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ABSTRACT TheCircular Spherical Fuzzy Set (C-SFS) andDisc Spherical Fuzzy Set (D-SFS), an innovation
of the well-known Spherical Fuzzy Set, are introduced in this research study. It is intended to improve
the representation and processing of uncertainty in decision-making scenarios. The study establishes the
C-SFS’s basic relations and operations, giving it a solid foundation for use in a variety of fields.
An ELECTRE method utilising the C-SFS framework is suggested to properly quantify the decision-
making process. This methodology combines circular spherical fuzzy concordant and discordant matrices,
making it easier to evaluate performance thoroughly in terms of many different factors. The orderly
structure of this strategy is demonstrated by a structured flow chart. Real-world applications of the C-SFS
ELECTRE approach, particularly in the critical setting of kidney transplant selection, serve to demonstrate
its effectiveness. A comparative section is included to demonstrate the suggested method’s accuracy.

INDEX TERMS ELECTRE method, circular spherical fuzzy sets, disc spherical fuzzy set, extension of
spherical fuzzy set, decision-making.

I. INTRODUCTION
Decision-making (DM) is a complex handle that involves
making choices among multiple alternatives based on various
factors and criteria. The application of fuzzy set theory has
been prevalent in decision making to address uncertainty
and imprecision associated with the DM process [1]. Fuzzy
set theory enables decision-makers to deal with qualitative
and quantitative data, and it provides a more flexible
and robust framework for decision making. In particular,
fuzzy analysis provides a systematic approach to assessing
alternatives based on multiple criteria, taking into account
both subjective and objective information [2]. In the past,
many research papers have included decision-making, which
includes drug selection to treat COVID-19 [3], hydrogen
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power plant selection [4], urinary diseases and other medical
problems [5], solar power plant [6] and many more. This
paper aims to establish a new concept called the circular
spherical fuzzy set, which extends the existing fuzzy set
theory, and to demonstrate its applicability in a case study on
kidney transplant selection. The proposed approach combines
circular spherical fuzzy set theory with the ELECTRE a way
to provide a comprehensive and efficient approach to DM.

Fuzzy-sets (FS) theory was developed by Zadeh [7] to
represent ambiguous and incomplete data. It generalises
the idea of the characteristic function that determines if a
component belongs to a universal set to the idea of the
belonging value of a fuzzy set. FSs have been widely used
to address the shortcomings and constraints of traditional
approaches. FSs are used to deal with occurrences when it is
impossible to determine the risk priority using conventional
models. The ratings and importance of triangular fuzzy
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numbers were used to convey linguistic variables in the
first adaptation of the TOPSIS approach under an uncertain
environment [8]. In this sense, a straightforward and effective
approach may be used to analyse the risks of future
failures [9]. To calculate the decision making process, a fuzzy
TOPSIS method may be utilised [10]. To characterise the
importance of risk variables, it mixed the advantages of fuzzy
TOPSIS and analytic hierarchy process (AHP) approaches.
Employing fuzzy evidence-based reasoning the grey theory,
traditional failure mode and effective analysis (FMEA)
approaches were made more effective [11]. Boral et al sug-
gested an combined MCDM approach that integrates the
fuzzy analytical hierarchy process with the modified fuzzy
MAIRCA [12]. With the use of a case study involving a
steam valve system, [13] provided a type-2 interval fuzzy
evidential reasoning approach for FMEA and highlighted the
advantages of the suggested threat model.

Following this, several scholars question why the non-
membership component is not included in the fuzzy sets? To
fulfil this idea, Atanassov [14] introduced the intuitionistic
FS (IFS), which includes non-membership with membership.
After this, a radius value is attached to the IFS, and the
name of this set is the circular intuitionistic fuzzy set (C-IFS)
[15], [16]. Then, time by time, further kinds of fuzzy sets
come to help the DM problems. Interval-valued fuzzy sets
(IVFS) are an extension of the fuzzy set theory utilizes
a number from an interval to symbolize the degree of
membership and highlights the ambiguity in the membership
degrees that have been assigned [17]. Torra [18] introduced
the hesitant fuzzy sets (HFSs) which are an growth of
fuzzy sets in which we include more than one membership.
In some cases, it may not be possible to determine whether
a proposition is true or false, and it may be only partially
true or partially false. Neutrosophic fuzzy [19] sets allow
for the representation of such degrees of indeterminacy,
which is not possible using traditional crisp sets or fuzzy
sets. A neutrosophic set, especially a FS, is a potent formal
framework that generalises the idea of a set. Yager [20]
introduced Pythagorean fuzzy sets (PyFSs) with a bigger
region for belonging and non-belonging degrees. After this
[49] is attached the circular and disc value with PyFSs.
As a generalisation of IFSs and PyFSs, Yager [21] presented
q-rung orthopair fuzzy sets (q-ROFSs). A spherical fuzzy
set (SFS) [22] is a sort of fuzzy set that is defined on a
sphere in n-dimensional space, which is the extension of a
neutrosophic fuzzy set (NFS) because in a NFS the range of
all three tuples lies between 0 and 3, but in a spherical fuzzy
set its range is restricted to 1. A complemental fuzzy set is
introduced by Alcantud, J.C.R. which is the justification of
q-Rung orthopair fuzzy set [23]. In this paper, we introduce
the novel idea of a circular and disc spherical fuzzy set, which
is an extension of SFS. Figure 1 shows the extension of fuzzy
set theory annually.

There are several techniques to solve daily life problems,
such as TODIM [24], VIKOR [25], ELECTRE method
[26] and much more. In this paper, we implicated the

FIGURE 1. Developmentation in fuzzy set theory.

ELECTRE method for multi criteria decision-making prob-
lems (MCDM) due to the use of the proposed definition.
Previously, researchers have used the ELECTRE method
for different purposes. The group of performance evaluation
is significantly impacted by the ELECTRE approach, [27].
It was first suggested by Siskgs [28] and Roy [29] under
the name ELECTRE-I. The concept becomes more devel-
oped into the ELECTRE-II [30], ‘‘III,’’ and ‘‘IV’’ ranked
problem-solving procedures as well as the ELECTRE-A
[31], [32] sorting problem-solving approaches. Pythagorean
fuzzy set and the ELECTRE-I approach in MCDM, accord-
ing to [33]. Several industries have seen considerable
application of various ELECTRE approaches, including
internet business [34], online purchasing [35] and choosing
a dentist [36]. Likewise, a number of authors have employed
the ELECTRE method when it comes to group decision-
making [37]. Akram et al. [38] uses ELECTRE-I with an
m-polar fuzzy soft set in MCDM. Using incomplete data,
which simulates the circumstance when assessments of
the values that each parameter should have are unknown,
Dias and Climaco derived the validity indices for ELEC-
TRE [39]. Different priorities among a group of decision-
makers might cause this dilemma, as might inadequate,
inconsistent, or insufficient information. To resolve conflicts
between limits on the parameters, Mousseau [40] applies
the accumulation technique for the ELECTRE TRI method.
Fernandez and Olmedo [41] offered an action a model that
the ideas of concordant and discordant for problems with
group ranting. Using an integrated fuzzy AHP-ELECTRE
tackle, Kaya and Kahraman [42] demonstrated an evaluation
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of the environment’s influence method for urban economic
planning. Also, the ELECTRE technique has recently been
applied to solve the circumstance where the assessment
data of the judgement issues may be unclear and fuzzy,
as a result of the judgement’s low knowledge and genuine
real-fuzziness [43]. To account for the confusing, incorrect,
and subjective judgements made by a group of DM,
Hatami-Marbini and Tavana [44] suggested the enlarged
ELECTRE I technique and utilised the mean value to
aggregate all of the evaluations. In intuitionistic fuzzy (IF)
ecosystems, Wu and Chen [45] employed the tackle to tackle
the MCDM issues. The ELECTRE technique compares
possibilities pair by pair using the evaluated data supplied
by the decision maker. Connections that are concordant,
discordant, or outranking are all significant in this technique.
Using concordant and discordant indices, the decision-
maker approach outranks correlations between a variety of
possibilities before employing the crisp data to choose the
best option.

A. MOTIVATION
C-SFSs and the ELECTRE approach to MCDM are two
appealing branches of literature that served as inspiration for
the research that is proposed in this paper. Our ability to carry
out relevant evaluations for decision-making is made possible
by a revolutionary technique known as circular spherical
fuzzy ELECTRE (C-SF ELECTRE), which is the outcome
of their combination. Thus, the following are the primary
motivational factors behind this article:

1) C-SFS provides for many occurrences of belonging,
non-belonging, and indeterminacy degrees with radius
to evaluate the ratings of prospective failures and
danger signs in the representation of assessment data.

2) In order to address more complex scenarios, C-SFSs
include both the capabilities of SFS and radius of the
given value.

3) Also, the ELECTRE approach is a successful structure
in several areas where the decision-makers need to take
into account three or more risks variables and when
there is also a variety between these criteria that is
essential to the nature of assessments.

4) When addressing programs that contain multiple eval-
uation data values, the new C-SF ELECTRE method
makes it possible to produce findings that are more
accurate and trustworthy.

