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ABSTRACT Free lane change (FLC) is an important research direction of intelligent driving vehicles. In this
paper, a lane change decision model based on deep learning is established with ego and adjacent lane risk and
properties of environmental vehicles. A long short-term memory neural network that can be associated with
time series characteristics is used to model the lane change process based on analysis of factors affecting
the lane change decision. The result of decision-making model training shows that the recognition accuracy
of lane change and lane keeping decision reaches more than 92%. Then, a human-like FLC trajectory is
planned based on polynomial curve, a quintic polynomial trajectory cluster based on preview distance is
generated according to driving conditions, and the optimal FLC trajectory is selected by optimizing an
objective function. The model predictive control method is used to dynamically control the vehicle to follow
the trajectory. Finally, the lane change decision, trajectory planning, and tracking control model are built in
simulation environment, and the control of vehicle dynamics model verifies the integrity and feasibility of
free lane change function.

INDEX TERMS Autonomous driving, lane change decision, trajectory planning, tracking control.

I. INTRODUCTION
The development of automobiles has brought great con-
venience to human travel, and intelligent driving can help
people better improve driving safety and traffic efficiency.
In the studies of intelligent driving, autonomous lane change
is an important part. An effective way to make lane change
decision ensures high driving safety and fast driving effi-
ciency at the same time. After autonomous vehicle decides
to change lane, it is also necessary to provide the correct
lane change timing and reasonable lane change trajectory
according to the current surrounding environment so as to
control the vehicle state in real time during lane change
process to follow the expected driving trajectory.

Changing lanes too frequently or ignoring the surrounding
vehicles to forcibly change lanes can lead to traffic congestion
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and dangerous driving conditions, so it is necessary to rea-
sonably formulate a strategy for changing lanes. In addition,
the proper design of motion planner and trajectory tracker is
also an important guarantee for enabling vehicle to generate
and follow suitable lane change trajectory. There has been
a great deal of research in lane change decision making,
trajectory planning and tracking control. In terms of lane
change decision, rule-based methods [1], [2], [3], [4] are used
to calculate the driver’s dissatisfaction with the current lane
based on factors such as the distance between ego vehicle
and front vehicle, and consider the trade-off between safety
and lane change benefits to make the choice of whether to
change lanes. Based on the classification method of machine
learning, support vector machine [5], hidden Markov model
[6], and BP neural network [7], [8] are used to depend the
driving conditions of ego vehicles to determine following
front vehicle or timing of lane change. When ego vehicle is
running on open roads, changes in other traffic participants
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will affect the behavior of ego vehicle, so lane change
decision needs to consider the interaction of surrounding
environmental factors. Game theory [9], [10], and adversarial
training [11] are used to establish the reward function of dif-
ferent traffic participants to design the lane change-avoidance
decision model of autonomous vehicle in intelligent driving
environment. In addition, with the enrichment of intelligent
driving datasets, data models based on deep learning and
reinforcement learning have been proposed in large numbers.
Based on deep learning networks such as convolutional net-
work [12], [13], and deep confidence network [14], Lane
change decision models are established based on reinforce-
ment learning network [15], [16]. Inputs of these data-driven
models are location, velocity, acceleration, and relative infor-
mation of ego vehicle and environmental traffic participants.
Compared with traditional theoretical model-based methods,
since the inputs are all real-world traffic data, the output
lane change decision can be largely similar to real drivers.
In terms of trajectory planning of vehicles, the trajectory
shapes mainly include trigonometric curves [17], B-spline
curves [18], numerical optimization trajectories [19], and
polynomial curves [20], etc. Among them, polynomial curve
method is currently the most widely used lane change tra-
jectory planning algorithm because it can fully consider the
dynamic and kinematic characteristics of vehicle, and can be
used in complex driving environmentswithmoving obstacles,
and even for some extreme driving conditions. In terms of tra-
jectory tracking control, proposed methods include optimal
control linear secondary regulator [21], lateral acceleration
feedback adaptive fuzzy PID controller [22], and adaptive
synovial membrane controller [23], etc. The control effect has
been well verified.

