript in the creation of web ser-
vices has occasionally hindered the evolution of web-based
services and applications, primarily due to the inherent
constraints of JavaScript with regards to its functionality
and performance [11]. It’s important to note that many web
services rely heavily on JavaScript for their implementation.
However, this approach may not always be practical when
compared to technologies like Wasm, which allows the
development of web services using native source code
languages such as C, C++, or Rust. This distinction
highlights that Wasm provides a more versatile and efficient
alternative for certain applications, addressing some of
the limitations associated with JavaScript in web service

development. As a result, the capabilities and speed of
JavaScript have posed significant challenges and bottlenecks,
slowing down the progress of creating web-based services
and applications in certain contexts. Wasm enables codes
written in C, C++ and Rust to be executed quickly and
safely regardless of specific runtime environments such as
hardware and platforms (Figure 1). Unlike JavaScript, Wasm
is provided in a low-level bytecode format. It is executed in
an isolated execution space for a safe execution environment.
Nevertheless, it still provides a fast runtime execution speed
similar to the native code execution speed. Since all contents
and data for Wasm applications are transmitted through the
network, minimizing the size of transmitted data is a vital
optimization target factor that affects overall application
performance and web experience [9]. By reducing the size of
this code, the data transmission time and the time consumed
for jit compile is reduced, which can affect actual application
execution performance. In addition, components of Wasm
are managed as modules, which include functions, globals,
indirect call tables, and memories. The embedder, such
as a JavaScript virtual machine or an operating system,
provides the instantiation operation for modules. Due to this
characteristic of Wasm, the embedder can access the module,
but Wasm cannot access the embedder area according to
the isolation policy. Figure 2 shows the state in which the
Wasm memory module is included in JavaScript. Within
the web application context, two types of memory are
used; JavaScript virtual machine memory and Wasm linear
memory. JavaScript can access Wasm memory through
specific APIs (e.g., WebAssembly.Memory), but Wasm itself
cannot directly access JavaScript memory due to security and
isolation measures. In addition, Wasmmemory is managed in
the form of a linear array, which is a memory area of a single
linear byte array specially designed to be used with Wasm
applications. Although this linear memory enables efficient
and fast memory access, it does not provide security functions
such as memory access control and paging for the heap area
within the linear memory, making it vulnerable to attacks
such as buffer overflow (BoF) [12] and memory leak.

B. WASM MEMORY ALLOCATOR AND VULNERABILITIES
Wasm uses allocators to manage memory, and one commonly
used allocator is ‘‘emmalloc,’’ known for its lightweight
design. Emmalloc is favored for Wasm applications due to
its smaller source code, occupying only 1/3 the size of native
allocators, resulting in more compact Wasm binary files.
However, it is important to note that emmalloc lacks certain
security features present in native allocators.

In emmalloc, memory is organized into regions, each
containing metadata and payload. The metadata in a region
includes information such as bottom and ceiling size, which
helps determine whether the region is free or in use. When
a region is allocated (in use), the payload is located between
metadata. On the other hand, if a region is freed, its metadata

VOLUME 11, 2023 124889

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

FIGURE 4. Overview of metaSafer API and library. The green box is the
parts of metaSafer. We shadow the metadata from Wasm Linear memory
to JavaScript memory which is trusted area.

contains pointers to the next and previous free regions,
enabling efficient management of the free list. Figure 3
shows the data structure of these regions. This linked-list-
based free list management poses a vulnerability, as Wasm
linear memory is susceptible to metadata corruption attacks
through heap overflow. Due to this specific characteristic of
Wasm linear memory management, attackers can potentially
exploit heap overflow vulnerabilities to tamper with metadata
and the free list, leading to arbitrary memory writes and
security breaches. Despite its advantages in terms of code size
and compact Wasm binary files, the lack of robust security
features in emmalloc raises concerns about memory safety.
As Wasm applications are transmitted over networks and
executed in various runtime environments, ensuring memory
safety is crucial to protect against potential attacks.

In emmalloc allocator, vulnerabilities named unlink exploit
[3] can be rise in wasm linear memory. And it shown in
Figure 3. When memory chunks are deallocated using the
free function, allocators attempt to consolidate adjacent free
chunks into a single larger one to prevent fragmentation.
In the event of data overflow in previous region, which might
occur due to an incorrect length parameter in a memcpy
operation, an attacker gains the ability to write to themetadata
adjacent to following region. This manipulation involves
clearing the used bit to free bit and creating a fabricated
metadata. Subsequently, when previous region is freed, the
allocator checks whether it can merge the newly freed chunk
with an adjacent free chunk. As the tampered metadata(free
bit) indicates that the following chunk is free, the allocator
invokes removeFromFreeList to unlink it in preparation for
merging. This enables the attacker to write an arbitrary value
to an arbitrary address.