If we want to check the radius of a circle in SFS, we are
unable to find it. As a result, authors are thrilled to be able
to meet this need. As a result, we must employ C-SFS to deal
with this sort of issue. This is a transition to all predicting
algorithms capable of handling any form of membership,
indeterminacy, and non-membership includes circular radius.
They are useful when we need to calculate the radius of SFS.
The question arises: why do we calculate the radius of any
set? The answer is that after finding the radius, we know to
check where the values of oversetting lie in this radius, which
is helpful in observing our results. It is the only set in fuzzy

set theory which gives the radius including three degrees like
membership, indeterminacy and non-membership.
Example 1: Let ℜ = {x̂1, x̂2, x̂3}. An example of C-SFS on

ℜ can be given as:

A
¯ 0.3

= {⟨x̂1, 0.1, 0.4, 0.3; 0.3⟩, ⟨x̂2, 0.6, 0.1, 0.1; 0.3⟩,

⟨x̂3, 0.3, 0.1, 0.4; 0.3⟩}

B. DESIGN/PROCEDURE
To be able to assess risks in a wider context, the ELECTRE
technique is expanded to include the C-SF ELECTRE
approach in this article. The C-SF ELECTRE approach
suggests pairwise comparisons between all failures that
have been found and are related to each risk factor.
By removing failures with low-risk priorities, the suggested
model produces a collection of solutions.

C. FINDINGS
A correlation of the model presented in this article with the
current methods shows its applicability and viability. Our
computational findings show that the generated model has
a higher reference value and is better suited to the project’s
real condition. Our findings show that C-SFSs are capable
of correctly interpreting the decision-making issues and the
differences in views among multiple decision-makers.

D. PRACTICAL APPLICATION
The results of the study might be used as the basis for sup-
porting information for decisions on risk management, and
the recommended model offers a framework for developing
risk assessments of failure modes, such as in medical settings.
In this article, we use a kidney transplant as an example. The
goal of kidney transplant research is to identify strategies to
lower the risks and difficulties connected with this treatment
while also increasing the availability and success of kidney
transplantation. After reading this study report, we can tackle
the question of what stage of kidney transplantation is most
in demand.

E. ORIGINALITY
The flexible C-SF environment is used to design a unique
methodology utilising the ELECTRE method. It weighs the
opinions of experts and risk factors in relation to C-SFSs.
We provide proof that the suggested method has improved
the robustness of the findings and considerably improved the
integrity of the data used in expert assessment.

The remainder of the article is arranged as follows:
There are four terms defined: SFS, C-IFS, and circular
pythagorean fuzzy set (C-PFS) and Disc-PFS, which are
used to help understand the other part of the article. The
next step is to create a C-SFS and an example. After this,
we introduced some operations and relations of C-SFS that
are useful for calculating the results. Then define the C-SF
decision matrix. Following this, we described an ELECTRE
algorithm along with concordant and discordant sets. Just
after that, we gave a detailed explanation of the C-SFS
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ELECTRE method. We described the algorithm’s step-by-
step application in detail. We developed a method for
determining which types of conditions are more likely to
emerge after kidney transplantation. To further illustrate our
concept using the comparative approach, we provide a second
example. We provided the paper’s conclusion in the last
section.

II. PRELIMINARIES
This section provides a detailed explanation of the essential
ideas that are connected with SFS, C-IFS, C-PFS and D-PFS.
Definition 1 [46]: Let ℜ be the universe set. Afterwards,

the set

A
¯

= {⟨x̂,T ∗

A
¯
(x̂), I∗A

¯
(x̂),F∗

A
¯
(x̂)|x̂ ∈ ℜ⟩} (1)

is reportedly a spherical fuzzy set, where T ∗

A
¯
(x̂) : ℜ → [0, 1],

I∗A
¯
(x̂) : ℜ → [0, 1] and F∗

A
¯
(x̂) : ℜ → [0, 1] are said to be

degrees belonging of x̂ in ℜ, neutral-belonging degree of x̂
in ℜ and non-belonging degree of x̂ in ℜ respectively. Also,
T ∗

A
¯
, I∗A
¯
and F∗

A
¯
fulfill the criteria below:

(∀x̂ ∈ ℜ)(0 ≤ (T ∗

A
¯
(x̂))2 + I∗A

¯
(x̂))2 + F∗

A
¯
(x̂))2 ≤ 1) (2)

For SFS {⟨x̂,T ∗

A
¯
(x̂), I∗A

¯
(x̂),F∗

A
¯
(x̂)|x̂ ∈ ℜ⟩}, which is a triple

component.

⟨T ∗

A
¯
(x̂), I∗A

¯
(x̂),F∗

A
¯
(x̂)⟩

are considered SFN, and every spherical number is indicated
by e = ⟨T ∗

e , I
∗
e ,F

∗
e ⟩ where T ∗

e , I
∗
e ,F

∗
e ∈ [0, 1], with the

circumstance that 0 ≤ T 2∗
e + I2∗e + F2∗

e ≤ 1
Definition 2 [47]: Let’s assume thatℜ is a fixed universe,

and A
¯
is its subset. This is

A
¯

= {⟨x̂,T ∗

A
¯
(x̂),F∗

A
¯
(x̂); r⟩|x̂ ∈ ℜ}

where 0 ≤ T ∗

A
¯
(x̂) + F∗

A
¯
(x̂) ≤ 1 and r ∈ [0, 1] is the radius

of each set sphere. x̂ ∈ ℜ, is said to be C-IFS and functions
T ∗

A
¯
(x̂) : ℜ → [0, 1] and F∗

A
¯
(x̂) : ℜ → [0, 1] indicate the

degree of belonging and non-belonging degree of component
x̂ ∈ ℜ to a fixed set A

¯
⊆ ℜ.

Here, each element is symbolized by a sphere with a
center ⟨T ∗

A
¯
(x̂),F∗

A
¯
(x̂)⟩ and radius r as opposed to the normal

IFSs where each element is represented by a point in the
intuitionistic fuzzy interpretation triangle.
Definition 3 [48]: Let r ∈ [0, 1]. A C-PFS A

¯
in ℜ is

defined by:

A
¯

= {⟨x̂,T ∗

A
¯
(x̂),F∗

A
¯
(x̂); r⟩|x̂ ∈ ℜ}

where T ∗

A
¯
(x̂),F∗

A
¯
(x̂) :→ [0, 1] are functions like that

(∀x̂ ∈ ℜ)(0 ≤ (T ∗

A
¯
(x̂))2 + F∗

A
¯
(x̂))2 ≤ 1)

The radius of the circle is r is the point (T ∗

A
¯
(x̂),F∗

A
¯
(x̂)) on

the sphere. This circle symbolizes the belonging degree and
non-belonging degree of x̂ ∈ ℜ.

Definition 4 [49]: Let r(x̂) ∈ [0, 1]. A D-PFS A
¯
in ℜ is

defined by:

A
¯

= {⟨x̂,T ∗

A
¯
(x̂),F∗

A
¯
(x̂); r(x̂)⟩|x̂ ∈ ℜ}

where T ∗

A
¯
(x̂),F∗

A
¯
(x̂) :→ [0, 1] are functions like that

(∀x̂ ∈ ℜ)(0 ≤ (T ∗

A
¯
(x̂))2 + F∗

A
¯
(x̂))2 ≤ 1)

The radius of the circle is r(x̂) is the point (T ∗

A
¯
(x̂),F∗

A
¯
(x̂)) on

the plane. This circle symbolizes the belonging degree and
non-belonging degree of x̂ ∈ ℜ.
Example 2: Letℜ = {x̂1, x̂2, x̂3}. An example of C-PFS on

ℜ can be given as:

A
¯ 0.4

={⟨x̂1,0.1,0.3; 0.4⟩,⟨x̂2, 0.6, 0.1;0.4⟩,⟨x̂3, 0.3, 0.4; 0.4⟩}

Example 3: Letℜ = {x̂1, x̂2, x̂3}. An example of D-PFS on
ℜ can be given as:

A
¯

={⟨x̂1, 0.1, 0.3; 0.4⟩, ⟨x̂2, 0.6, 0.1; 0.1⟩, ⟨x̂3, 0.3, 0.4; 0.2⟩}

III. CIRCULAR AND DISC SPHERICAL FUZZY SETS
In this section, the idea of circular spherical fuzzy set (C-SFS)
and disc spherical fuzzy set (D-SFS) were introduced, which
is an elongation of a SFS.
Definition 5: Let’s assume that ℜ is a fixed universe, and

A
¯
is its subset. This is

A
¯

= {⟨x̂,TA
¯
(x̂), IA

¯
(x̂),FA

¯
(x̂); r̂A

¯
|x̂ ∈ ℜ⟩} (3)

is allegedly a C-SFS, where TA
¯
(x̂) : ℜ → [0, 1], IA

¯
(x̂) :

ℜ → [0, 1], FA
¯
(x̂) : ℜ → [0, 1]. are apparently degrees of

positive-belonging of x̂ in ℜ, neutral-belonging degree of x̂
in ℜ and non-belonging degree of x̂ in ℜ respectively. Also
TA
¯
, IA
¯
and FA

¯
satisfy the following conditions:

(∀x̂ ∈ ℜ)(0 ≤ (TA
¯
(x̂))2 + (IA

¯
(x̂))2 + (FA

¯
(x̂))2 ≤ 1). (4)

The radius of the circle around is r̂ the point (TA
¯
(x̂), IA

¯
(x̂),

FA
¯
(x̂)) on the sphere. This circle represents the belonging

degree, non-belonging degree, and indeterminacy of x̂ ∈ ℜ.
In this C-SFS, each element is denoted by a circle with a

center (TA
¯
(x̂), IA

¯
(x̂),FA

¯
(x̂)) and a radius r̂ instead of a point

in the spherical fuzzy interpretation triangle as in typical
SFSs.
Due to the fact that every standard SFS has the form, the

new kind of sets is an upgrade to the standard SFS.

