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ABSTRACT The paper deals with the separation of power system into coherent areas; this is a relevant issue
for managing the network in both normal operating conditions and during anomalous events. In particular,
the attention is focused on partitioning the power system in such a way as to group together frequency
signals, measured by means of phasor measurement units (PMU), exhibiting similar oscillatory behavior
after the occurrence of a fault or disturbance. Unfortunately, the increasingly massive presence of renewable
energy sources is undermining the clustering methods defined so far, requiring new solutions to the
problem. To overcome the considered drawbacks, the authors propose hereinafter to (i) improve the grouping
capabilities of an iterative spectral clustering method thanks to the definition of new parameters for similarity
estimation (Modified Bray Curtis index) and cluster thresholding (weighted Fiedler value) as well as (ii)
enhance its robustness with respect to both measurement noise and uncertainty affecting the PMUs by means
of a deep test procedure. To this aim, particular attention is paid in the design and assessment stage to the
definition of both filtering algorithm and measurement parameters (e.g., the length of the analysis window).
Once defined these parameters, the method is capable of 100% correctly separating transmission network
sections oscillating with similar trends in a number of tests conducted on simulated and actual signals,
so highlighting the promising performance of the method highlighting its reliability and efficacy in different
test conditions.

INDEX TERMS Frequency oscillations, interarea oscillations, PMU measurements, power transmission
network, spectral clustering.

I. INTRODUCTION
The division of a power system into coherent electrical areas
is a fundamental issue, that allows to effectively manage the
network in normal operation as well as during anomalous
events.

The associate editor coordinating the review of this manuscript and

approving it for publication was Padmanabh Thakur .

During normal operating conditions, the network parti-
tioning, for example, allows model reduction to simplify its
state analysis; in addition, the inertia of a given area can
be estimated. Given the increasing integration of renewable
energy sources, in fact, it becomes imperative to dynamically
estimate the inertia of each individual area within the power
system [1], [2], in order to predict its capability to dampen
frequency fluctuations and take possible measures to increase
inertia [3].
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As regards the management of network events, this
approach enables the implementation of advanced strategies
such as islanding, which involves isolating specific sections
of the power network to maintain stability and minimize
the impact of disturbances. By dividing the system into
distinct coherent areas, operators can strategically control and
optimize power flow to ensure reliable and secure operation.

The authors’ research is particularly focused on the
use of partitioning in coherent areas with the aim of
damping interarea oscillatory modes [4], [5], [6], which are
low-frequency oscillations that can propagate across multiple
regions of the power system. By identifying and analyzing
the coherent groups within each area, control actions can
be coordinated to suppress these oscillations and maintain
system stability.

A coherent group can be identified as a set of generators
that exhibit similar oscillatory behavior after the occurrence
of a disturbance is usually indicated as coherent group [7].
Generators within a coherent area display similar amplitude
and phase characteristics when participating in a common set
of inter-area modes ranging from 0.1 to 1 Hz. This inherent
coherence within the group enables efficient coherency
detection, allowing operators to identify and analyze the
behavior of these interconnected generators as a collective
unit.

In the presence of intraarea oscillations (involving
frequency components lying within 1-3 Hz), identifying
coherent areas turns out to be more challenging. The reason
must be found in the different behavior that generators exhibit
with respect to interarea modes (that are highly correlated)
and intraarea oscillations (that can vary significantly).
This variability in intraarea oscillations poses a significant
hurdle in accurately determining coherency and necessitates
advanced algorithms and techniques for precise detection and
analysis [8].
As a further complication, dynamic variations in system

coherency are introduced by the integration of wind and
solar energy sources. Their intermittent nature and inherent
fluctuations in generation levels can affect the coherence
of the interconnected generators. As a result, coherency
detection algorithms and methodologies need to adapt to
these dynamic changes in order to maintain an accurate
understanding of the system’s behavior and ensure reliable
operation.

As the integration of renewable energy sources continues
to grow, it becomes increasingly important to develop
coherency detection techniques that account for the unique
characteristics and challenges posed by renewable inter-
mittency. Future research efforts should focus on refin-
ing existing methods and developing novel approaches
that consider the dynamic nature of renewable generation
and ensure robust coherency detection in modern power
systems.

In the proposed approach, the paradigm of spectral
clustering is followed, thus providing a complete change
of viewpoint in terms of analysis domain. In particular, the

proposed algorithm primarily relies on spectral analysis of
the Laplacian of the graph generated from the similarity
matrix [9]. A similar solution to the problem of coherent area
identification has been presented in [10], where the spectral
clustering approach is applied on the equivalent graph of
transmission network to single out the optimal location for
placing a PMU; the main drawback is the need of knowledge
of the network model. On the contrary, the proposed method
only exploit the frequency measurements of PMU already
deployed on the network thus making it independent from the
network model and/or topology.

Differently from approaches based on spectral clustering
available in literature, the coefficient of the similarity matrix
are evaluated according to Bray Curtis index, in order to
obtain indices within 0 and 1, expressing the similarity
between measured data. This coefficient are evaluated by
directly processing the frequency measures obtained by
PMUs. By leveraging the Laplacian matrix, which charac-
terizes the graph, the spectral decomposition is performed,
enabling the identification of spectral mappings and subse-
quent partitioning of the data and PMUs into coherent clusters
exhibiting homogeneous oscillatory behavior.

Through this approach, the algorithm effectively captures
the underlying patterns and dynamics present in the PMU
data. By analyzing the spectral properties of the Laplacian
matrix, it becomes possible to identify coherent groups or
clusters that exhibit similar oscillation characteristics. This
partitioning process enables a more accurate and detailed
understanding of the system’s behavior, facilitating efficient
analysis and control strategies.

Particular attention has been paid on making the proposed
method robust with respect to both measurement noise
and uncertainties affecting the PMU, that usually make the
literature solutions unreliable. To this aim, the data coming
from the PMU are first bandpass filtered by means of a
filter whose frequency range is suitably tailored with the
band of interest. Moreover, a proper study is conducted to
identify the best length of the observation interval capable
to provide the most reliable results in the final coherent
area separation. The paper is organized as follows: solutions
already available in the literature are first presented and
discussed in Section II, while the theoretical background
as well as the operating steps of the proposed method
are described in Section III; the results obtained by the
application of the method on numerical, simulated networks
and actual data are presented and discussed in Section IV, V
and VI. Conclusions are finally drawn in Section VII.