III. THREAT MODEL AND ASSUMPTION
In this paper, we make the assumption that Wasm binaries
are distributed by a trusted entity, ensuring the integrity
and authenticity of the files. We assume that these binaries

are designed and implemented without intentional malicious
code, adhering to standard security practices. However, the
Wasm application executed on the client machine browser
is vulnerable to memory safety issues, specifically targeted
by metadata corruption attacks through heap overflow
vulnerabilities. These vulnerabilities can potentially lead to
control flow diversion [10] and arbitrary memory writes
within the Wasm binary.

Furthermore, we assume that the client-side machines
operate flawlessly and are regularly updated with the latest
operating system and hardware driver patches. We rely on the
correct functioning of the browser runtime, JavaScript virtual
machine, and compiler, which collectively provide a secure
execution environment for Wasm binaries

IV. DESIGN
metaSafer is a solution detects metadata corruption and
prevents further attacks. It shadows each region’s metadata
located inWasm linear memory to JavaScript virtual machine
memory. And that shadowedmetadata used as a criteria while
verification for metadata integrity. This section describes the
challenges of achieving the design of metaSafer.

A. DESIGN PRINCIPLE
To design and implement metaSafer, we follow three design
principle. Solutions to each principle are described in the
following sections.

• P1. Wasm provides access control to linear memory
from external sources, based on the Wasm sandbox
design. However, the current Wasm security policy
does not provide access control between memory
regionswithin the linearmemory. Therefore interference
between memory region should be prevented.

• P2. Security features should not have dependency on
a specific runtime or environment. In other words,
security features operating within Wasm should not
affect Wasm’s compatibility and versatility.To ensure
environment-agnostic features, metaSafer security fea-
tures should be provided irrespective of the host
architecture and browser environment.

• P3. Security features should not significantly impact
the ease of deployment and the performance of Wasm
applications. To achieve this, the size of the Wasm
deployment package should be kept to a minimum, and
runtime performance should be optimized.

B. DESIGN OVERVIEW
Metadata can be tampered with through overflow in Wasm
linear memory, allowing attackers to perform arbitrary
memory accesses. To address this critical security factor,
we designed metaSafer to protect the heap memory metadata,
which serves as a key attack surface. Each region’s metadata
is shadowed into the JavaScript VM, acting as our trust
anchor. This ensures that even if overflow occurs between
adjacent memory areas in linear memory, any metadata

124890 VOLUME 11, 2023

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

FIGURE 5. Example of Wasm linear memory layout and JavaScript memory layout that applied metadata management mechanism of metaSafer. Upper
side is the Wasm linear memory and the lower side is the JavaScript virtual machine memory(VM memory). Metadata shadowed in metaNode and the
metaNode used as element of metaArray. Address encoder located between Wasm linear memory and VM memory and encode the memory address into
metaArray array index value.

corruption can be detected during verification using the
shadowed metadata in the JavaScript VM (P1).

All security features and components of metaSafer are
embedded in the Wasm binary during the compile stage. As a
result, metaSafer is not bound to a specific runtime or host
architecture, ensuring ease of distribution and compatibility
across various environments. Moreover, metaSafer’s protec-
tion features do not rely on hardware-specific features, such
as Intel MPK or ARM Domain, which are only available in
specific architectures (P2).

metaSafer facilitates communication between Wasm byte-
code and the metaSafer library through APIs. These APIs
include a setter and a validator, responsible for shadowing
and verifying metadata, respectively. The shadowing and
verification processes are conducted in statement units
to minimize code size and avoid significant performance
overhead (P3). Further details on this process are provided
in Section VI-A.

Figure 4 shows the overview of metaSafer in JavaScript
virtual machine. In compile time, the metaSafer API is
applied on emmalloc allocator automatically. By doing this,
metaSafer API located in Wasm module and the metaSafer
library written in JavaScript operates on the JavaScript virtual
machine area. 1⃝ In every requests related with memory
allocation (malloc, free and etc), the Wasm application uses
memory allocator, and 2⃝ every time the allocator performs
any instruction that has metadata reference and writes(2.1),
metaSafer API works with it(2.2). To shadow and validate
the metadata, API calls the library and proceeds to address
encoding and switch the world from Wasm to JavaScript.
3⃝ metaSafer library shadow the metadata in the JavaScript
memory, and in case of validation, the metaSafer library
takes the metadata from JavaScript memory and proceeds

validation process. All this metaSafer operation is based on
the fact that the memory operation of theWasm application is
limited within its linear memory and cannot access JavaScript
virtual machine memory directly. In other words, the Wasm
application cannot modify the shadowed metadata.

C. EFFICIENT METADATA ACCESS
In the emmalloc allocator, accessing the metadata of the pre-
ceding region can be achieved through a pointer. To achieve a
similar approach in metaSafer, this method is not applicable
in JavaScript due to the lack of pointer support. To address
this issue, we attempted to design a method using a linked
list named freelist to manage a series of freed regions in
JavaScript. However, this approach resulted in substantial
search overhead due to linear search operations. To mitigate
this issue and improve efficiency, metaSafer employs a
different approach by handling metadata as an array in
JavaScript, providing random access via index values.