A
¯

= A
¯ o

= {⟨x̂,TA
¯
(x̂), IA

¯
(x̂),FA

¯
(x̂); 0⟩}

but the C-SFS with r̂ > 0 is not compatible with a normal
SFS.
Definition 6: Let’s assume that ℜ is a fixed universe, and

A
¯
is its subset. This is

A
¯

= {⟨x̂,TA
¯
(x̂), IA

¯
(x̂),FA

¯
(x̂); r̂A

¯
(x̂)|x̂ ∈ ℜ⟩} (5)

is allegedly a D-SFS, where TA
¯
(x̂) : ℜ → [0, 1], IA

¯
(x̂) :

ℜ → [0, 1], FA
¯
(x̂) : ℜ → [0, 1]. are apparently degrees of

positive-belonging of x̂ in ℜ, neutral-belonging degree of x̂
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in ℜ and non-belonging degree of x̂ in ℜ respectively. Also
TA
¯
, IA
¯
and FA

¯
satisfy the following conditions:

(∀x̂ ∈ ℜ)(0 ≤ (TA
¯
(x̂))2 + (IA

¯
(x̂))2 + (FA

¯
(x̂))2 ≤ 1). (6)

The radius of the circle around is r̂(x̂) the point
(TA
¯
(x̂), IA

¯
(x̂),FA

¯
(x̂)) on the sphere. This circle represents the

belonging degree, non-belonging degree, and indeterminacy
of x̂ ∈ ℜ.
In this D-SFS, each element is denoted by a circle with

a center (TA
¯
(x̂), IA

¯
(x̂),FA

¯
(x̂)) and a radius r̂(x̂) instead of

a point in the spherical fuzzy interpretation triangle as in
typical SFSs.

The circular spherical fuzzy set has a fixed radius through
all elements, but in the case of the disc spherical fuzzy set,
the radius associated with each element is distinct.

A. CONSTRUCTION OF DISC SPHERICAL FUZZY SETS
In this part, we will discuss the method that is used to calcu-
late the radius of D-SFS in order to convert SFS to D-SFS.
Find the radius of a SFS by using equations (7) and (8).

In an SFS Ni, let spherical fuzzy pairs possess a shape
{⟨µi,1, πi,1, νi,1⟩⟨µi,2, πi,1, νi,2⟩, . . . .}, where i is a numeric
value of SFS Ni each containing λi. Initially, the arithmetic
average of the spherical fuzzy pairs is determined as:

⟨µ(Ni), π(Ni), ν(Ni)⟩ = ⟨

√√√√6
λi
j=1µ

2
i,j

λi
,

√√√√6
λi
j=1π

2
i,j

λi
,

√√√√6
λi
j=1ν

2
i,j

λi
⟩

(7)

where λi is the number of spherical fuzzy pairs Ni.
The radius of the ⟨µ(Ni), π(Ni), ν(Ni)⟩ is the highest of the

Euclidian distances.

ri= max
1≤j≤λi

√
(µ(Ni) − µi,j)2 + (π(Ni) − πi,j)2 + (ν(Ni) − νi,j)2

(8)

After finding radius our SFS is converted into D-SFS.

B. SEMANTIC INTERPRETATION
It is generally known that an IV-IFS provides for considerable
latitude in the definition of MDs and NMDs for each
alternative. The alternative is characterized by a pair of
intervals rather than an orthopair. These intervals might be
of incredibly diverse sizes. Additionally, their lengths may
change in accordance with the options to take measurement
mistakes, uncertainty, etc. into consideration.

There is a fixed slackness r̂ around the orthopair produced
by (Ta(α), Ia(α),Fa(α)) in a C-SFS for the description of
α ∈ 4. Evaluations of α are acceptable for any authorized
orthopairs whose separation from (Ta(α), Ia(α),Fa(α)) is less
than this radius. But in a D-SFS, there is a specific slackness
for the description of α in 4, thus permissible orthopairs
whose separation from (Ta(α), Ia(α),Fa(α)) is under r̂(α)
are allowed to evaluate α. It is clear that the radii indicate

a margin of error in terms of the description of the orthopairs
in both C-SFSs and D-SFSs. Each choice in a C-SFS has the
same error margin. We should utilize a D-SFS whenever we
believe that certain alternatives must have lower margins of
error (for example, because they have been assessed using
more accurate equipment, better statistical methods, or more
dependable samples).
Example 4: Let 4 = {α̂1, α̂2, α̂3}. An example of C-SFS

on 4 can be given as:

A0.3 = {⟨α̂1, 0.1, 0.4, 0.3; 0.3⟩, ⟨α̂2, 0.6, 0.1, 0.1; 0.3⟩,

⟨α̂3, 0.3, 0.1, 0.4; 0.3⟩}

Example 5: Let 4 = {α̂1, α̂2, α̂3} be a collection of SFV
on 4 can be given as. Then the D-SFS can be given as:

A = {⟨α̂1, 0.1, 0.4, 0.3; 0.4⟩, ⟨α̂2, 0.6, 0.1, 0.1; 0.3⟩,

⟨α̂3, 0.3, 0.1, 0.4; 0.1⟩}

IV. OPERATIONS AND RELATIONS ON CIRCULAR
SPHERICAL FUZZY SETS
In this section, we are going to work on developing certain
relations and operations involving the distance formula of
the circular spherical fuzzy set. The operations and relations
of disc spherical fuzzy set is same as C-SFS so we define
only C-SFS. In addition to that, we are going to go over
its theorem along with proof. In addition, we are going to
look at certain criteria for comparison that will be used for
ranking.

The following is a description of the relations that exist
between the two C-SFSs A

¯ r̂1
and B

¯ r̂2
:

A
¯ r̂1

= {⟨â,TA
¯
(â), IA

¯
(â),FA

¯
(â); r̂1|â ∈ ℜ⟩}

B
¯ r̂2

= {⟨â,TB
¯
(â), IB

¯
(â),FB

¯
(â); r̂2|â ∈ ℜ⟩}

are two C-SFSs in ℜ. The following is a definition of several
set operations that may be performed on C-SFSs:
1) A

¯ r̂1
⊂ B

¯ r̂2
iff r̂1 ≤ r̂2 and TA

¯
(x̂) ≤ TB

¯
(â), IA

¯
(â) ≤

IB
¯
(â) and FA

¯
(â) ≥ FB

¯
(â)

2) A
¯ r̂1

= B
¯ r̂2

iff r̂1 = r̂2 and TA
¯
(â) = TB

¯
(â), IA

¯
(â) =

IB
¯
(â) and FA

¯
(â) = FB

¯
(â)

3) Complement A
¯
c
r̂1
of A

¯ r̂1
is defined as:

A
¯
c
r̂1

= {⟨â,FA
¯
(â), IA

¯
(â),TA

¯
(â); r̂1|â ∈ ℜ⟩}

4) A
¯ r̂1

∪min B
¯ r̂2

= {⟨â,max(TA
¯
(â),TB

¯
(â)),

min(IA
¯
(â), IB

¯
(â)),min(FA

¯
(â),FB

¯
(â));min(r̂1, r̂2)

|â ∈ ℜ⟩}

5) A
¯ r̂1

∪max B
¯ r̂2

= {⟨â,max(TA
¯
(â),TB

¯
(â)),

min(IA
¯
(â), IB

¯
(â)),min(FA

¯
(â),FB

¯
(â));max(r̂1, r̂2)

|â ∈ ℜ⟩}

6) A
¯ r̂1

∩min B
¯ r̂2

= {⟨â,min(TA
¯
(â),TB

¯
(â)),

min(IA
¯
(â), IB

¯
(â)),max(FA

¯
(â),FB

¯
(â));min(r̂1, r̂2)

|x̂ ∈ ℜ⟩}

7) A
¯ r̂1

∩max B
¯ r̂2

= {⟨â,min(TA
¯
(â),TB

¯
(â)),

min(IA
¯
(â), IB

¯
(â)),max(FA

¯
(â),FB

¯
(â));max(r̂1, r̂2)

|â ∈ ℜ⟩}
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Example 6: If we have two D-SFS A
¯

= ⟨0.4, 0.3, 0.2; 0.3⟩
and B

¯
= ⟨0.2, 0.7, 0.1; 0.2⟩ then

A
¯
c

= ⟨0.2, 0.3, 0.4; 0.3⟩

B
¯
c

= ⟨0.1, 0.7, 0.2; 0.2⟩

A
¯

∪min B
¯

= ⟨0.4, 0.3, 0.1; 0.2⟩

A
¯

∪max B
¯

= ⟨0.4, 0.3, 0.1; 0.3⟩

A
¯

∩min B
¯

= ⟨0.2, 0.3, 0.2; 0.2⟩

A
¯

∩max B
¯

= ⟨0.2, 0.3, 0.2; 0.3⟩

Definition 7: The normalized Euclidean distance for two
C-SFSs and D-SFSs A

¯ r̂1
and B

¯ r̂2
specified above in â ∈ ℜ is

defined as shown in the equation at the bottom of the page.