The above-mentioned research on lane change fully inte-
grates lane change decision with environmental information
and achieves good results. However, the input of the proposed
learning model rarely has the design of target lane risk in
advance, and the particle model is mostly adopted when
extracting vehicle driving data input by the learning model
and ignores vehicle shape and size, and it is rare to make joint
lane change decisions and subsequent trajectory planning
and tracking research. In order to consider the risks of lane
keeping and left-right changing in advance, and control the
specific behavior of vehicle after making decision, this paper
proposes a data-driven lane change decision model based
on lane risk, then determines and optimizes the lane change
trajectory, and designs the trajectory tracking controller to
ensure that the vehicle can realize the lane change behavior
according to the planned trajectory. The lane change decision
uses the Long Short-Term Memory (LSTM) model to deter-
mine whether lane change should be carried out in different
driving scenarios by encoding the decision result of lane
change, environmental vehicles information and the risk of
lane changing. Based on the generated lane change decision,
a human-like lane change trajectory planner based on preview
model and quintic polynomial is developed, which provides
a reference trajectory for lane change behavior. By setting

different preview positions, lane change trajectory clusters
are generated, and the optimal lane change trajectory is deter-
mined by combining safety and comfort indicators. Then,
a Model Predictive Control (MPC) method is designed to
track the lane change trajectory generated in different driving
scenarios.

The contributions of this paper are divided into the follow-
ing three points:

1) A deep learning lane change decision method con-
sidering different lane risks is proposed, and characteristic
variables such as lane risk and environmental vehicles motion
information are introduced at the input layer, which adds
the lane risk term in the learning process and is con-
ducive to increasing the dimension of lane change decision
consideration.

2) Compared with the conventional method of calculating
characteristic variables using vehicles as particles, the shape
and size information of environmental vehicles is introduced
through risk terms, and the occupancy of lanes by vehi-
cles of different types and sizes can be taken into account,
and the scene understanding of autonomous vehicles can be
enhanced.

3) According to decision-making results, a lane change
trajectory planning and tracking control model is built, and
based on Carmaker’s vehicle dynamics model and sensor
perception of environmental vehicles, the co-simulation with
SIMULINK verifies the proposed model.

The rest of this paper is organized as follows: section II
introduces the establishment and training process of LSTM
network for lane change decision. Section III provides a lane
change trajectory planner based on preview model and quin-
tic polynomial and a trajectory tracking controller based on
MPC. Section IV provides co-simulation verification results
based on Carmaker and SIMULINK. Finally, section V sum-
marizes this paper and proposes future research directions.

II. DATA-BASED FREE LANE CHANGE DECISION
In the lane change decision stage and the process of lane
changing, it is necessary to comprehensively measure the
vehicles in front and rear of the original lane and adjacent
lanes, but also consider the influence of ego vehicle behavior
on the traffic flow. The vehicle’s lane change behavior is
divided into two types: forced lane change and free lane
change, the former refers to the change of lane that driver
must make in order to reach the destination due to regu-
latory restrictions or changes in road conditions. The latter
is the behavior of changing lanes when vehicle can reach
the destination smoothly regardless of whether it changes
lanes or not. For autonomous vehicles, forced lane change
behavior is necessary and does not need to consider lane
change decisions; while the free lane change decision leads to
potential driving efficiency gains and better safety. At present,
there are many data sets that record vehicles following or
changing lanes in traffic flow, and the conditions for vehicles
to choose lane changing can be determined in a data-driven
way based on past state information of vehicles in traffic flow

VOLUME 11, 2023 121053



L. Chu et al.: Human-Like Free-Lane-Change Trajectory Planning and Control Method

and driving risks of different lanes. Therefore, this section
focuses on decision making process for free lane changes of
vehicle.