Metadata is managed as an object of an array, with the
address of each memory region transformed into an array
index. This enables direct and random access to metadata
without the need for linear search. To generate an array
index from a memory region address, we designed an address
encoder, the operation of which will be described in the
following section.

For efficient metadata management and fast access to
JavaScript shadowed metadata, we designed a metaArray
data structure containing each region’s metadata as element
and we called each element as metaNode. metaNode has
metadata as object. metaArray is stored and managed in
the JavaScript virtual machine as an array. It’s mechanism
describes in next paragraph.

VOLUME 11, 2023 124891

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

FIGURE 6. Algorithm of address encoder. it subtract the stack size from
the provided address and performing a right bit shift of 4.

Data Structure:The heap data area inWasm linearmemory
is represented as an array buffer, allowing for random access
to specific memory areas using address values. One approach
to shadowing the corresponding array buffers into JavaScript
involves using a specific memory address as a metadata array
index, resulting in fast search times. However, this approach
sacrifices memory efficiency, as it requires storing the entire
array buffer in memory. On the other hand, storing only the
metadata in the metadata array of JavaScript reduces wasted
memory space. However, this approach comes with slower
search times, as it requires traversing the entire metadata
array to locate a specific memory region. Consequently, the
overall performance of the Wasm application is significantly
impacted.

To address these various challenges comprehensively,
we have developed a solution that involves the design of
a metaNode data structure, mirroring the existing region
struct, and a corresponding metaArray to manage the
shadowed metadata. Additionally, we have implemented an
address encoder that converts specific addresses in Wasm
linear memory into indices of the metaArray, enabling
efficient random access to specific memory areas while
minimizing array search time (P3). The metaArray resides
in the JavaScript VM memory and its size is variable,
dynamically increasing as the Wasm application allocates
more memory regions. This scalable approach ensures
optimal performance and adaptability to varying memory
requirements.

Figure 5 shows themetadata management mechanism. Part
1⃝ is the series of memory regions allocated in Wasm linear
memory, and the status of each region is divided into two;
used and free. Part 2⃝ is the metaArray that has metaNode
as an element. Each metaNode has metadata of each region
and metadata is different depending on region status. Part 4⃝
shows that the used region has two metadata; Size and size-
ceiling. The free region (5⃝) has four metadata; Size, Prev,
Next, Size - ceiling. Part 3⃝ shows how the address encoder
works. the region address 0 × 5016AC encoded into 16A.
The Encoder, an essential component of the metaSafer

API, plays a crucial role in facilitating efficient address
encoding for metadata management. When processing
address encoding, the metadata of each region in the Wasm
linear memory is shadowed onto the metaArray, with the
encoded region address value serving as the index to
reference the correspondingmetaNode. The address encoding
process involves subtracting the stack size from the provided
address value and performing a right bit shift of 4 (Figure 6).
This adjustment accounts for the linear memory structure,

FIGURE 7. (a) is original code snippet of emmalloc memory allocator and
(b) is the patched emmalloc code with metaSafer. The red code is the API
of metaSafer and it encode the region memory address into metaArray’s
index and handover the arguments to metaSafer library.

ensuring proper alignment with 16-byte units for heap
memory regions. The resulting value is then utilized as
the index in the metaArray for the given region address.
By employing this approach, metadata is stored efficiently,
and faster access speeds are achieved compared to linear
search. The optimized metadata access speed between Wasm
and JavaScript significantly enhances the overall runtime
performance of the system.

V. IMPLEMENTATION
A. METASAFER LIBRARY
This section describes the functions of the metaSafer API
and library. APIs are consisted of setter and validator which
have a role in calling the metaSafer libraries, and encoding
the region address to index for metaNode using encoder. The
libraries consist of setter and validator that write and validate
metadata to metaArray.
To minimize changes to the existing behavior of emmalloc

and minimize JavaScript code size overhead, instead of
porting all allocator functions to JavaScript, a statement-
level code modification that accesses JavaScript only when
metadata is created and referenced was applied. Through
this, the protection technique provided by metaSafer can
be applied to all operations of the existing emmalloc with
minimal code addition.

124892 VOLUME 11, 2023

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

FIGURE 8. Pseudo code of metaSafer library (setter and validator).

1) METADATA VALIDATION (ADDRESS, TYPE, VALUE)
Before the metadata reference operation(Figure 7 (b), line 6
and 13) for the current region, integrity is ensured by
checking that metadata corruption or forgery(Figure 8, from
line 15 to 21) has not occurred through verification(Figure 7
(b), line 4 and 11) of the metadata of the WASM linear
memory and metaArray. In this process, the metadata of
metaArray is accessed through the encoder in the same
way as the setter. When accessing the metadata of the
previous memory region(Figure 7 (b), line 6), metaSafer
trust the metadata in the previous metaNode and validate
the metadata of Wasm linear memory instead of backward
search the whole metaArray with encoded previous region
address(previous index). This approach, it guarantees a faster
metadata validation time than a backward search of whole
metaArray with the previous index.