A. ALGEBRAIC OPERATIONS
Let A

¯
= ⟨TA

¯
, IA

¯
,FA

¯
; r̂A

¯
⟩ and B

¯
= ⟨TB

¯
, IB
¯
,FB

¯
; r̂B

¯
⟩ be two

C-SFSs. The following definitions apply to several algebraic
operations among C-SFSs:

1) A
¯

+min B
¯

= ⟨

√
T 2
A
¯

+ T 2
B
¯

− T 2
A
¯
T 2
B
¯
, IA

¯
IB
¯
,FA

¯
FB
¯
;

min(r̂A
¯
, r̂B

¯
)⟩;

2) A
¯

+max B
¯

= ⟨

√
T 2
A
¯

+ T 2
B
¯

− T 2
A
¯
T 2
B
¯
, IA

¯
IB
¯
,FA

¯
FB
¯
;

max(r̂A
¯
, r̂B

¯
)⟩;

3) A
¯

×min B
¯

= ⟨TA
¯
TB
¯
, IA

¯
IB
¯
,
√
F2
A
¯

+ F2
B
¯

− F2
A
¯
F2
B
¯
;

min(r̂A
¯
, r̂B

¯
)⟩;

4) A
¯

×max B
¯

= ⟨TA
¯
TB
¯
, IA

¯
IB
¯
,
√
F2
A
¯

+ F2
B
¯

− F2
A
¯
F2
B
¯
;

max(r̂A
¯
, r̂B

¯
)⟩;

5) t
¯
A
¯

= ⟨

√
1 − (1 − T 2

A
¯
)t¯, (IA

¯
)t¯, (FA

¯
)t¯; (r̂A

¯
)⟩

6) A
¯
t
¯ = ⟨(TA

¯
)t¯, (IA

¯
)t¯,
√
1 − (1 − N 2

A
¯
)t¯; (r̂A

¯
)⟩

Example 7: Let the two D-SFS A
¯

= ⟨0.4, 0.3, 0.2; 0.3⟩
and B

¯
= ⟨0.2, 0.7, 0.1; 0.2⟩ and t

¯
= 0.3 then

A
¯

+min B
¯

= ⟨0.4, 0.3, 0.2; 0.3⟩ +min ⟨0.2, 0.7, 0.1; 0.2⟩

= ⟨0.44, 0.21, 0.02; 0.2⟩

A
¯

+max B
¯

= ⟨0.4, 0.3, 0.2; 0.3⟩ +max ⟨0.2, 0.7, 0.1; 0.2⟩

= ⟨0.44, 0.21, 0.02; 0.3⟩

A
¯

×min B
¯

= ⟨0.4, 0.3, 0.2; 0.3⟩ ×min ⟨0.2, 0.7, 0.1; 0.2⟩

= ⟨0.08, 0.21, 0.22; 0.2⟩

A
¯

×max B
¯

= ⟨0.4, 0.3, 0.2; 0.3⟩ ×max ⟨0.2, 0.7, 0.1; 0.2⟩

= ⟨0.08, 0.21, 0.22; 0.3⟩

t
¯
A
¯

= 0.3⟨0.4, 0.3, 0.2; 0.3⟩ = ⟨0.23, 0.70, 0.62; 0.3⟩

A
¯
t
¯ = ⟨0.4, 0.3, 0.2; 0.3⟩0.3 = ⟨0.76, 0.70, 0.11; 0.3⟩

Theorem 1: Assuming that A
¯

= ⟨TA
¯
, IA
¯
,FA
¯
; r̂A
¯
⟩,

B
¯

= ⟨TB
¯
, IB
¯
,FB
¯
; r̂B
¯
⟩ and C

¯
= ⟨TC

¯
, IC
¯
,FC
¯

; r̂C
¯

⟩ be any three
C-SFSs and t

¯
≥ 1. Then the following identities are satisfies.

1) A
¯

+ B
¯

= B
¯

+ A
¯
;

2) A
¯

× B
¯

= B
¯

× A
¯
;

3) (A
¯

+ B
¯
) + C

¯
= A
¯

+ (B
¯

+ C
¯
);

4) (A
¯

× B
¯
) × C

¯
= A
¯

× (B
¯

× C
¯
);

5) t
¯
A
¯

+ t
¯
B
¯

= t
¯
(A
¯

+ B
¯
), t
¯

≥ 0;
6) t

¯A¯
A
¯

+ t
¯B¯
A
¯

= (t
¯A¯

+ t
¯B¯

)A
¯
, t
¯A¯

and t
¯B¯

≥ 0;
7) (A

¯
× B
¯
)t¯ = A

¯
t
¯ × B

¯
t
¯ , t¯

≥ 0;
8) A

¯

t
¯A¯ × A

¯

t
¯B¯ = A

¯

t
¯A¯

+t
¯B¯ , t¯A¯

and t
¯B¯

≥ 0;
Proof: (1). To show this, A

¯
+min B

¯
= B

¯
+min A

¯
.

Consider.

L.H .S

= A
¯

+min B
¯

= ⟨TA
¯
, IA

¯
,FA

¯
; r̂A

¯
⟩ + ⟨TB

¯
, IB
¯
,FB

¯
; r̂B

¯
⟩

= ⟨

√
T 2
A
¯

+ T 2
B
¯

− T 2
A
¯
T 2
B
¯
, IA

¯
IB
¯
,FA

¯
FB
¯
;min(r̂A

¯
, r̂B

¯
)⟩

= ⟨

√
T 2
B
¯

+ T 2
A
¯

− T 2
B
¯
T 2
A
¯
, IB
¯
IA
¯
,FB

¯
FA
¯
;min(r̂B

¯
, r̂A

¯
)⟩

R.H .S

= B
¯

+min A
¯

Hence, we prove this.
(2). To show this, A

¯
×min B

¯
= B

¯
×min A

¯
.

Consider.

L.H .S = A
¯

×min B
¯

= ⟨TA
¯
, IA

¯
,FA

¯
; r̂A

¯
⟩ × ⟨TB

¯
, IB
¯
,FB

¯
; r̂B

¯
⟩

= ⟨TA
¯
TB
¯
, IA

¯
IB
¯
,
√
F2
A
¯
+F2

B
¯
−F2

A
¯
F2
B
¯
;min(r̂A

¯
, r̂B

¯
)⟩

= ⟨TB
¯
TA
¯
, IB
¯
IA
¯
,
√
F2
B
¯
+F2

A
¯
−F2

B
¯
F2
A
¯
;min(r̂B

¯
, r̂A

¯
)⟩

R.H .S = B
¯

×min A
¯

Hence, we prove this.
(5). To show this, t

¯
A
¯

+ t
¯
B
¯

= t
¯
(A
¯

+ B
¯
), t
¯
≥ 1.

Consider.

L.H .S

= t
¯
A
¯

+min t
¯
B
¯

= t
¯
⟨TA

¯
, IA

¯
,FA

¯
; r̂A

¯
⟩ + t

¯
⟨TB

¯
, IB
¯
,FB

¯
; r̂B

¯
⟩

= ⟨

√
1 − (1 − TA

¯
2)t¯, IA

¯

t
¯,FA

¯

t
¯; r̂A

¯
⟩

+ ⟨

√
1 − (1 − TB

¯
2)t¯, IB

¯

t
¯,FB

¯

t
¯; r̂B

¯
⟩

= ⟨

√
1 − (1 − TA

¯
2)t¯(1 − TB

¯
2)t¯, (IA

¯
IB
¯
)t¯,

(FA
¯
FB
¯
)t¯;min(r̂A

¯
, r̂B

¯
)⟩

= ⟨

√
1 − (1 − (TA

¯
2
+ TB

¯
2
− TA

¯
2TB

¯
2))t¯, (IA

¯
IB
¯
)t¯,

(FA
¯
FB
¯
)t¯;min(r̂A

¯
, r̂B

¯
)⟩

d(A
¯ r̂1
,B
¯ r̂2

) =
|r̂1 − r̂2|

√
2

+


√√√√1
h

h∑
â=1

(TA
¯
(â) − TB

¯
(â))2 + (IA

¯
(â) − IB

¯
(â))2 + (FA

¯
(â) − FA

¯
(â))2)
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Next

R.H .S = t
¯
(A
¯

+min B
¯
)

= t
¯
⟨

√
TA
¯
2
+ TB

¯
2
− TA

¯
2TB

¯
2, (IA

¯
IB
¯
), (FA

¯
FB
¯
);

min(r̂A
¯
, r̂B

¯
)⟩

= ⟨

√
1 − (1 − (TA

¯
2
+ TB

¯
2
− TA

¯
2TB

¯
2))t¯, (IA

¯
IB
¯
)t¯,

(FA
¯
FB
¯
)t¯;min(r̂A

¯
, r̂B

¯
)⟩

Hence, we prove this.
The proofs of remaining are as follows by using algebraic

operation which are given in subsection IV-A. □
Theorem 2: Let

D
¯

= ⟨TD
¯
, ID
¯
,FD
¯

; r̂D
¯

⟩andF
¯

= ⟨TD
¯
, IF
¯
,FF
¯
; r̂F
¯
⟩

be two C-SFSs in ℜ. Then the following theorem shows the
De Morgan’s rule.