II. RELATED WORKS
Methods for identifying coherent areas are usually based on
the measurement data provided by PMUs [11], [12]. With
their high data delivery rate, they provide a comprehensive
view of system dynamics and allows for a detailed visualiza-
tion of how coherency evolves over time [13]. However, there
are significant challenges associated with leveraging PMU
data to support corrective control strategies at the area level.
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One critical issue revolves around the accuracy of esti-
mation. PMUs need to deliver precise measurements while
effectively dealing with distortion levels and rapid frequency
variations [14]. Additionally, during transient phenomena
characterized by a continuous spectrum, PMUs often assume
that the fundamental component can be approximated as
a narrowband component. This assumption may lead to
partial or unsatisfactory information derived from PMU
measurements [15].

Coherency detection techniques in the context of power
systems have traditionally relied on multivariate data analysis
methods such as Principal Component Analysis (PCA) [16]
and Independent Component Analysis (ICA) [17]. However,
these techniques have predominantly been tested and applied
in conventional power systems, where the presence or
predominance of renewable energy sources is not accounted
for.

To address the challenges posed by renewable integration,
alternativemethods have emerged that utilize advanced signal
processing techniques. As an example, the Hilbert-Huang
Transform [18] and Wavelet Transform (WT) [19] have
been employed in coherency detection approaches. Some
measurement methods leverage similarity features com-
bined with clustering techniques, such as Discrete Fourier
Transform (DFT) with subtractive clustering [20]. While
these approaches may consider the presence of renewable
sources in some cases, they often overlook the inter-
mittent nature and dynamic characteristics of renewable
generation.

Several available methods, including the Radial Basis
Neural Network [21] and Dynamic Coherency Detection
(DCD) [22], rely on threshold-based approaches, which
can be challenging to set appropriately in the presence of
variable renewable generation. To optimize the performance
of such threshold-dependent algorithms, it is essential to
configure the algorithm to achieve the widest possible
threshold range, minimizing the potential for algorithm
confusion.

More recently, other approaches for coherent areas clus-
tering have been presented in the literature. As an example,
in [23] the optimal partition for islanding is defined, giving
a specific score to each partition. The Laplacian is evaluated
on the weights of each line and cluster extension; therefore,
the method does not exploit actual measurement data and
requires that the distribution line model has to be a-priori
known. Clustering and controlled islanding are carried out
in [24] and [25] by operating on the generators rotor
angle, a signal characterized by high signal-to-noise ratio.
Unfortunately, all the provided results refer to only simulation
study (as also in [26]) and no example ofmethods application
to measurements data coming from actual devices and
network is given. Rotor angles and speed deviations are the
inputs of the method presented in [27]. Two limitations are
related to (i) the need of knowing the network model (the
system is partitioned into two areas whose equivalent power
and inertia is estimated) and (ii) the exploited thresholding

approach that should fail in the presence of noisy input
signals.

III. THE PROPOSED METHOD
A. THE SPECTRAL CLUSTERING APPROACH
Spectral clustering (SC) is graph-based method, that trans-
forms a clustering problem into a graph segmentation
problem, without any assumption on the number or the form
of the data clusters. The graph is defined by its M vertices
(or nodes) vi and by the edges linking the nodes; the edges
are characterized by their weights, i.e. a value within 0 and 1,
indicating the strength of the link between the vertices [28].

The SC goal is separating the graph in two sub-graphs in
order to group nodes that are similar to each other. At this
aim, the edges value are set according to a similarity matrix
W, whose entries ωij = ωij quantify the similarity degree
between each pair of nodes vi and vj.

In the proposed method, the vertices are the sets of
frequency measures x(k), with k = 1, . . . ,N , provided by
the M PMUs of the network. The method aims at grouping
together in the same sub-graph frequency measures that
evolve over time with similar behavior.

Several approaches exist to construct the similarity matrix.
Since the authors aim at singling out areas with the same
frequency fluctuations, the Modified Bray Curtis (MBC)
index is used [29]. The Bray Curtis index is defined as [30]:

BCij =

N∑
k=1

∣∣∣x(k)i − x(k)j

∣∣∣
N∑
k=1

∣∣∣x(k)i + x(k)j

∣∣∣ (1)

The more similar the signal pattern over time, the lower
the BC index. In order to obtain a similarity parameter
between 0 and 1, MBC, defined in (2) is evaluated as the BC
complement of 1. If, however, the signals are very different
from each other, the Bray Curtis index becomes greater
than 1 and its 1-complement has no meaning. Therefore,
Bray Curtis values greater than 1 are discarded (forcing
the corresponding MBC value to 0). The MBC values are
exploited as entries of the similarity matrixW .

MBCij =

{
1 − BCij if BCij ≤ 1
0 if BCij > 1

(2)

With this index, it is also possible to separate areas
that contribute to the same oscillation, but with different
phases; as an example, this typically occurs when groups
of generators swing against each other, exhibiting opposite
frequency variations. In this case, in fact, the BC assumes
very high value (since the denominator tends to zero) and,
consequently, the MBC goes to zero. If a similarity index
based on correlation coefficient were used (as in [31], [32]),
the absolute value would have to be made, because according
to the spectral clustering theory, the edges value has to be
non negative; as a consequence, those generators would be
considered part of a single cluster.
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From the similarity matrix, the degree matrix D is
evaluated. It is a diagonal matrix, whose entries on the main
diagonal are the sum of the edge weights related to that node:

di =

M∑
j=1

ωij (3)

In graph theory, a fundamental role is played by the
Laplacian. In this paper, the non-normalized Laplacian
defined as:

L = D − W (4)

has been taken into account. The spectrum of the Laplacian,
i.e. the eigenvalues λi (i = 1, ..,M ) and eigenvectors
9i obtained from the eigendecomposition of the Laplacian,
exhibits important properties [33]. In particular, if the first
eigenvalue λ1 is zero, the graph is partitionable. More
specifically, the number of eigenvalues equal to zero (or
approximately zero) defines how many clusters ideally make
up the graph. The number of clusters, therefore, can be
identified by locating the so-called spectral gap, i.e. the
jump between the near zero eigenvalues and those with value
significantly different from zero. The second eigenvalue, λ2,
which is referred to as Fiedler value or algebraic value in
the literature, is strongly related to the graph connectivity
and, also, it informs about the intensity of the connections
between the nodes of the graph. Low values of λ2 show that
the graph can be partitioned since it involves nodes with low
similarity [28].
The second eigenvector of the Laplacian 92 (called

Fiedler vector), on the other hand, can be used to perform
partitioning. This, in fact, consists of negative values (which
are poorly connected to the first node) and non-negative
values, which are more connected to the first node, thus
providing a straightforward criterion for cluster separation.

B. CLUSTER PARTITIONING
The proposedmethod examines the Fiedler value for deciding
whether a cluster is partitionable or not; in particular, if this
value is sufficiently low, the cluster is partitionable. To deter-
mine whether λ2 is sufficiently low or not, a comparison
must be made with a predefined threshold λthr2 . As in all
criteria using a threshold, the selection of the right threshold
is an essential aspect. In the case of Fiedler value, this aspect
is even more crucial because λ2 also takes into account
the strength of the connections in the group and can be
sensitive to the number of nodes (i.e. PMUs). For this
purpose, an additional criterion was introduced to increase
the reliability of the clustering. In particular, the cut value is
defined as follows

Cut(A,B) =

∑
i∈A,j∈B

ωij (5)

where A and B are the two groups in which the entire cluster
has been separated according to the associated Fiedler vector
[36]. The cut value expresses the total weight of the edges

connecting the nodes belonging to the sub-parts A and B
and, as such, it defines the quality of the partition. However,
according to (5), it also depends on the number of nodes that
make up the two sub-groups. Then a further parameter taken
into account is the weighted Fiedler value, wλ2, evaluated as
the ratio between the Fiedler and the cut value:

wλ2 =
λ2

Cut(A,B)
(6)

The algorithm, hence, will perform the partition if both the
two following conditions are met:

λ2 ≤ λthr2 and wλ2 ≤ wλthr2 (7)

C. DEVELOPED ALGORITHM
Spectral clustering is a bi-partitioning method. This means
that if there are more than two clusters, an iterative procedure
is required. A flow chart of the realized algorithm is shown
in Fig. 1. The algorithm works on a queue of clusters to
be analyzed, which is updated during execution. Initially,
the queue contains only the initial group of PMUs, called
cluster, which is removed from the queue and analyzed. All
the signals involved in the initial cluster are subjected to a pre-
processing phase, described in [5], in which the following
operations are performed: 1) identification of any missing
data and their filling using a linear interpolation method;
2) removal of the offset, to obtain zero mean oscillations;
3) detrend to remove slow trends that lead to a bias in the
offset of the signals.

FIGURE 1. Flow chart of the developed algorithm.

Successively, the similarity matrix, the degree matrix
and the Laplacian are evaluated. Then the eigenvalue
decomposition of the Laplacian is performed. If both the
Fiedler value and the weighted Fiedler value are sufficiently
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low, i.e. below the predetermined thresholds, this means
that the group is separable into two clusters. These will be
placed in the queue under the name cluster1 and cluster2.
Conversely, if λ2 and wλ2, are above their thresholds, the
analyzed group is not separable. If the queue of clusters to
be analyzed is empty, the algorithm stops. Otherwise, a new
cluster is taken from the queue and analyzed for further
separation. For example, if cluster has been separated into
cluster1 and cluster2, the algorithm is repeated by taking
cluster1 from the queue. If, this time, the Fiedler parameters
are above the threshold, cluster1 cannot be separated and it
is recorded as a single group. In the queue, however, there is
still cluster2 to be examined. If cluster2 is separable, two new
clusters are created, named cluster21 and cluster22, which,
in turn, are placed in the queue to check whether they are
further separable or not.

The algorithm is applied until the queue is empty, i.e.,
all the frequency measures have been suitably separated into
coherent clusters that cannot be further partitioned.

It is worth noting that the proposed method can be
applied on every transmission networks, whatever the specific
nature of the power sources, either traditional of renewable.
Differently from the other solutions already available in the
literature, the method, in fact, is capable of carrying out
the real-time clustering by only leveraging on frequency
measurements of the PMU without the need of assumptions
about the power flows and load characteristic.

IV. METHOD ASSESSMENT WITH SYNTHESIZED SIGNALS
In order to preliminary assess the proposed method and
to select the proper threshold values, several tests have
been carried out on synthesized data, representing the
frequency measures provided by 12 PMUs. The tests have
been designed considering the characteristics of the real
measurement data in different operating conditions in terms
of noise and oscillations parameters [14], [15], [16]. The
sampling rate was set equal to 10 S/s, in agreement with the
typical data rate adopted by PMUs of the European network.

Simulations have been carried out in Mathworks
MATLAB® environment by considering the PMU as
belonging to three different groups (coherent areas) each of
which characterized by a reference oscillation frequency. For
each PMU of the same group, so, a sinusoidal oscillation of
given frequency and amplitude was synthesized. Frequency
values close to those characterizing the modes exhibited by
the European transmission network were chosen [17], [18].
More specifically, for the PMUs referred to as 1 to 5 in the
first group, the reference frequency is set equal to 0.11 Hz;
for the second group, consisting of PMUs referred to as
6 to 8, the frequency is 0.21 Hz; and PMUs referred to as
9 to 12, constituting the third group, the reference frequency
is 0.33 Hz. To make the measurement sets more compliant
with actual measures, the oscillation frequency values of
the PMU belonging to the same group were slightly varied.
In particular, the frequency of each PMU within a specific
group was drawn from a random variable characterized by a

Gaussian probability density function (pdf), characterized by
mean value equal to the reference frequency of the group and
standard deviation equal to 1% of the mean.

fPMUi = N
(
fj, 0.01 · fj

)
i = 1, .., 12 and j = 1, .., 3 (8)

A variability in values was introduced also for the amplitude.
The amplitude reference value was set equal to 0.001 Hz,
while the instantaneous amplitude value was randomly
selected from a Gaussian pdf centered on the reference value
and having standard deviation equal to its 2%.