2) METADATA WRITE (ADDRESS, TYPE, VALUE)
If all metadata is confirmed that there is no corruption on
it, the original operation (Figure 7 (b), line 6 and 13) works
normally and updated metadata will saved on VM memory
(Figure 7 (b), line 8 and 15). The setter encodes the region
address value and passes the metadata value and type to
the metaSafer library located in JavaScript (Figure 7 (b),
line 4 and 11). In the library (Figure 8), if setter does not
have a metaNode with certain index, create a new metaNode
(Figure 8, line 5 and 6) and save the received metadata
(Figure 8, line 9).

B. DETECTION OF METADATA CORRUPTION
The Figure 9 illustrates a particular situation wherein the
metadata associated with a subsequent unallocated memory
region has been falsified as a result of a buffer overflow
event that transpired within the payload of the preceding

FIGURE 9. Illustration of metadata mismatch situation. Metadata saved
in Linear memory are corrupted by overflow that occurred from the
previous used region’s payload. And it detected when metaSafer try to
validate metadata using metadata saved in VM memory.

TABLE 1. Micro benchmarks of each metaSafer API. ‘First execution’
refers the runtime with compilation time. ‘Single execution’ shows the
single execution of API function without compilation. Compilation is
required only in first time of execution.

memory region. This incident, typified by a metadata
corruption attack, such as an unlink exploit, has led to
the tampering of metadata within Wasm linear memory
space. It is important to note that under this attack attempt,
the metadata resident in the VM Memory area remains
unaffected by the overflow-induced metadata modification.
Subsequently, when memory access or operations involving
the compromised unallocated region (denoted as ‘‘2’’ in
the figure) are executed, the metaSafer system employs its
metadata validation mechanism to verify the integrity of the
metadata. In the event of any tampering being detected, the
executing process is promptly terminated.

VI. EVALUATION
In this section, we discuss the runtime performance and code
size overhead of metaSafer compared with the emmalloc
allocator.

A. ENVIRONMENT SETUP
We implement the benchmark on a system with a 10 core
20 thread Comet lake Intel i9-10900K (3.70Ghz and 5.30Ghz
with turbo boost max technology) and DDR4-3200 64GB.
The system runs with Ubuntu 18.04.6 LTS and Node JS
v14.18.2. Our metaSafer applied on emmalloc lightweight
memory allocator, and the benchmarks scenario is as
follows; Micro Bench (subsection VI-B), which measures the
performance of each API applied to metaSafer, the stress test
(subsection VI-C) that measuring the execution time of single
malloc and free functions and malloc benchmark provided by

VOLUME 11, 2023 124893

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

FIGURE 10. Stress test of emmalloc and metaSafer. The orange solid bar
graph is test execution time of emmalloc and dotted green bar is for
metaSafer. The graph represents how much overhead occur under heavy
loads of memory allocation and free.

TABLE 2. This table represents the execution time of single memory
allcocation(malloc) and free instruction in each allocator. The ‘First’
includes instruction compilation time and operation and ‘Single’ is the
execution only time of each instruction.

emsdk [13]. For the Macro benchmarks (subsection VI-D),
PolyBench/C 4.2.1 [14] are used and SQLite [15], [16], [17]
is used for real world application test case (subsection VI-E).

B. MICRO EXECUTION OVERHEAD
In this section, we measure the individual performance of
the APIs provided by metaSafer and the time spent on world
switching between Wasm and JavaScript. Measured APIs
are setters, validators, and encoders. Wasm Binary takes the
JIT (Just In Time) compile method, translating bytecode into
machine code at execution. Therefore, the code executed for
the first time includes compilation time on their execution
time. From the second round onward, compile time is not
required.

In Table 1, ‘First execution’ is an execution time that
includes both compile time and single API execution time.
‘Single execution’ shows the single execution time of each
API. It calculated on average value after executing a single
API 10,000 times consecutively. Single execution time
represents the execution speed in an environment where the
same API is repeatedly executed. This table proves that
each API and world switching does not make a significant
performance overhead during application runtime. The case
of validator consists of a read and comparison(validation)
operation. And in the case of the setter, only the memory
write operation is performed. In the first execution, the
validator is faster than setter. The setter takes time to make
mateNode in JavaScript memory in the first time of saving
the metadata.

C. STRESS TEST
This section compares metaSafer and emmalloc allocator
through stress tests. The stress test measures the overall

stability and performance of the allocator in a heavy-load
environment through repeated malloc and free instruc-
tion execution. The stress test demonstrates the allocation
efficiency of metaSafer through a runtime performance
comparison with emmalloc. Stress conditions are as follows;
We malloc and free the four maximum memory allocation
sizes (512, 1024, 2048, and 4096 bytes) 100,000 times each.
The minimum allocation size set is 16 bytes. It also shows
the time for a single run of malloc and free through each
allocator. We additionally used the following compilation
options to cope with the significantly increasing memory
usage. ‘-sALLOW_GROWTH_MEMORY’

In the Figure 10, metaSafer tends to be slower than emmal-
loc. metaSafer shows a minimum of 20% and a maximum
57% runtime overhead compared to emmalloc. This shows
that runtime overhead can occur under the extreme number
of malloc and free operation. As an additional insight, the
performance overhead incurred decreases as the MAX size
increases. Over 50% overhead was presented in 512bytes
allocation, but as the MAX size was increased to 4096bytes,
the overhead was reduced to 20%.