A. FREE LANE CHANGE DECISION ANALYSIS
The decision of free lane change is a process of comprehen-
sively considering the state of vehicles around ego vehicle
to determine whether it is necessary to make a lane change
decision, and first need to identify the vehicles involved in
the decision process and their states. Most of the reasons for
free lane change are that the current lane is slower to travel,
i.e., vehicle in front of ego lane is slow compared to the
speed limit or closer to ego vehicle. While the lateral offset
and lateral velocity of front vehicle will affect the choice of
lane change direction. Therefore, the current lane speed limit
and the lateral and longitudinal movement of front vehicle
are important lane change decision factors. If rear vehicle in
current lane has the intention to change lanes in the same
direction, ego vehicle might abandon the original lane change
decision, so the position and speed information of the rear
vehicle in current lane are used as factors affecting the current
vehicle lane change decision. The adjacent lanes on the left
and right sides are potential lane change targets, so driving
data of vehicles in front and rear on the adjacent lanes are
required. Therefore, it is necessary to use the micro-traffic
environment consisting of six vehicles in front and rear the
current lane and the adjacent lanes as the decision space for
lane change, as shown in Figure 1. Where ego means ego
vehicle, egoF and egoR are front and rear vehicle in current
lane, LF and LR are front and rear vehicle in left lane, RF and
RR are front and rear vehicle in right lane, the subscript with
dx means the distance between ego vehicle and the vehicle
which subscript indicates. The factors that affect lane change
are shown in Table 1.
The factors that affect lane change decision are

mainly the surrounding vehicles state and the conges-
tion of ego lane. Based on the influencing factors
in Table 1, ego vehicle state is marked as �ego =[
vego, aego, vlimit

]
, front vehicle state is marked as �egoF =[

dxegoF , dyegoF , vxegoF , vyegoF
]
, rear vehicle state is marked

as �egoR =
[
dxegoR, dyegoR, vxegoR, vyegoR

]
, left front vehi-

cle state is marked as �LF =
[
dxLF , dyLF , vxLF , vyLF

]
,

left rear vehicle state is marked as �LR =
[
dxLR, dyLR,

vxLR, vyLR
]
, right front vehicle state is marked as �RF =[

dxRF , dyRF , vxRF , vyRF
]
, right rear vehicle state is marked

as �RR =
[
dxRR, dyRR, vxRR, vyRR

]
. From the perspective of

traffic flow, the state of surrounding vehicles in a certain
time period has an impact on ego vehicle’s decision to
change lanes. Therefore, this paper argues that lane change
decision is determined by the sequence of ego vehicle and
environmental vehicle states over a time period and the traffic
risks of ego and adjacent lanes.

B. LANE CHANGE SAMPLE PROCESSING
The NGSIM (Next Generation Simulation) dataset is
selected, which records the numbers of different lanes on

FIGURE 1. Micro-traffic environment for lane change decision, ego
vehicle is in blue, while environmental vehicles are in red.

TABLE 1. Factors influencing lane change decision.

a section of highway and the dimensions, lateral and lon-
gitudinal coordinates, speed and acceleration information
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of vehicles traveling on these lanes, recording frequency
is 10 Hz. In this paper, the lateral and longitudinal velocity
and acceleration of vehicles with different IDs are calculated
with dimensions and position information based on vehicle
kinematics, and the lane risk is calculated according to the
risk analysis method.