APMUi = N (1mHz, 0.01 · 1mHz) i = 1, .., 12 (9)

In order to emulate the typical evolution versus time of
the actual data received from PMUs in the transmission
network, all measured set have been affected by colored
noise, that has been obtained by performing the Wiener
process [19], i.e. the integral of a zero-averaged additive
white Gaussian noise (AWGN), whose standard deviation
value was specifically tailored according to the desired
Signal-to-Noise Ratio (SNR). It has to be highlighted that,
for each PMU, the seed of the pseudo-random sequence
for extracting values from the pdfs is set according to the
system time; this ensures that uncorrelated noisy signals are
generated.

The tests have been carried out with different duration Tw
of the time window, equal respectively to 60 s, 120 s, 180 s,
240 s, and 300 s. As regards the SNR, values equal to−10 dB,
0 dB, 10 dB, and 20 dB have been considered.

Fig. 2 shows, as an example, the set of data synthesized
setting a 120 s time window and an SNR equal to 0 dB.
The clusters detected by the algorithm are shown in Figure 3.
The initial cluster is first separated in cluster2, including the
three PMUs oscillating at 0.21 Hz and cluster1, including
the remaining PMUs. Successively, cluster1 is further
separated in cluster11 and cluster12, containing, respectively,
the 4 PMUs at 0.33 Hz and the 5 PMUs at 0.11 Hz.

FIGURE 2. Synthesized signal, with Tw=120 s and SNR=0 dB.

The values of λ2 experienced in the various tested
conditions for all the examined clusters have been plotted in
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FIGURE 3. Clusters detected by the developed algorithm.

FIGURE 4. Fiedler values observed in different test conditions.

Fig. 4. It is worth noting that Fiedler values associated with
clusters that have to be separated because they contain two or
more different groups of PMUs (cluster and cluster1), have
a value between 0 and 0.5; the Fiedler values associated with
clusters that have not to be separated exhibit significantly
higher amplitude, all exceeding 1.2. If the noise is such that
the SNR does not subceed 0 dB, the larger the time window,
the lower the λ2 of the clusters to be separated; high Tw
values, thus, make the detection of dissimilar clusters more
straightforward. As far as the effect of noise is concerned,
this generally increases the Fiedler values, tending to mask
the similarity between the signals. When the SNR equal to
−10 dB, only the Fiedler value of the initial cluster was
reported, since the separation fails, grouping the signals
incorrectly.

It can be noticed that the values of λ2 for the initial cluster
including all the PMUs are all close to each other for all the
test conditions. There is no way, by observing the λ2 values,
to know in advance that the separation will fail and the
resulting groups will be wrong.

The same conclusions can be drawn by observing the
weighted Fiedler values, shown in Fig. 5.

The graph shows that the use of this parameter adds
reliability to the algorithm, because the distance between the
values of λ2 of the clusters to be separated and those of the

FIGURE 5. Weighted Fiedler values observed in different test conditions.

clusters not to be separated is even higher. But even in this
case, if the SNR is −10 dB, the wλ2 values of clusters and
cluster 1 continue to be very low even though the separation
fails.

In order to make the algorithm correctly separate clusters
even in the presence of higher noise level, a filtering process
is required; this implies an inevitable increase in processing
time and the use of longer time windows, to remove the
transient effect due to the numerical filter.

A numerical bandpass filter, suitably tuned on the
frequency band of interest, was therefore implemented,
whose order is 320 samples, with lower and upper cut-off
frequencies equal to 0.05 Hz and 0.6 Hz respectively, suitable
tailored for the considered frequency band of interest. The
synthesized data was first processed with this filter and then
sent as input to the implemented clustering algorithm. The
number of samples must be at least 960, as 320 samples
must be removed at the begin and the end of the data frame.
Thus, at a sampling rate of 10 Hz, the window duration must
be at least 96 s, so the condition Tw=60 s was no longer
considered.

The results for both λ2 and wλ2 are shown in Fig. 6 and
Fig. 7 respectively. Thanks to the filter, the algorithm provides
reliable results even if the SNR reaches -10 dB. Even for less
severe noise conditions, however, the filtering process helps
to better discriminate separable clusters from those that are
not.

This test phase also made it possible to determine the
optimal parameters of the algorithm. In particular, the optimal
duration of the time window is 180 s; this duration combines
the performance of the algorithm with the need to reduce the
algorithm’s response time. Moreover, as highlighted in Fig. 6
and Fig. 7, the values λ2 = 0.8 and wλ2 = 0.1 can be chosen
as optimal thresholds.

V. TESTS WITH MODIFIED KUNDUR MODEL
In order to assess the method also with typical signal
observable on transmission network, tests have been carried
out on a modified version of the Kundur model. In particular,
authors have realized a four-area eight-machine model,
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FIGURE 6. Fiedler values with the filtering process.

FIGURE 7. Weighted Fiedler values with the filtering process.

by connecting two traditional Kundur networks through of a
transmission line, whose length has been set equal to 100 km.
The loads in the Kundur network are modeled as constant
power loads, which, as noted in [34], are the most severe.
However, the model chosen for the load does not affect the
performance of the clustering method which is PMU-based
and it is influenced only by measurement data. The model of
the test network is shown in Fig. 8.

FIGURE 8. Modified Kundur model for the clustering assessment.

FIGURE 9. Time evolution of the generators speed of the simulated
model.