In the Table 2, metaSafer has about nine times of
performance overhead compared to emmalloc in the malloc,
and the free shows about three times of runtime overhead.
Like the APIs, malloc and free must also be compiled in the
first execution, so additional runtime is consumed for the
first malloc and free. We note that single malloc and free
execution with metaSafer have huge overhead compared with
emmalloc allocators, but as it is performed repeatedly, the
runtime overhead gradually decreases.

D. MACRO BENCHMARKS
This section evaluates performance and memory allocation
efficiency through macro benchmarks using Polybench/C.
The polybench/C (v4.2.1 beta) written in C compiled using
emscripten (v3.1.22) [13] to use emmalloc and metaSafer
allocator and perform each test using Wasm.

The graph Figure 11 shows the 30 test results of
two allocators performed PolyBench/C. Emmalloc shows
a slightly faster execution time than metaSafer. metaSafer
shows a maximum 2% execution time overhead compared
with emmalloc. More specifically, more than 1% overhead
has occurred in bicg, burbin, jacobi-1d, and trisolv, but
metaSafer shows an average 0.43% of overhead in all test
cases. These test results suggest that the execution time
overhead of metaSafer is insignificant in arithmetic-intensive
test environments.

E. REAL WORLD APPLICATION
To perform a realistic scenario, we performed a bench-
mark through SQLite. SQLite is an embedded relational
database management system (RDBMS) designed to be
lightweight, and it compiles to WASM and can be run
in the browser. We used Firefox (v110.0.1) to run the
benchmark. This measures the runtime overhead in real
applications caused by metaSafer. The database format used

124894 VOLUME 11, 2023

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

FIGURE 11. This graph shows the result of Polybench benchmarks. The green solid bar represents the metaSafer execution runtime overhead based
on emmalloc(baseline) execution time. In durbin test case, metaSafer required 2.21 percent more time to run than emmalloc.

FIGURE 12. This graph is about runtime overhead in SQLite which required over thousand of memory operations. The green solid bar is runtime
overhead of metaSafer and shows 8% of overhead in total.

by SQLite benchmark is memfs. The Memfs is a virtual
file system that tests and simulates file system operations
in Wasm applications. Through this, consistent and reliable
benchmark results can be obtained without being affected by
the I/O delay of physical storage and hardware performance
instability. The compilation options used for Wasm are ‘-
sALLOW_GROWTH_MEMORY’ and ‘-O3’. With these
options, Wasm linear memory can be additionally increased
in size when required.

The tests are mainly database updates (table creation,
insert, update, delete), and its result shows in Figure 12.
In experiment 260 (Query added column after filling),
metaSafer is about four times slower than emmalloc. This
means that when a new column is added, SQLite needs to
dynamically allocate additional memory while adding the
new column’s data. Experiment 200 runs the VACUUM
command, which compresses and optimizes files. It reclaims
unused space, rearranges data, and frees up memory space.
While running this task, metaSafer incurs additional per-
formance overhead. The remaining 142, 150 experiments
generate additional indexes and do data collation. The
number of mallocs and frees used in the total SQLite
benchmark is 6499 and 6865, respectively. Also, realloc,
which changes the size of a memory region, was used
587 times. Emmalloc took 151.33 seconds for the total
execution, and metaSafer took 163.58 seconds, showing
8% slower performance. This indicates the lower impact of
runtime overhead in more general applications than in brutal
situations like the stress test in the previous section.

F. CODE SIZE
Asmentioned in the previous section, it is crucial to minimize
the size of the application package delivered over the network
due to the characteristics of Wasm applications used in the
web environment. This section compares the size of the
compiledWasm and JavaScript that applied various allocator.

The graph (Figure 13) shows the difference in file size
created by compiling metaSafer and emmalloc, respectively.
Optimization levels were set to -O2 and -O3. In a previous
study, there was a difference in the final Wasm file size
according to compiler flags (ref), which also showed a
difference in metaSafer’s file size measurement. -O2 option
is a moderate level of optimization which is less aggressive
optimizationwith faster code execution than -O3.metaSafer’s
JavaScript has a size of 947 bytes at -O2 and 915 bytes at
-O3. This means that the compiled file size of the Wasm
application with metaSafer applied is 947 bytes larger than
the existing compiled file size without metaSafer. Then
metaSafer’s Wasm code has a size of 1259 bytes in -O2 and
1600 bytes in -O3. Finally, metaSafer brings a total file size
addition of 2206 bytes in the -O2 optimization scenario and
2515 bytes in the -O3 optimization scenario. In other words,
the effect of metaSafer’s code size is variable depending
on the source size and scale of the application. 7% code
size increase due to metaSafer in compiled Polybench/C
code. But in SQLite, metaSafer takes only 0.15% extra size.
The absolute size of this metaSafer may vary depending on
the version of the compiler used, the compilation options
selected, and other user environments. We used emscripten

VOLUME 11, 2023 124895

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

FIGURE 13. Compiled code size of metaSafer. Added code size are fixed
under same optimization level. -O2 and -O3 refers the optimization level
2 and 3 respectively.