1) (D
¯

∪min F
¯
)c = D

¯
c
∩min F

¯
c

2) (D
¯

∪max F
¯
)c = D

¯
c
∩max F

¯
c

3) (D
¯

∩min F
¯
)c = D

¯
c
∪min F

¯
c

4) (D
¯

∩max F
¯
)c = D

¯
c
∪max F

¯
c

Proof: The proof from Section IV is obvious. □

B. COMPARISON RULES FOR C-SFS & D-SFS
The following are some functions that are crucial to the
ranking of C-SFS and D-SFS that are introduced in this
section:
Definition 8: Let D

¯
= ⟨TD

¯
, ID
¯
,FD
¯

; r̂D
¯

⟩ be any C-SFSs.
Then

1) Score function:- §(D
¯
) =

1
4 (TD

¯
− ID

¯
− FD

¯
+

√
2r̂

(2p − 1)) where §(D
¯
) ∈ [−1, 1] and p is taking any

value between [0, 1].
2) Accuracy function:- D̂(D

¯
)= T 2

D
¯

+ I2D
¯

+ F2
D
¯
where

D̂(D
¯
) ∈ [0, 1]

Considering these two definitions for C-SFNs D
¯
and F

¯
.

• D
¯
is greater to F

¯
if §(D

¯
) > §(F

¯
)

• D
¯
is less to F

¯
if §(D

¯
) < §(F

¯
)

If §(D
¯
) = §(F

¯
) for two C-SFNs. Then

• D
¯
is greater to F

¯
if D̂(D

¯
) >D̂(F

¯
)

• D
¯
is less to F

¯
if D̂(D

¯
) <D̂(F

¯
)

• D
¯
is equivalent to F

¯
If D̂(D

¯
) =D̂(F

¯
)

Example 8: Letℜ = {a1, a2, a3} be a collection of SFV on
ℜ can be given as

{a1, ⟨0.2, 0.4, 0.1⟩, ⟨0.4, 0.2, 0.6⟩, ⟨0.1, 0.4, 0.4⟩}

{a2, ⟨0.4, 0.1, 0.3⟩, ⟨0.3, 0.1, 0.1⟩, ⟨0.5, 0.3, 0.6⟩}

{a3, ⟨0.5, 0.2, 0.6⟩, ⟨0.4, 0.1, 0.6⟩, ⟨0.2, 0.6, 0.1⟩}

By using equation (7) and (8), we obtain D-SFS.

{⟨a1, 0.3, 0.3, 0.4; 0.3⟩, ⟨a2, 0.4, 0.2, 0.4; 0.3⟩,

⟨a3, 0.4, 0.4, 0.5; 0.5⟩}.

Figure 2, and 3 shows the geometrical representation of
SFS and D-SFS respectively.

FIGURE 2. Geometrical representation of SFS.

FIGURE 3. Geometrical representation of D-SFS.

V. CONSTRUCTION OF C-SF DECISION MATRIX
Let ℜ represent the universe that contains the MCDM
problem’s decision criteria. The whole set requirements is
shown as ℜ = x̃1, x̃2, . . . , x̃n. An C-SFS Aq is the qth
parameter on ℜ is given by Aq = ⟨x̃j,ℜqj⟩|x̃j ∈ ℜ, where
ℜqj = (µqj, νqj).ℜqj shows the degree of non-belonging
and belonging of the q th alternative with respect to the
jth criterion, νqj and µqj are the respective degrees of non-
belonging and belonging of ℜqj, where 0 ≤ µqj + νqj ≤ 1,
q = 1, 2, . . . ,m, j = 1, 2, . . . , n.
For calculating the degree of indeterminacy.

πqj = 1 − µqj − νqj (9)

The following is an expression for the decision matrix C-SF:

V =


(µ11, π11, ν11; r̂11) . . (µ1n, πln, ν1n; r̂1n)

. .

. .

. .

(µm1, πm1, νm1; r̂m1) . . (µmn, πmn, νmn; r̂mn)


The judgement assigns a set of levels of importance

because it is impossible to assume that all factors are equally
important. In ℜ, a C-SFS B is characterized as follows:

B = {⟨x̃j, ωj⟩|x̃j ∈ ℜ} (10)

where 0 ≤ ωj ≤ 1 and
∑n

j=1 ωj = 1, ωj is the weights given
to the various criteria, or the priority given to each one.

However, the usability of C-SFS data cannot be guar-
anteed; the sum of belonging, non-belonging, and indeter-
minacy degrees needs to be less than or equitable to one.
The decision maker must spend twice as much to gather
the assessed data including the degrees of belonging, non-
belonging, and indeterminacy than they would with IVFS
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data in order to construct the C-SF matrix. The C-SFS theory
and the IVFS theory are equivalent in mathematics.

The decision makers estimation with IVFS statistics is
simpler than with C-SF statistics because of the restriction on
the total of belonging and non-belonging degrees. Suppose
Int ([0, 1]) represents the collection of all its closed
subintervals. IVFS Aq of the qth alternative on ℜ is given
by Aq = {⟨x̃j,Eqj⟩|x̃j ∈ ℜ} where Eqj : ℜ → Int([0, 1]),
such that x̃j → Eqj = [E−

qj ,E
+

qj ]. Eqj designate the probable
degree to which the parameter Aq fulfils the criteria x̃j. E

+

qj
and E−

qj are the upper and lower bound, respectively of the
interval Eqj.
In the closed interval, the decision-maker assesses all

alternatives [E−

qj ,E
+

qj ] beginning at the top. Let E
−

qj = µqj and
E+

qj = 1−νqj; therefore, [E
−

qj ,E
+

qj ]= (µqj, 1−νqj). An interval
[E−

qj ,E
+

qj ] can be mapped onto an C-SFS, (µqj, 1 − νqj). The
idea of mathematical equality between C-SFS and IVFS may
be used to convert IVFS data into C-SF data. Additionally,
a decision-maker must assess a lot of information using IVFS
data, making it difficult to compare all available options based
on their understanding and experience. Ranking, partial,
or missing data can be provided by decision makers and
converted into C-SF data. The approach determines the
number of alternatives that are categorically superior and
inferior to a given option. Given that not all options may be
rated in accordance with a criterion, it permits partial ordinal
data. We define two functions for the case of incomplete
data or non-comparable results, λqj and κqj for each Aq
with respect to x̃j. Let λqj indicate the number of choices
A1,A2, ...,Aq1,Aq+1,Aq+2, ...,Am that are surely inferior
than Aq, while κqj represents the number of alternatives
A1,A2, ...,Aq1,Aq+1,Aq+2, ...,Am that is undoubtedly supe-
rior to Aq. Following are the levels of membership and non-
membership, respectively:

µqj =
λqj

m− 1
(11)

νqj =
κqj

m− 1
(12)

VI. ELECTRE METHOD BASED ON C-SFS
This section covers the C-SF ELECTRE approach, concor-
dant and discordant sets, and other ideas. We’ll employ the
C-SF ELECTRE method algorithm to provide numerical
results.

Binary outranking relations are used to simulate ELEC-
TRE procedures; the decision maker can construct the
relationship, which does not need to be transitive. Non-
dominant alternatives and incomplete ordering are enabled by
the connection. For every pair of alternatives ι and κ(ι, κ =

1, 2, ...,m and ι ̸= κ), the various options criteria may be
split into two separate subsets. The concordant set Fικ of
Aι and Aκ its made up of all requirements for which Aι is
favored to Aκ . Alternatively put, Fικ = {j|x̃ιj ≥ x̃κj}, where
J = {j|j = 1, 2, ..., n}. The complementary subset, which is
the discordant set, is Fικ = {j|x̃ιj ≤ x̃κj}. The suggested C-SF

ELECTRE technique uses the concepts of score and accuracy
function, and intuitionistic indicator to categorize many kinds
of concordant and discordant sets. Concordant and discordant
sets are then utilized to build concordant and discordant
matrices, respectively. Decision-makers may select the ideal
course of action by utilizing the ideas of both negative and
positive optimum points.