The speeds of the 8 generators are used as signals to
be processed for testing the clustering method. The model
is run with a simulation step of 50 µs and, to reduce
the simulation time, a window of 20 s was considered.
The Kundur network is very useful for the assessment
of measurement methods on transmission networks, as it
represents a realistic model that takes all network components
into account [35]. The disadvantage is that the oscillatory
signals consist of intra-area oscillations (frequency between
1 and 3 Hz); moreover, due to the presence of Power System
Stabilizers (PSSs) these oscillations are quickly damped.
Therefore, the proposed method has to be assessed with
shorter time windows, whose duration is about few seconds.
However, the need of proportionally scaling the duration of
the time window and the filter bandwidth does not affect
the generality of the proposed method and the observed
results.

In the model, a three-phase ground fault in Area 1, lasting
0.1 s, was simulated in the Area 1 at time t=10.3 s, in order
to observe the transient oscillatory modes on the network
following an abrupt change in load conditions. The observed
generator speeds are shown in Fig. 9. As shown in the plot,
several zones can be distinguished, relating to the different
phases of the simulated network. At the beginning of the
simulation, the initial transient can be observed, during which
the network is brought to an equilibrium condition. The
action of the PSS at each generator dampens the speed
variations, bringing the machines to rotate at the synchronous
speed.

The clustering algorithm, performed on this portion of
the signal, correctly returns the clusters shown in Fig. 10,
corresponding to the signals plotted in Fig. 11. The first
cluster includes the speeds of the generators in Area 1 and
Area 3 (G1, G2, G5, G6); the second cluster includes
generators of Area 2 and Area 4 (G3, G4, G7, G8). Note that,
given the symmetry of the simulated system, the speeds of
Area 1 are perfectly coinciding with the speeds of Area 3,
as the speeds of Area 2 exhibit the same time evolution of
the speeds of Area 4. In fact, at this stage, the pair consisting
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FIGURE 10. Clusters detected during the starting transient.

FIGURE 11. Speed signals of the clusters recognized during starting
transient.

of Area 1 and Area 2 and the pair consisting of Area 3 and
Area 4 are two decoupled systems. Therefore, Area 1 and
Area 3 have the same behavior, as do Area 2 and Area 4,
as if the connection bus at the center of the network did not
exist.

The scenario changes during the fault. In this phase, in fact,
the networkmust find a new synchronous condition following
the abrupt unbalance between generated power and power
absorbed by the loads; therefore, a transient is triggered
where, this time, all the generators in the network are
involved. Since there is no longer a symmetry condition, due
to the fault location in Area 1, all areas oscillate differently
from each other. Again, the proposed algorithm behaves in the
expected manner, as it returns the clusters shown in Fig. 12
and Fig. 13. The output of the algorithm confirms that,
during the fault transient, Area 1 and Area 2 oscillate against
each other; Area 3 and Area 4, which are less affected by
the fault, constitute a unique area whose velocities oscillate
coherently.

Finally, the algorithm was also tested in the steady state
zones, in which the generators are all synchronous; here
too the method exhibited excellent reliability, recognizing
that the 8 generators belong to a single cluster. It is worth
noting that Kundur model has been exploited as test in other

FIGURE 12. Clusters detected during the fault transient.

FIGURE 13. Speed signals of the clusters recognized during fault
transient.

recent proposals, as an example [22]; the proposed method,
however, outperforms those solutions thanks to the higher
robustness brought by the adopted choice of the performance
index and the optimal selection of the algorithm configuration
parameters, thus improving the results of the traditional
spectral clustering.

VI. ASSESSMENT WITH DATA FROM REAL PMUS
Finally, further tests were performed on real data acquired
from PMUs of the European monitoring network, provided
by Terna. Specifically, the time evolution of the measured
frequency provided by 18 PMUs are given as input to the
proposed clustering method. For security issues, neither the
dates on which the measurements were taken, nor the exact
geographical location of the PMUs can be given; the PMUs
are referred to as with the generic name PMUi, i = 1, . . . , 18.

Fig. 14 shows the data frame, consisting of a 180 s time
window containing the frequency measurements of all the
PMUs. It can easily be seen that due to the noise, it is difficult
to perceive the oscillations that characterize the frequency
measures.

After the pre-processing phase described in III-C, the
dataset is processed by the algorithm. This identifies
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FIGURE 14. Frequency measures acquired by real PMUs for the method
assessment.

FIGURE 15. Frequency oscillations of the clusters detected by the
algorithm.

5 clusters, i.e. 5 coherent areas. The signals of the obtained
clusters are shown in Fig. 15, from which the strong
correlation between the signals belonging to the same cluster
is clearly visible.

From the graphs, it can be seen that the PMUs observe
different oscillatory modes, characterized by different fre-
quency, amplitude and phase. Some PMUs even observe
the composition of two oscillatory modes of different
frequencies. This characteristic generally makes it more
difficult to recognize coherent areas. The proposed method
is able to effectively identify clusters of PMUs, recognizing
similar oscillatory modes, and to separate the PMUs to
highlight coherent areas oscillating together.

As a proof of the correctness of the observed output, the
geographical area of the PMUs whose measurements were

FIGURE 16. Geographic locations of the clustered PMUs.

FIGURE 17. Frequency oscillations of the clusters detected by the
k-means algorithm.

taken into account has been highlighted in Fig. 16. Due to
data security issues, the exact location of the PMUs cannot
be shown; indeed, the clusters identified by the proposed
method is able to group PMUs that are located in areas that
are geographically close to each other. As it can be expected,
PMUs located at neighboring states in the network observe
similar oscillatory phenomena.

Many tests were repeated, at different signal amplitudes
and changing the set of PMUs processed. In all cases,
the method proved to effectively group coherent areas. To
better highlight the performance of the proposed method, the
same dataset was processed using the k-means algorithm (an
approach similar to that presented in [37]), which is widely
adopted for data clustering [38], [39], [40]. This approach
assumes that the number of clusters is given as input and,
therefore, it is already known [41]. For this reason, an iterative
bi-partitioning algorithm, similar to the one implemented
in III-C was developed. The signals of the identified clusters
are shown in Fig. 17 The main difference can be observed in
cluster2, where both PMUs from South Area and West Area
were included. The k-means approach does not recognize
the differences between the oscillations that have similar
amplitudes and trends, but different frequencies. The same
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problem is observed for PMU13, which was included in the
South-East Area group, although it is characterized by an
additional oscillatory mode with a different frequency than
is not present in the signals provided by the other PMUs of
the cluster.