(v3.1.22) with ‘-sALLOW_GROWTH_MEMORY’ and -O2,
-O3 respectively to compile metaSafer.
Summary: metaSafer tends to be slower than emmalloc,

but has an acceptable runtime overhead of at least 1% and
at most 10% in macro benches and applications, excluding
stress tests. It is reasonable overheads considering that it
provides security features not offered by existing lightweight
allocators. We analyzed the effect of each API on the
execution time through micro-benchmarks and proved the
metaSafer shows a small level of runtime overhead even
the API is repeatedly used. Despite providing these security
features and low overhead, metaSafer still proves to be a
practical allocator with a small size.

VII. DISCUSSION
In this section, we discuss the future work and the expand-
ability of metaSafer strategy. metaSafer provides security
features with JavaScript in the browser. It has the potential to
provide extended usability and enhanced performance with
the following extra work.

A. SUPPORT STANDALONE RUNTIME
metaSafer relies on the memory space within the JavaScript
VM running within the browser as a trust anchor. However,
it is important to note that JavaScript is not supported in
the Wasm standalone runtime, which is commonly used in
embedded devices or environments running Wasm applica-
tions without a browser. As a result, using the metaSafer
library based on JavaScript is not feasible in such scenarios.
To apply metaSafer in a standalone runtime environment,
significant modifications to the Wasm standalone runtime
at a specific low level are necessary. Currently, there are at
least 10 differentWASM standalone runtimes [18], [19], [20],
[21], [22], each with its unique implementation. Ensuring
full compatibility and providing the same level of security
as metaSafer would require substantial engineering efforts
and time. While porting metaSafer to a standalone runtime
environment could reduce the code size ofWasm applications
and minimize performance overhead, it may come at the cost
of compatibility due to the constraints of the limited runtime
environment.

B. METADATA MIGRATION
metaSafer detects metadata corruption in linear memory
through metadata validation, relying on the shadowed

metadata in JavaScript VM memory for the validation pro-
cess. However, we can extend metaSafer with an additional
feature to defend against metadata corruption attempts by
fully migrating the metadata stored in linear memory to
JavaScript VM memory and isolating it from the Wasm
application. This would involve comprehensive changes to
the memory structure in Wasm and the data structure of
the allocator. By adopting this approach, metadata would be
isolated from Wasm linear memory, thereby increasing the
availability of Wasm heap memory. As it would eliminate
the need for metadata validation, this approach has the
potential to provide slightly faster runtime speeds with the
same level of security as the current metaSafer. However,
one drawback of this method is that linear memory integrity
verification through metadata becomes impossible, which
could potentially expose linear memory to data-only attacks.

VIII. RELATED WORK
A. WASM SECURITY
In the past five years since WASM was released, many
previous studies have been conducted in terms of memory
safety and Control Flow Integrity (CFI) of WASM [4], [5],
[6], [7], [8]. CFI is a security mechanism crucial for protect-
ing computer programs from control flow attacks that can
compromise software integrity and security. It enforces strict
rules on program execution paths, reducing vulnerabilities
and preventing unauthorized code execution. In order to
guarantee the integrity of WASM applications, there are
studies that run WASM in an environment where a trusted
platform is supported. To ensure the utmost integrity ofWasm
applications, research endeavors have focused on executing
Wasmwithin a shielded environment empowered by a trusted
platform, explicitly referring to a Trusted Execution Envi-
ronment (TEE) like Intel Software Guard Extensions (SGX)
or ARM TrustZone. TEE provides secure enclaves within
hardware architecture, such as SGX’s isolated compartments,
safeguarding critical code and data from unauthorized access,
software vulnerabilities, and hardware threats. AccTEE [23]
executes WASM binary compiled for a specific target system
in Intel’s SGX enclaves to protect critical operations in
unsafe OS or host systems. TWINE [24] runs a lightweight
Wasm virtual machine in a trusted execution environment
and supports WASI (WebAssembly system interface) so
that existing WASM applications can be executed without
recompilation. WaTZ [25] guarantees the integrity of the
application code through remote attestation of the Wasm
application binary in the ARM-based trusted execution
environment. However, the above studies partially limit the
versatility of WASM because there are requirements for
additional hardware (x86-based and limited CPU range) that
support a trusted execution environment. In addition, it does
not provide the detection or prevention of attack threats
and CFI integrity that may occur during Wasm application
execution. These previous studies have greatly contributed to
improving the security of WASM, but the purpose of each

124896 VOLUME 11, 2023

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

study [23], [24], [25] is different from the security of linear
memory protected by metaSafer.