A. CONCORDANT AND DISCORDANT SETS
We may assess a number of parameters to their C-SF values
by utilizing the ideas of scoring and accuracy function, and
reluctant C-SF value. The superior choice has a higher score
or is very accurate when two options are equal in score.
A higher score indicates a bigger belonging degree or a
smaller non-belonging degree, whereas a bigger accuracy
degree indicates a lower hesitation degree. We classify
a variety of concordant sets into concordant, medium
concordant, and bad concordant sets using score function and
accuracy function ideas. Additional names for the various
types of discordant sets are the discordant set, moderate
discordant set, and weak discordant set.

Chen and Tan [50] to measure how well an option meets a
decision maker’s needs. Let ℜqj = (µqj, νqj) is a C-SF value,
where µqj ∈ [0, 1], νqj ∈ [0, 1], µqj + νqj ≤ 1. The score of
ℜqj can be determined by the score function §, where score
value is find by using definition 8, where §(ℜqj) ∈ [−1, 1].
A greater score §(ℜqj) associates with a greater C-SF value
ℜqj; When two options have the same score, we are unable
to compare them using merely the score function. In order to
assess the level of accuracy of ambiguous values, Hong and
Choi [51] introduced the correctness function. The degree of
exactness of ℜqj is able to be assessed using the accuracy
function Â. Accuracy function Â(ℜqj) can be calculated by
using the definition 8whereℜqj = (µqj, νqj) is an C-SF value.
A greater value of Â(ℜqj) corresponds with a higher level
of C-SF value membership grade correctness. According to
equation (9) and the accuracy function, a smaller hesitation
degree π(ℜqj) and a greater accuracy degree Â(ℜqj) are
correlated.
As previously stated, ℜqj = (µqj, νqj). The concordant set
Cικ of Aι and Aκ is made up of all requirements for which
Aι is better to Aκ . We apply the ideas of functions like
scoring, accuracy, and hesitancy degree of the C-SF value to
categorize concordant sets. Cικ is a concordant set that can be
expressed as follows:

Cικ = {j|µιj ≥ µκj, πιj < πκj, νιj < νκj and r̂ιj < r̂κj} (13)

where J = {j|j = 1, 2, ..., n}, a higher score indicates a higher
C-SF value, a higher accuracy degree refers to a degree of
lower hesitancy, and equation (13) is more concordant than
(14) or (15). The midrange concordant set C1

ικ is defined as:

C1
ικ = {j|µιj ≥ µκj, πιj ≥ πκj and νιj < νκj} (14)

The main distinction between (13) and (14) is the amount
of hesitation at the alternative kth with regard to the criteria
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jth, which is more than the alternative lth with respect to the
jth criterion in the median concordant set. Equation (13) is
therefore more concordant than (14).
Weak concordant set C2

ικ is defined as:

C2
ικ = {j|µιj ≥ µlj, νιj ≥ νκj} (15)

The degree of non-belonging at the alternative kth in relation
to the criterion jth is higher than the alternative lth in relation
to the criterion jth in the weak concordant set; thus, equation
(14) is more concordant than (15). All criteria that meet
the discordant set are included in Aι is not favoured to Aκ .
The discordant set Dικ using the preceding concepts can be
calculated as follows:

Dικ = {j|µιj < µκj, πιj ≥ πκj, νιj ≥ νκj and r̂ιj ≥ r̂κj} (16)

The formula also makes use of the same ideas, such as
the ones that a higher score corresponds to a higher C-SF
value and a greater accuracy degree corresponds to a lower
hesitation degree. Midrange discordant set D1

ικ is defined as:

D1
ικ = {j|µιj < µκj, πιj < πκj and νιj ≥ νκj} (17)

equation (16) is higher discordant than (17). Weak discordant
set D2

ικ is defined as follows:

D2
ικ = {j|µιj < µκj, νιj < νκj} (18)

equation (17) is more discordant than (18) because the
degrees of belonging and non-belonging at the ιth parameter
with regard to the j th criteria are lower than those at the
κth parameter in relation to the j th criterion in the weak
discordant set.

Concordant and discordant matrices are calculated using
the idea of concordant and discordant sets, and the aggrega-
tion dominance matrix is calculated using the suggested C-SF
ELECTRE approach. Next, we select the best option.

B. C-SF ELECTRE METHOD
The evaluation data from the ELECTRE and C-SFS
approaches are combined in the C-SF ELECTRE methodol-
ogy. The proportional worth of the concordant set produced
by the C-SF ELECTRE technique is calculated using the
concordant index. The concordant index is produced by
adding the weights corresponding to the criteria and relation-
ships present in the concordant sets. As a consequence, the
concordant index cικ between Aι and Aκ is defined as follows
in this study:

gικ = ωC ×

∑
j∈Cικ

ωj + ωC1 ×

∑
j∈C1

ικ

ωj + ωC2 ×

∑
j∈C2

ικ

ωj

(19)

where the weight of the criteria is ωj, as stated in (10), and
ωC1 , ωC2 , and ωC are the middling concordant and weak
concordant sets and weights of the concordant, respectively.
The concordant index demonstrates the relative dominance
of one alternative over another based on the corresponding

weights assigned to the subsequent choice criteria. The
concordant matrix G is described as follows:

G =


− g12 . . . . . . g1m
g21 − g23 . . . g2m
. . . . . . − . . . . . .

g(m−1)1 . . . . . . − g(m−1)m
gm1 gm2 . . . gm(m−1) −


where the highest component of gικ is represented by g∗,
which is the positive point of ideal, and a maximum value
of gικ indicates that Aι is favouring Aκ .

Evaluations of a certain Aι are inferior to evaluations of a
rival Aκ . The discordant index is described as follows in this
study:

hικ =
maxj∈Dικ ω

∗
D × d(Xιj,Xκj)

maxj∈J d(Xιj,Xκj)
(20)

Additionally, d(Xιj,Xικ ) is specified in definition 7 and ω∗
D

is equal to either ωD1 or ωD2 according to the various types
of discordant sets. These sets, in that order, are the weak
discordant, weight of discordant, and moderate discordant
sets.

The following is a definition of the dissonant matrix H:

H =


− h12 . . . . . . h1m
h21 − h23 . . . h2m
. . . . . . − . . . . . .

h(m−1)1 . . . . . . − h(m−1)m
hm1 hm2 . . . hm(m−1) −


Amaximumvalue of hικ demonstrates thatAι is less favorable
than Aκ , where the greatest value of hικ is represented by h∗,
which is the point of negative of ideal.

The computation of the concordant dominance matrix is
based on the assumption that the selected decision ought to
be the one that comes closest to being perfect. For this reason,
the concordant K dominance matrix is stated as follows:

K =


− k12 . . . . . . k1m
k21 − k23 . . . k2m
. . . . . . − . . . . . .

k(m−1)1 . . . . . . − k(m−1)m
km1 km2 . . . km(m−1) −


where,

kικ = g∗
− gικ ; (21)

This has to do with separating each option from the wise,
sensible course of action. A higher value of kικ makes it very
evident that Aι is less advantageous than Aκ . The premise
that the option selected should be the one that is farthest
from the negative ideal answer is the foundation for how the
discordant dominance matrix is constructed. Consequently,
the following is the definition of the discordant dominance L
matrix:

L =


− l12 . . . . . . l1m
l21 − l23 . . . l2m
. . . . . . − . . . . . .

l(m−1)1 . . . . . . − l(m−1)m
lm1 lm2 . . . lm(m−1) −
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where,

lικ = h∗
− hικ (22)

This explains how each option differs from the ideal negative
result. A larger lικ value denotes a preference for Aι over Aκ .
The aggregate dominance matrix determination approach
may be used to rank the parameters by calculating the
distance of each option from both negative and positive
ideal points. The following is the definition of the aggregate
dominance matrix R:

R =


− r12 . . . . . . r1m
r21 − r23 . . . r2m
. . . . . . − . . . . . .

r(m−1)1 . . . . . . − r(m−1)m
rm1 rm2 . . . rm(m−1) −


where,

rικ =
lικ

kικ + lικ
(23)

kικ and lικ are described in (21) and (22), respectively, and rικ
relates to how close the answer is to the perfect one, having a
range of 0 to 1. Amaximum value of rικ shows that the choice
Aι is equally close to the positive perfect point and much
further from the negative perfect point than the choice Aκ ;
thus, it is a better parameter. Picking the advantageous backup
strategy, where;

Tι =
1

m− 1

m∑
κ=1,κ ̸=ι

rικ , ι = 1, 2, 3, . . . . . . ,m (24)

and Tι is the result of the evaluation. Based on Tι, all options
may be graded. The best possible alternativeK∗, which is also
the one that is the most in the positive optimum solution and
the least in the negative optimum solution, may be made and
explained as follows:

K∗
= max{Tι} (25)

where the ideal substitute is K∗. The whole C-SF ELECTRE
method algorithm is covered by the definitions that follow.