VII. CONCLUSION
The paper dealt with the problem of suitably grouping
the frequency signals measured by PMUs involved in the
stability assessment of transmission networks according to
their coherent operation areas. To this aim, an innovative
method based on the iterated application of spectral clustering
and optimized cluster partitioning has been defined and
implemented; in particular, the method exploits a modified
Bray Curtis index to define the entries of the similarity
matrix. Starting from that matrix, after some calculations
described above, the eigenvalues and eigenvectors of the
non-normalized Laplacian allow to evaluate two parameters,
referred to as the Fiedler and weighted Fiedler value.
Comparing those values with two thresholds suitably defined,
it is possible to decide if the considered cluster of frequency
measures should be partitioned or not. By iterating this
process on all the clusters that are successively generated,
it is possible to separate all the frequency measures belonging
to coherent areas, i.e., characterized by correlated evolution
versus time.

Method performance has been assessed in a number of tests
conducted on both simulated and actual measurement data.
In particular, numerical simulations conducted on different
conditions of SNR and observation interval have allowed to
tune the values of the Fiedler and weighted Fiedler thresholds
(equally respectively to 0.8 and 0.1) as well as defining
and assessing both a proper filtering stage (consisting of a
numerical band-pass filter suitably tuned with the frequency
interval of interest) and observation interval (greater than
96s at a sample rate of 10Hz) in order to improve the
robustness of the method. Tests conducted on a modified
Kundurmodel have highlighted the capability of the proposed
method of correctly grouping the measured data in all the
operating condition of the network (starting transient, PSS
action and fault transient). In all test conditions, the method
has been capable of correctly separate coherent areas with a
success probability equal to 100%. Finally, the method has
been applied on actual frequency measurements, acquired
by 18 PMUs spread throughout the Europe. The obtained
results are of remarkable interest, since the coherent area
separation perfectly matches the geographical distribution of
the PMUs, as it can be expected. Moreover, the proposed
method has clearly outperformed a typical solution presented
in the literature, being capable of recognizing and separating
oscillations characterized by similar amplitude but different
frequencies. Ongoing activities are mainly focused on the
exploitation of the proposed metohd for (i) the estimation of
the area inertia and (ii) the early identification of possible
critical operating conditions of the network.

REFERENCES

[1] G. R. Moraes, V. Ilea, A. Berizzi, C. Pisani, G. Giannuzzi, and R. Zaottini,
‘‘A perturbation-based methodology to estimate the equivalent inertia
of an area monitored by PMUs,’’ Energies, vol. 14, no. 24, p. 8477,
Dec. 2021.

[2] F. Allella, E. Chiodo, G. M. Giannuzzi, D. Lauria, and F. Mottola, ‘‘On-
line estimation assessment of power systems inertia with high penetration
of renewable generation,’’ IEEE Access, vol. 8, pp. 62689–62697,
2020.

[3] E. M. Carlini, F. Del Pizzo, G. M. Giannuzzi, D. Lauria, F. Mottola, and
C. Pisani, ‘‘Online analysis and prediction of the inertia in power systems
with renewable power generation based on a minimum variance harmonic
finite impulse response filter,’’ Int. J. Electr. Power Energy Syst., vol. 131,
Oct. 2021, Art. no. 107042.

[4] F. Bonavolonta, L. P. D. Noia, A. Liccardo, S. Tessitore, and D.
Lauria, ‘‘A PSO-MMA method for the parameters estimation of interarea
oscillations in electrical grids,’’ IEEE Trans. Instrum. Meas., vol. 69,
no. 11, pp. 8853–8865, Nov. 2020.

[5] A. Liccardo, S. Tessitore, F. Bonavolonta, S. Cristiano, L. P. D. Noia,
G. M. Giannuzzi, and C. Pisani, ‘‘Detection and analysis of inter-area
oscillations through a dynamic-order DMD approach,’’ IEEE Trans.
Instrum. Meas., vol. 71, pp. 1–14, 2022.

[6] G. Giannuzzi, D. Lauria, C. Pisani, and D. Villacci, ‘‘Real-time tracking
of electromechanical oscillations in ENTSO-e continental European syn-
chronous area,’’ Int. J. Electr. Power Energy Syst., vol. 64, pp. 1147–1158,
Jan. 2015.

[7] I. Kamwa, A. K. Pradhan, G. Joos, and S. R. Samantaray, ‘‘Fuzzy
partitioning of a real power system for dynamic vulnerability assess-
ment,’’ IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1356–1365,
Aug. 2009.

[8] L. Ding, Z. Ma, P. Wall, and V. Terzija, ‘‘Graph spectra based controlled
islanding for low inertia power systems,’’ IEEE Trans. Power Del., vol. 32,
no. 1, pp. 302–309, Feb. 2017.

[9] C.W.Wu, ‘‘Algebraic connectivity of directed graphs,’’ Linear Multilinear
Algebra, vol. 53, no. 3, pp. 203–223, Jun. 2005.

[10] M. A. Rios and O. Gómez, ‘‘Identification of coherent groups and PMU
placement for inter-area monitoring based on graph theory,’’ in Proc. IEEE
PES Conf. Innov. Smart Grid Technol. Latin Amer. (ISGT LA), Medellin,
Colombia, Oct. 2011, pp. 1–7.

[11] E. Barocio, P. Korba, W. Sattinger, and F. R. S. Sevilla, ‘‘Online
coherency identification and stability condition for large intercon-
nected power systems using an unsupervised data mining technique,’’
IET Gener., Transmiss. Distrib., vol. 13, no. 15, pp. 3323–3333,
Aug. 2019.

[12] G. Giannuzzi, C. Pisani, and W. Sattinger, ‘‘Generator coherency
analysis in ENTSO-E continental system: Current status and ongoing
developments in Italian and Swiss case,’’ IFAC-PapersOnLine, vol. 49,
no. 27, pp. 400–406, 2016.