B. MEMORY HARDENING
There are previous studies to enhance memory safety. VIP
[26] protects heap metadata through a virtual address with
Intel MPK and builds a defense against an attack that
tampers the CFI or executes arbitrary code that leverages
metadata corruption vulnerabilities and heap overflow. This
protection methodology relied on the x86 architecture.
The AddressSanitizer(ASan) [27] instruments the program’s
memory accesses to check for violations of the heap red
zones; the area outside of the dedicated memory region.
The memory metadata is located in the heap red zone.
Through this, it implements heap memory protection. This
is the software-only memory protection approach that
provides higher compatibility than using hardware extension.
However, extra memory-bound check instructions must be
added to every memory access attempt. And it leads to an
increase in runtime performance overhead. These previous
methodologies relied heavily on specific hardware or made
high runtime performance overhead while implementing
memory safety techniques. Therefore it is hard to apply this
methodology to Wasm directly. The ASLR(Address Space
Layout Randomization) [28] is a critical security measure
that protects against memory-based attacks by randomizing
the location of code and data in memory. However, Wasm
currently lacks support for ASLR, a critical security feature
employed by traditional systems. Even if ASLR were to
be introduced to Wasm in the future, the limited memory
size of Wasm (32-bit) would still provide insufficient
entropy for effective randomization, potentially leaving
vulnerabilities exposed. In contrast, metaSafer offers deter-
ministic protection, a marked improvement over ASLR’s
probabilistic protection. Deterministic metadata protection
in a software-only implementation is crucial as it provides
a reliable and predictable defense against metadata attacks,
reducing the risk of both false positives and false negatives
compared to probabilistic protection methods like ASLR.
With metaSafer, the predictability and reliability of metadata
protection are significantly enhanced, as it ensures consistent
and reliable safeguarding of sensitive information.

metaSafer adopts a software-only approach which does not
rely on Intel SGX andMPK. It relies on the JavaScript virtual
machine’s memory as a trust anchor, thereby circumventing
the need for hardware-based protection methodologies. This
approach successfully mitigates issues related to context
or world switching, thanks to Wasm sharing memory with
JavaScript. This symbiotic relationship facilitates rapid data
transmission and ensures that our software-only implemen-
tation maintains exceptional compatibility while keeping
performance overhead to aminimum. ThemetaSafer method-
ology represents a novel approach aimed at identifying
instances of metadata corruption within the Wasm environ-
ment. Its primary objective differs from methodologies [26],

[27], [28] utilized in other domains and environments(x86)
or those reliant on hardware-based protection mechanisms.
SinceWasm takes amemory accessmethod throughmetadata
in a unique structure called linearmemory, this paper suggests
the need for a new protection technique suitable for Wasm
linear memory, rather than protection that reuses existing
protection techniques.

IX. CONCLUSION
In conclusion, this study proposes metaSafer, a robust
security solution that effectively defends against attacks
targeting Wasm linear memory by shadowing metadata
into JavaScript VM memory, thereby ensuring metadata
integrity and detecting corruption. The performance overhead
of metaSafer has been rigorously verified through various
tests, including micro benchmarks, stress tests, macro bench-
marks, and real-world application testbenches. The results
demonstrate that metaSafer introduces only a small file size
overhead and shows performance impact ranging from 1%
to 8%, making it a highly efficient and practical security
solution for Wasm applications.

REFERENCES
[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,

L. Wagner, A. Zakai, and J. Bastien, ‘‘Bringing the web up to speed
with WebAssembly,’’ in Proc. 38th ACM SIGPLAN Conf. Program. Lang.
Design Implement., Jun. 2017, pp. 185–200.

[2] S. Bano and S. Khalid, ‘‘BERT-based extractive text summarization of
scholarly articles: A novel architecture,’’ in Proc. Int. Conf. Artif. Intell.
Things (ICAIoT), Dec. 2022, pp. 1–5.

[3] D. Lehmann, J. Kinder, and M. Pradel, ‘‘Everything old is new again:
Binary security of WebAssembly,’’ in Proc. 29th USENIX Conf. Secur.
Symp., 2020, pp. 217–234.

[4] B. McFadden, T. Lukasiewicz, J. Dileo, and J. Engler, ‘‘Security chasms
of WASM,’’ Austin, TX, USA, NCC Group White Paper, 2018, vol. 1.0.

[5] A. Hilbig, D. Lehmann, and M. Pradel, ‘‘An empirical study of real-world
WebAssembly binaries: Security, languages, use cases,’’ in Proc. Web
Conf., Apr. 2021, pp. 2696–2708.

[6] Q. Stiévenart and C. D. Roover, ‘‘Compositional information flow analysis
for WebAssembly programs,’’ in Proc. IEEE 20th Int. Work. Conf. Source
Code Anal. Manipulation (SCAM), Sep. 2020, pp. 13–24.

[7] Q. Stiévenart, C. De Roover, and M. Ghafari, ‘‘Security risks of porting
C programs to WebAssembly,’’ in Proc. 37th ACM/SIGAPP Symp. Appl.
Comput., Apr. 2022, pp. 1713–1722.