C. ALGORITHM
This paragraph explains a unique MCDM methodology
called the C-SF ELECTRE technique, which combines the
C-SFS and ELECTRE procedures with evaluation data. The
suggested algorithm’s technique will be built using three
key phases: evaluation, aggregation, and selection. Figure 4
provides a conceptual illustration of the recommended
method.

The decision-makers characterize the options (according
to the relative weights of various criteria) and build the
decision matrix using the C-SFS during the evaluation
process.We used the providedmethod to generate concordant
and discordant dominance matrices, and we compared each
choice to the other alternatives in the aggregation stage to
affirm the relationship of dominance. Next, the aggregate
dominance matrix is calculated. Using the C-SF ELECTRE

FIGURE 4. Flowchart of the circular spherical fuzzy ELECTRE method.

algorithm, we rate every possibility during the selection step
and choose the best one. The eight steps listed below can be
used to summarize the algorithm and DM process of the C-SF
ELECTRE method:

Step 1. Utilize the decision makers’ evaluation data to
build the choice matrix. Information is provided by the
decision-makers in the form of C-SF values or comparison
data between various alternatives. This phase consists of the
following three phases.

1) Choose non-inferior options and pertinent standards
that are suitable for the current circumstance. Different
MCDM issues need have unique majority of the
requirements may become split into two groups:
subjective criteria, and objective criteria. It is the
responsibility of the decision-makers to locate possible
alternatives.

2) Obtain a set of significance ratings for the selection
criteria. Criteria weights are defined as

∑n
j=1 ωj = 1.

3) Make a choice matrix: The creators of decisions
create the C-SF decision matrix V using important
information. Use the formals in (11) and (12) to convert
if the decision matrix includes comparison data.

Step 2. In order to distinguish between the various types of
concordant and discordant sets, we use the notions of scoring
function, accuracy function, and the degree of hesitation of
the C-SF value. Determine Cικ ,C1

ικ ,C
2
ικ ,Dικ ,D

1
ικ , and D

2
ικ

for pair-wise compares of choices.
Step 3. The concordant G matrix should be known.

A number of concordant sets their weights, as defined in (19)
come together to form the concordant matrix index.

Step 4. The discordant matrix indices are the logical result
of several discordant sets their weights, which are defined in
(20).

Step 5. Create the K matrix for concordant dominance.
According to (21), the concordant dominance matrix indices

122038 VOLUME 11, 2023



S. Ashraf et al.: Decision Aid Algorithm for Kidney Transplants Under Disc Spherical Fuzzy Sets

are the difference between the concordant matrix’s maximal
index and its own indices.

Step 6. The indices of the discordant dominance matrix are
defined in (22). Create a discordant dominance L matrix.

Step 7. Utilize the concordant and discordant dominance
matrices’ indexes, which are listed in (23), to calculate R’s
matrix of collective dominance.

Step 8. Pick the best solution: determine the evaluation’s
final result using (24) and (25). When all options are rated in
inverse order, the substitute with the highest value is regarded
as the best choice.

VII. NUMERICAL EXAMPLE
We all know how important it is today to figure out the best
time to select a kidney transplant. Assume that the selection
issue takes into account four criteria: ψ1 (Age compatibility
between the donor and recipient), ψ2 (donor-recipient size
match), ψ3 (health status compatibility between the donor
and recipient), and ψ4 (blood type compatibility between the
donor and recipient). Decision makers choose the subjective
value of criterion B;

B = [ω1, ω2, ω3, ω4] = [0.3, 0.1, 0.2, 0.4]

A. CASE STUDY
The decision to undergo a kidney transplant is a complex
and important one that requires careful consideration of
various factors. Let’s take a look at a case study of decision-
making in selecting a kidney transplant. Mark is a 55-year-
old man who has been on dialysis for the past three years
due to end-stage renal disease. His doctor has recommended
a kidney transplant as the best treatment option for him.
Mark is considering his options and needs to make a decision
about whether to proceed with the transplant or continue
with dialysis. The medical officer and doctor had to pitch
the idea to their seniors about which time is more suitable
for the selection of a kidney transplant. They have four
parameters. U = {K1,K2,K3,K4}. These four parameters
are: K1 = Medical Condition, K2 = Donor Availability,
K3 = Cost, K4 = Lifestyle Changes. Assume the selection
issue considers four criteria: ψ1 (Age compatibility between
the donor and recipient), ψ2 (donor-recipient size match), ψ3
(health status compatibility between the donor and recipient),
and ψ4 (blood type compatibility between the donor and
recipient). Following are the details of the parameters:

1) MEDICAL CONDITION
The first and foremost parameter to consider is the patient’s
medical condition. In Mark’s case, he has advanced kidney
disease, which means that his kidneys are functioning at less
than 10% of their normal capacity. A transplant would help
him regain kidney function and improve his overall health.

2) DONOR AVAILABILITY
Another important factor to consider is the availability of
a donor. Kidneys can be obtained from deceased donors or

living donors, and there may be a waiting list for a deceased
donor transplant. Mark may also have a family member or
friend who is willing to donate a kidney. The availability of a
donor is an important consideration when deciding whether
to proceed with a transplant.

3) COST
The cost of a kidney transplant varies according on various
factors, that is the type of transplant, hospital fees, and the
cost of immunosuppressant medications. Mark will need
to consider the financial implications of the procedure and
whether he has adequate insurance coverage.

4) LIFESTYLE CHANGES
A kidney transplant requires significant lifestyle changes,
such as adhering to a strict medication regimen, following a
healthy diet, and avoiding certain activities that may put the
new kidney at risk. Mark will need to consider whether he is
willing and able to make these changes.

Similarly, details of the criteria that depend upon these
parameters.

5) AGE COMPATIBILITY BETWEEN THE DONOR AND
RECIPIENT
The first and foremost parameter to consider is the patient’s
medical condition. In Mark’s case, he has chronic kidney
disease, which means that his kidneys are functioning at less
than 10% of their normal capacity. A transplant would help
him regain kidney function and improve his overall health.

6) DONOR-RECIPIENT SIZE MATCH
This criterion assesses the degree of similarity between the
size of the donor and recipient. A size match is important
for the success of the transplant, as an organ that is too
large or too small may not function properly. Therefore,
we might consider assigning linguistic terms such as ‘‘highly
compatible’’ if the donor and recipient are a good size
match, ‘‘moderately compatible’’ if the size difference is
somewhat larger, ‘‘slightly compatible’’ if the size difference
is significant but not extreme, ‘‘neutral’’ if size is not a major
factor, ‘‘slightly incompatible’’ if the size difference is large
enough to be a concern, ‘‘moderately incompatible’’ if the
size difference is very large, and ‘‘highly incompatible’’ if
the size difference is extremely large.

7) HEALTH STATUS COMPATIBILITY BETWEEN THE DONOR
AND RECIPIENT
This criterion assesses the degree of similarity between the
health statuses of the donor and recipient. Health status
compatibility may affect the success.

8) BLOOD TYPE COMPATIBILITY BETWEEN THE DONOR
AND RECIPIENT
This criterion assesses the degree of similarity between
the blood types of the donor and recipient. Blood type
compatibility is crucial for the success of the transplant, as the
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recipient’s immune system may reject the transplant if the
blood types are incompatible. Therefore, we might consider
assigning linguistic terms such as ‘‘highly compatible’’ if the
donor and recipient have the same blood type, ‘‘moderately
compatible’’ if the donor has a compatible blood type but not
the same as the recipient, ‘‘slightly compatible’’ if the donor’s
blood type is somewhat compatible with the recipient,
‘‘neutral’’ if blood type is not a major factor, ‘‘slightly
incompatible’’ if the donor’s blood type is somewhat
incompatible with the recipient, ‘‘moderately incompatible’’
if the donor’s blood type is incompatible but can be managed
with medical intervention, and ‘‘highly incompatible’’ if the
donor’s blood type is completely incompatible.

Additionally, decision-makers give the following relative
weights:

B′
= [ωC , ωC1 , ωC2 , ωD, ωD1 , ωD2 ] = [1,

2
3
,
1
3
, 1,

2
3
,
1
3
]

The D-SF matrix choice with numerical data is changed
given V, the IVF decision-making matrix, as shown in the
equation at the bottom of the page.

Determine the concordant and discordant sets by using
Step 2. The concordant set is determined by using (13).

Cικ =


− − 4 −

− − − −

− − − −

− − − −


The midrange concordant set is determined by (14).

C1
ικ =


− 2 3 −

− − − −

− 2 − −

2, 4 2 3, 4 −



The weak concordant set is determined by (15).

C2
ικ =


− 1, 4 1 −

3 − 1 3
2 4 − 2
3 1 1 −


The discordant set is determined by using (16).

Dικ =


− − − −

− − − −

4 − − −

− − − −


The midrange discordant set is determined by using (17).

D1
ικ =


− − − 2, 4
2 − 2 2
3 − − 3, 4
1 − − −


The weak discordant set is determined by using (18).

D2
ικ =


− 3 2 3
1, 4 − 4 1
1 1 − 1
− 3 2 −


Step 3 is used to calculate the concordant matrix.