[13] P. M. Ashton, G. A. Taylor, A. M. Carter, M. E. Bradley, and W. Hung,
‘‘Application of phasor measurement units to estimate power system
inertial frequency response,’’ in Proc. IEEE Power Energy Soc. Gen.
Meeting, Jul. 2013, pp. 1–5.

[14] D. Li, N. Dong, Y. Yao, B. Xu, and D. W. Gao, ‘‘Area inertia estimation of
power system containing wind power considering dispersion of frequency
response based on measured area frequency,’’ IET Gener., Transmiss.
Distrib., vol. 16, no. 22, pp. 4640–4651, Nov. 2022.

[15] G. Frigo, A. Derviskadic, Y. Zuo, and M. Paolone, ‘‘PMU-based ROCOF
measurements: Uncertainty limits and metrological significance in power
system applications,’’ IEEE Trans. Instrum. Meas., vol. 68, no. 10,
pp. 3810–3822, Oct. 2019.

[16] K. K. Anaparthi, B. Chaudhuri, N. F. Thornhill, and B. C. Pal,
‘‘Coherency identification in power systems through principal component
analysis,’’ IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1658–1660,
Aug. 2005.

[17] M. A. M. Ariff and B. C. Pal, ‘‘Coherency identification in
interconnected power system—An independent component analysis
approach,’’ IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1747–1755,
May 2013.

[18] N. Senroy, ‘‘Generator coherency using the Hilbert–Huang trans-
form,’’ IEEE Trans. Power Syst., vol. 23, no. 4, pp. 1701–1708,
Nov. 2008.

121454 VOLUME 11, 2023



A. Liccardo et al.: Robust SC Method Based on PMU Measurements for Coherent Areas Identification

[19] S. Avdakovic, E. Becirovic, A. Nuhanovic, and M. Kusljugic,
‘‘Generator coherency using the wavelet phase difference
approach,’’ IEEE Trans. Power Syst., vol. 29, no. 1, pp. 271–278,
Jan. 2014.

[20] M. H. Rezaeian, S. Esmaeili, and R. Fadaeinedjad, ‘‘Generator coherency
and network partitioning for dynamic equivalencing using subtractive
clustering algorithm,’’ IEEE Syst. J., vol. 12, no. 4, pp. 3085–3095,
Dec. 2018.

[21] J. Raitoharju, S. Kiranyaz, and M. Gabbouj, ‘‘Training radial basis
function neural networks for classification via class-specific clustering,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp. 2458–2471,
Dec. 2016.

[22] L. Lugnani, M. R. A. Paternina, D. Dotta, J. H. Chow, and Y. Liu, ‘‘Power
system coherency detection from wide-area measurements by typicality-
based data analysis,’’ IEEE Trans. Power Syst., vol. 37, no. 1, pp. 388–401,
Jan. 2022.

[23] R. Rocchetta, ‘‘Enhancing the resilience of critical infrastructures:
Statistical analysis of power grid spectral clustering and post-contingency
vulnerability metrics,’’ Renew. Sustain. Energy Rev., vol. 159, May 2022,
Art. no. 112185.

[24] S. F. Mahdavizadeh, M. R. Aghamohammadi, and S. Ranjbar, ‘‘Fre-
quency stability-based controlled islanding scheme based on clustering
algorithm and electrical distance using real-time dynamic criteria from
WAMS data,’’ Sustain. Energy, Grids Netw., vol. 30, Jun. 2022,
Art. no. 100560.

[25] A. A. Badr, A. Safari, and S. N. Ravadanegh, ‘‘Segmentation of
interconnected power systems considering microgrids and the uncertainty
of renewable energy sources,’’ IET Gener., Transmiss. Distrib., vol. 17,
no. 17, pp. 3814–3827, Sep. 2023.

[26] W. J. Farmer and A. J. Rix, ‘‘Evaluating power system network inertia
using spectral clustering to define local area stability,’’ Int. J. Electr. Power
Energy Syst., vol. 134, Jan. 2022, Art. no. 107404.

[27] S. Ranjbar, ‘‘Adaptive criteria of estimating power system separation times
based on inter-area signal,’’ IET Gener., Transmiss. Distrib., vol. 17, no. 3,
pp. 573–588, Feb. 2023.

[28] U. von Luxburg, ‘‘A tutorial on spectral clustering,’’ Statist. Comput.,
vol. 17, no. 4, pp. 395–416, Dec. 2007.

[29] D. Lauria and C. Pisani, ‘‘Real time generator coherency evaluation
via Hilbert transform and signals morphological similarity,’’ in Proc.
Int. Symp. Power Electron., Electr. Drives, Autom. Motion, Jun. 2014,
pp. 78–83.

[30] M. G. Michie, ‘‘Use of the bray-curtis similarity measure in cluster
analysis of foraminiferal data,’’ J. Int. Assoc. Math. Geol., vol. 14, no. 6,
pp. 661–667, Dec. 1982.

[31] M. B. Blaschko and C. H. Lampert, ‘‘Correlational spectral cluster-
ing,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008,
pp. 1–8.

[32] K. Fujiwara, M. Kano, and S. Hasebe, ‘‘Correlation-based spectral
clustering for flexible process monitoring,’’ J. Process Control, vol. 21,
no. 10, pp. 1438–1448, Dec. 2011.

[33] A. Ng, M. Jordan, and Y. Weiss, ‘‘On spectral clustering: Analysis and an
algorithm,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 14, 2001.

[34] I. D. Pasiopoulou, E. O. Kontis, T. A. Papadopoulos, and
G. K. Papagiannis, ‘‘Effect of load modeling on power system
stability studies,’’ Electr. Power Syst. Res., vol. 207, Jun. 2022,
Art. no. 107846.

[35] P. S. Kundur and O. P. Malik, Power System Stability and Control.
McGraw-Hill Education, 2022.

[36] M. Yuan and Q. Zhu, ‘‘Spectral clustering algorithm based on fast
search of natural neighbors,’’ IEEE Access, vol. 8, pp. 67277–67288,
2020.