[8] Q. Stiévenart, C. De Roover, and M. Ghafari, ‘‘The security risk of lacking
compiler protection inWebAssembly,’’ in Proc. IEEE 21st Int. Conf. Softw.
Quality, Rel. Secur. (QRS), Dec. 2021, pp. 132–139.

[9] J. C. Arteaga, S. Donde, J. Gu, O. Floros, L. Satabin, B. Baudry, and
M. Monperrus, ‘‘Superoptimization of WebAssembly bytecode,’’ in Proc.
Conf. Companion 4th Int. Conf. Art, Sci., Eng. Program., Mar. 2020,
pp. 36–40.

[10] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, ‘‘Control-flow integrity: Precision, security, and performance,’’
ACM Comput. Surv., vol. 50, no. 1, pp. 1–33, 2017.

[11] S. Khalid, S. Khusro, and I. Ullah, ‘‘Crawling AJAX-based web
applications: Evolution and state-of-the-art,’’ Malaysian J. Comput. Sci.,
vol. 31, no. 1, pp. 35–47, Jan. 2018.

[12] A. One, ‘‘Smashing the stack for fun and profit,’’ Phrack, vol. 7, no. 49,
pp. 14–16, Nov. 1996.

[13] (Mar. 12, 2023). Emscripten. [Online]. Available: https://github.com/
emscripten-core/emsdk

[14] (Mar. 8, 2023). Polybench/C Official Site Address. [Online]. Available:
http://www.ohio-state.edu

[15] (Mar. 12, 2023). Sqlite. [Online]. Available: https://www.sqlite.org/
index.html

VOLUME 11, 2023 124897

S. Song et al.: metaSafer: A Technique to Detect Heap Metadata Corruption in WebAssembly

[16] S. Bhosale, T. Patil, and P. Patil, ‘‘Sqlite: Light database system,’’ Int.
J. Comput. Sci. Mob. Comput, vol. 44, no. 4, pp. 882–885, 2015.

[17] S. Ashraf, T. Ahmed, Z. Aslam,D.Muhammad,A.Yahya, andM. Shuaeeb,
‘‘Depuration? Based efficient coverage mechanism for? Wireless sensor
network,’’ J. Electr. Comput. Eng. Innov., vol. 8, no. 2, pp. 145–160, 2020.

[18] Wasmer. Accessed: Mar. 14, 2023. [Online]. Available: https://wasmer.io/
[19] Wasmtime. Accessed: Mar. 14, 2023. [Online]. Available: https://

wasmtime.dev/
[20] Wavm. Accessed: Mar. 14, 2023. [Online]. Available: https://github.

com/WAVM/WAVM
[21] Life. Accessed: Mar. 14, 2023. [Online]. Available: https://github.com/

perlin-network/life
[22] Lucet. Accessed: Mar. 14, 2023. [Online]. Available: https://www.fastly.

com/products/edge-compute/runtime/
[23] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza, ‘‘AccTEE:

A WebAssembly-based two-way sandbox for trusted resource account-
ing,’’ in Proc. 20th Int. Middleware Conf., Dec. 2019, pp. 123–135.

[24] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, ‘‘Twine: An embedded
trusted runtime for WebAssembly,’’ in Proc. IEEE 37th Int. Conf. Data
Eng. (ICDE), Apr. 2021, pp. 205–216.

[25] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, ‘‘WaTZ: A trusted
WebAssembly runtime environment with remote attestation for Trust-
Zone,’’ in Proc. IEEE 42nd Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jul. 2022, pp. 1177–1189.

[26] M. Ismail, J. Yom, C. Jelesnianski, Y. Jang, and C. Min, ‘‘VIP: Safeguard
value invariant property for thwarting critical memory corruption attacks,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2021,
pp. 1612–1626.

[27] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, ‘‘Addresssan-
itizer: A fast address sanity checker,’’ in Proc. USENIX Annu. Tech. Conf.,
2012, pp. 309–318.

[28] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
‘‘On the effectiveness of address-space randomization,’’ inProc. 11th ACM
Conf. Comput. Commun. Secur., Oct. 2004, pp. 298–307.

SUHYEON SONG received the B.S. degree in
computing systems from the Unitec Institute of
Technology, NewZealand, in 2021. He is currently
pursuing the master’s degree in computer engi-
neering with Pusan National University, Republic
of Korea. His research interests include computer
system security and ARM TrustZone.

SEONGHWAN PARK received the B.S. degree in
computer engineering from Dongseo University,
South Korea, in 2021. He is currently pursuing
the Ph.D. degree with Pusan National University,
Busan, Republic of Korea. His research interests
include system security and H/W architecture.

DONGHYUN KWON received the B.S. and Ph.D.
degrees in electrical and computer engineering
from Seoul National University, South Korea,
in 2012 and 2019, respectively. He is currently
a Professor with the School of Computer Sci-
ence and Engineering, Pusan National University,
South Korea. His research interest includes system
security against various types of threats.

124898 VOLUME 11, 2023