G =


− 0.3 0.6333 0

0.0667 − 0.1 0.0667
0.3333 0.2 − 0.0333
0.4 0.1667 0.5 −


g13 = ωC × ω4 + ωC1 × ω3 + ωC2 × ω1 = 1 × 0.4

+
2
3

× 0.2 +
1
3

× 0.3 = 0.6333

V =

ψ1 ψ2 ψ3 ψ4


K1 [0.40, 0.65] [0.22, 0.48] [0.15, 0.75] [0.23, 0.28]
K2 [0.19, 0.71] [0.17, 0.19] [0.24, 0.67] [0.11, 0.40]
K3 [0.10, 0.88] [0.44, 0.47] [0.08, 0.61] [0.15, 0.23]
K4 [0.34, 0.53] [0.24, 0.61] [0.17, 0.74] [0.25, 0.51]

V =

ψ1 ψ2



K1 ((0.40, 0.25, 0.35); 0.22) ((0.22, 0.26, 0.52); 0.11)
K2 ((0.19, 0.52, 0.29); 0.30) ((0.17, 0.02, 0.81); 0.43)
K3 ((0.10, 0.78, 0.12); 0.52) ((0.44, 0.03, 0.53); 0.49)
K4 ((0.34, 0.19, 0.47); 0.21) ((0.24, 0.37, 0.39); 0.03)

ψ3 ψ4
K1 ((0.15, 0.60, 0.25); 0.37) ((0.23, 0.05, 0.72); 0.38)
K2 ((0.24, 0.43, 0.33); 0.24) ((0.11, 0.29, 0.60); 0.12)
K3 ((0.08, 0.53, 0.39); 0.21) ((0.15, 0.08, 0.77); 0.41)
K4 ((0.17, 0.57, 0.26); 0.26) ((0.25, 0.26, 0.49); 0.14)
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Apply step 4 to the calculation of the discordant matrix.

H =


− 0.1652 0.2267 0.6667
1 − 0.6006 0.0667

0.3333 0.3333 − 0.3795
0.2131 0.0742 0.2621 −


ωD2 × d(X13,X23) =

1
3

× 0.3 = 0.1

For example

h12 =
maxj∈D12ω

∗
D×d(X1j,X2j)

maxj∈J d(X1j,X2j)
=

0.1
0.606

= 0.1652

where, as shown in the equation at the bottom of the page.
Using step 5, the concordant dominance matrix is pro-

duced. The matrix of concordant dominance looks like this:

K =


− 0.3333 0 0.6333

0.5666 − 0.5333 0.5666
0.3003 0.2 − 0.6
0.2333 0.4666 0.1333 −


Using step 6, the discordant dominance matrix is produced.
The matrix of discordant dominance looks like this:

L =


− 0.8348 0.7733 0.3333
0 − 0.3994 0.9333

0.6667 0.6667 − 0.6205
0.7869 0.9258 0.7379 −


Calculating the aggregate dominance matrix takes place in
step 7.

R =


− 0.7147 1 0.3448
0 − 0.4282 0.6222

0.6895 0.7692 − 0.5084
0.7713 0.6649 0.8470 −


Pick the best one using step 8.

⊤1 = 0.6865 ⊤2 = 0.3502 ⊤3 = 0.6557 ⊤4 = 0.7611

The alternative is ranked in the following order:

K4 > K1 > K3 > K2

VIII. COMPARATIVE ANALYSIS
We now have a comparison between the suggested approach
and the enhanced possibility degree method, [52]. Consider
two options {K1,K2} that are assessed using three criteria
ψ1, ψ2, ψ3 by allocating an equal proportion to these
features. As a result, B = [b1, b2, b3] = [0.4, 0.5, 0.1].

B′
= [bC , bC1 , bC2 , bD, bD1 , bD2 ] = [1,

2
3
,
1
3
, 1,

2
3
,
1
3
]

Intuitionistic fuzzy decision matrix is as shown in the
equation at the bottom of the next page.

Convert into D-SF decision matrix by using (7) and (8).
V , as shown at the bottom of the next page.
Using step 2, recognize the concordant and discordant sets.

Using (9) the concordant set is determined.

Cικ =

[
− −

− −

]
By using (10), the midrange concordant set is determined.

C1
ικ =

[
− −

2 −

]
Using (11), the weak concordant set is calculated.

C2
ικ =

[
− −

1 −

]
Using (12), the discordant set is computed.

Dικ =

[
− 1
− −

]
Using (13), the midrange discordant set is determined.

D1
ικ =

[
− 2
− −

]
Using (14), the weak discordant set is determined.

D2
ικ =

[
− −

− −

]
Step 3 is used to calculate the concordant matrix.

G =

[
− 0

0.4667 −

]

d(X11,X21) =
|0.22 − 0.30|

√
2

+

(√
1
2
(0.40 − 0.19)2 + (0.25 − 0.52) − (0.35 − 0.29)2

)
= 0.404

(X12,X22) =
|0.11 − 0.43|

√
2

+

(√
1
2
(0.22 − 0.17)2 + (0.26 − 0.02) − (0.52 − 0.81)2

)
= 0.606

(X13,X23) =
|0.37 − 0.24|

√
2

+

(√
1
2
(0.15 − 0.24)2 + (0.60 − 0.43) − (0.25 − 0.33)2

)
= 0.300

(X14,X24) =
|0.38 − 0.12|

√
2

+

(√
1
2
(0.23 − 0.11)2 + (0.05 − 0.29) − (0.72 − 0.60)2

)
= 0.478
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TABLE 1. Ranking order of the alternative.

Apply step 4 to the computation of the discordant matrix.

H =

[
− 0.0735
0 −

]
Using step 5, the concordant dominance matrix is produced.
The matrix of concordant dominance looks like this:

K =

[
− 0.4667
0 −

]
The discordant dominance matrix is created by employing
step 6. The following is the discordant dominance matrix:

L =

[
− 0

0.0735 −

]
Calculating the aggregate dominance matrix takes place in
step 7.

R =

[
− 0
1 −

]
Pick the best one using step 8.

⊤1 = 0 ⊤2 = 0.5

Optimal ranking of the alternative is are:

K2 > K1

In Table 1, the recommended approach is contrasted with
another approach.
The validity of our suggested technique, which is con-

nected to the D-SF ELECTRE method, is displayed in the
Table 1 below. We evaluate this technique in comparison to
Garg’s, which is [52] and uses an enhanced possibility degree
method. The secondmethod, [53] and developed byWei, uses
induced geometric aggregation operators and has the highest
ranking. One of the benefits of utilising our methodology
is that in addition to calculating the radius of the given

values, which was not done in the previous iterations of the
procedure.

IX. CONCLUSION
The primary objective of this work is to introduce the notion
of C-SFS and D-SFS, which is symbolised by a circle of
radius r and a pair in its centre, provided that the square
of the total of the components is less than one. A circle
is used to symbolise the degree, indeterminacy degree, and
non-belonging degree in such a fuzzy collection. An D-SFS
and C-SFS is a generalisation of both C-IFSs and C-PFSs,
hence. Compared to both SFSs with C-SFSs and D-SFSs,
C-SFSs and D-SFSs enable decision-makers or experts to
assess things in a broader and more flexible region. In order
to describe uncertainty, C-SFSs and D-SFSs can be used to
manage changes D-SFSs belonging degree, indeterminacy
degree, and non-belonging degree. More considerate choices
can then be made. In this study, a technique for converting
SFSs to C-SFSs and D-SFS is devised. Additionally, some
basic algebraic operations and set theoretic procedures for
C-SFSs and D-SFSs are provided. The C-SF ELECTRE
approach is being introduced in this study as a means of
resolving MCDM issues. We will use the C-SF ELECTRE
approach in a later study to forecast customer behaviour
utilising a questionnaire in an empirical investigation of
market research using various items. Finally, using the
aforementioned ideas, we present an MCDM approach in
a circular and disc spherical fuzzy environment and use
the suggested method to solve an MCDM issue concerning
choosing the optimal timing for kidney transplantation.
We determine the temporal complexity of the MCDM
approach by comparing the results of the proposed method
with those of the current methods. Different aggregation
procedures and similarity metrics can be explored in further
research. Additionally, alternative aggregation tools like
fuzzy integrals or aggregation operators can be utilised when
converting SFSs to C-SFSs. Additionally, MCDM issues
including classification, pattern recognition, data mining,
clustering, and medical diagnosis may be resolved using the
suggested technique.

V =

ψ1 ψ2 ψ3[ ]
K1 (0.0000, 0.9360) (0.0010, 0.7840) (0.0030, 0.6570)
K2 (0.0080, 0.9360) (0.0640, 0.8750) (0.2160, 0.7840)

V =

ψ1 ψ2


K1 (0.000, 0.936, 0.064; 0.22) (0.001, 0.783, 0.216; 0.03)
K2 (0.008, 0.928, 0.064; 0.21) (0.064, 0.875, 0.125; 0.08)

ψ3
K1 (0.003, 0.654, 0.343; 0.18)
K2 (0.216, 0.568, 0.216; 0.24)
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