[37] F. Raak, Y. Susuki, and T. Hikihara, ‘‘Data-driven partitioning of power
networks via Koopman mode analysis,’’ IEEE Trans. Power Syst., vol. 31,
no. 4, pp. 2799–2808, Jul. 2016.

[38] J. Shan, Y. Zhang, Q. Zhao, and J. Lin, ‘‘A K-means clustering and
triangulation-based scheme for accurate detection of multiple adjacent
through-the-wall human targets,’’ IEEE Trans. Instrum. Meas., vol. 72,
pp. 1–13, 2023.

[39] K. P. Sinaga and M.-S. Yang, ‘‘Unsupervised K-means clustering
algorithm,’’ IEEE Access, vol. 8, pp. 80716–80727, 2020.

[40] A. Aligholian, A. Shahsavari, E. M. Stewart, E. Cortez, and
H. Mohsenian-Rad, ‘‘Unsupervised event detection, clustering, and
use case exposition in micro-PMU measurements,’’ IEEE Trans. Smart
Grid, vol. 12, no. 4, pp. 3624–3636, Jul. 2021.

[41] K. P. Sinaga, I. Hussain, and M.-S. Yang, ‘‘Entropy K-means clustering
with feature reduction under unknown number of clusters,’’ IEEE Access,
vol. 9, pp. 67736–67751, 2021.

ANNALISA LICCARDO (Member, IEEE) received
the M.Sc. and Ph.D. degrees in electrical engi-
neering from the University of Naples Federico
II, Naples, Italy, in 2003 and 2006, respectively.
Since 2016, she has been an Associate Professor
in measurement with the Department of Electrical
Engineering and Information Technology, Univer-
sity of Naples Federico II. She has founded the
spin off ARCADIA, for the realization of AR
environments for remote control of measurement

instruments. Her main current research interests include advanced
measurements for monitoring and protection of electrical power systems, the
IoT sensors for electrical measurements, distributed measurement systems,
and AR-based remote laboratory.

DAVIDE LAURIA received the M.Sc. degree
(Hons.) in electrotechnical engineering and the
M.Sc. degree (Hons.) in mathematics from the
University of Naples, Naples, Italy, in 1987 and
1995, respectively. He is currently a Full Professor
in electrical power systems with the Department
of Industrial Engineering, University of Naples
Federico II, Naples. He is the coauthor of more
than 200 scientific articles. He is also the coauthor
of the chapter Probabilistic Transient Stability

Assessment and On-Line Bayes Estimation of the book Innovations in Power
Systems Reliability (Springer, 2011). His main research interests include
power system analysis, stability, control, electric transportation systems,
electrical system reliability, and application of power electronics to electrical
power systems.

FRANCESCO BONAVOLONTÃ received the
master’s and Ph.D. degrees in electrical engineer-
ing from the University of Naples Federico II,
Naples, Italy, in 2011 and 2015, respectively. He is
currently a Research Fellow with the Department
of Electrical and Information Technologies, Uni-
versity of Naples Federico II. He has founded
the spin off ARCADIA, for the realization of AR
environments for remote control of measurement
instruments. His research interests include the

area of instrumentation and measurement and can be divided into three
main areas: remote control of measurement instruments, measurement
methods based on compressive sampling, distributed measurement systems
for monitoring and protecting electrical networks, and development of
innovative measurement sensors based on artificial intelligence algorithms.
He is a member of the Technical Commitee TC-37-Measurements and
Networking of IEEE.

VOLUME 11, 2023 121455



A. Liccardo et al.: Robust SC Method Based on PMU Measurements for Coherent Areas Identification

GIORGIO MARIA GIANNUZZI received the
master’s degree in electrical engineering from
the University of Rome, Rome, Italy, in 1996.
Until December 2000, he was with ABB, Zürich,
Switzerland, where he was in charge of network
studies, protection, and control applications. Since
2001, he has been with Terna, Rome, as an
Expert in defense plans/systems, dynamic studies,
protection, telecontrol, and substation automation.
From 2004 to 2011, he coordinated the study,

design, and activation of wide area defense system (including interruptible
customers system) and wide area monitoring systems. Until 2009, he was
a member of the UCTE Expert Group on Power System Stability. In 2010,
he joined ENTSO-E, Bruxells, Belgium, System Protection and Dynamics
Group, where he has been the Convenor, since 2014, coordinating the
European evaluation over dispersed generation impact on system security
and load shedding guidelines. He is currently responsible of the Engineering
Department, National Dispatching Centre.

COSIMO PISANI received the Ph.D. degree
in electrical engineering from the University of
Naples Federico II, Naples, Italy, in 2014. During
the Ph.D. degree in collaboration with Terna,
Rome, Italy, he investigated some dynamic stabil-
ity issues of large interconnected power system,
such as the European one. He is currently the Head
of Stability andNetwork Logics with theDispatch-
ing and Switching Department of Terna SpA. He is
also the Leader of Wide Area Monitoring System

(WAMS) Task Force within ENTSO-E System Protection and Dynamic and
Italian representative of CIGRE Study Committee C4 System Technical
Performance. He is the author or coauthor of more than 80 scientific articles
in IEEE/CIGRE community. His research interests include applications of
dynamic stability of power systems, wide area monitoring and protection
systems, high-voltage direct current systems, and power system restoration.

SALVATORE TESSITORE received the M.Sc.
degree in electrical engineering and the Ph.D.
degree from the University of Naples Federico
II, Naples, Italy, in 2019 and 2022, respectively.
His Ph.D. thesis titled ‘‘Detection and Measure-
ment of Inter-Area Oscillations for Power System
Stability.’’ From 2019 to 2022, he attended the
Ph.D. School of Information Technology and
Electrical Engineering, currently carrying out his
research activity in collaboration with Terna Rete

Italia, Rome, Italy. His research interests include measurements and signal
processing for electrical transmission networks.

Open Access funding provided by ‘Università degli Studi di Napoli "Federico II"’ within the CRUI CARE Agreement

121456 VOLUME 11, 2023