The longitudinal velocity is:

vxt =
Posxt+1 − Posxt−1

1t
(1)

where vx_t is the velocity of vehicle in x direction at time t;
Posx_t+1 is the coordinate of vehicle in the x direction at time
t + 1; Posx_t−1 is the coordinate of vehicle in x direction at
time t − 1; 1t is the time difference between time t + 1 and
time t − 1.
The lateral velocity is:

vyt =
Posyt+1 − Posyt−1

1t
(2)

where vy_t is the velocity of vehicle in y direction at time t;
Posy_t+1 is the coordinate of vehicle in the y direction at time
t + 1; Posy_t−1 is the coordinate of vehicle in y direction at
time t − 1; 1t is the time difference between time t + 1 and
time t − 1.
The acceleration of ego vehicle is:

aegot =
vegot+1 − vegot−1

1t
(3)

where aego_t is the acceleration of ego vehicle at time t;
vego_t+1 is the velocity of ego vehicle at time t + 1; vego_t−1
is the velocity of ego vehicle at time t − 1; 1t is the time
difference between time t + 1 and time t − 1.
Lane risk consists of static risk and dynamic risk calculated

using a two-dimensional Gaussian function. The static risk is

Usta = exp

−

( (x − xobs)2

L2obs

)2

+

(
(y− yobs)2

W 2
obs

)2


(4)

e dynamic risk is

Udyn

=

exp
(

−

((
(x−xobs)2

6|vobsx−vegox |

)2
+

(
(y−yobs)2

6|vobsy−vegoy|

)2))
1 + exp (−relv (x − xobs − 0.9Lobs · relv))

(5)

relv =

{
1, vobsx ≥ vegox
−1, vobsx < vegox

(6)

The total risk is

U = Usta + Udyn (7)

where (x, y) is the coordinates of ego vehicle, (xobs, yobs) is
the center point coordinate of obstacle vehicle, (Lobs,Wobs)

is length and width of obstacle vehicle, vobsx is longitudinal
velocity of obstacle vehicle, vegox is longitudinal velocity of

FIGURE 2. Data extraction process.

ego vehicle, relv is a function that describes the direction of
movement with obstacles and ego vehicle relative to each
other. If there are multiple obstacle vehicles on a lane, the
lane risk is the summation of each obstacle vehicle.

This paper uses lateral velocity to judge the start point of
lane change, and when the vehicle lateral velocity is greater
than 0.1m/s, it is considered to start changing lanes, so the
need is to filter out the position of each vehicle’s lateral
velocity greater than 0.1m/s or less than -0.1m/s for the first
time as the position where vehicle begins to change lane left
or right. According to the conclusion of [24], there is a buffer
time of 0.5 seconds between decision and execution of lane
change, which is called time window. Therefore, the time
corresponding to the start position of lane change is pushed
forward by 0.5 seconds as the moment of the lane change
decision. When the lane ID of vehicle changes, record this
moment as the lane change time. Then look forward to the
time when the last lateral velocity is between ±0.1m/s as the
start moment of lane change, and push forward 0.5 seconds as
themomentwhen the lane change decision is generated. Next,
data on surrounding vehicles needs to be extracted, as shown
in Figure 2.
The data processing of lane change decisions needs to take

into account the positive and negative samples of lane change
decisions, where the positive sample is to make the left lane
change (LLC) decision and the right lane change (RLC)
decision, and the negative sample is to make the lane keeping
(LK) decision. The reason for LK may be that the current
lane driving condition is better and there is no need to change
lanes or because the traffic conditions in the adjacent lane
are similar to the current lane, and neither of them meets the
driver’s expectations. The former is more likely to correspond

VOLUME 11, 2023 121055



L. Chu et al.: Human-Like Free-Lane-Change Trajectory Planning and Control Method

FIGURE 3. Decision sample selecting.

to vehicles that have never changed lanes during the entire
driving process of road section. LK performed by a vehicle
that changes lanes before the driver makes a lane change
decision is more likely to correspond to the latter. Therefore,
all conditions within 5 seconds before the time of lane change
decision are used as a LK decision sample that cannot meet
the driver’s expectations. In addition, a sample of LK from
vehicles that never changed lanes is randomly retained. Data
filtering is done using a random function, while the state of
surrounding vehicles for the selected LK sample is obtained
using the same method as screening the lane change sample,
as shown in Figure 3.

For the filtered lane change samples, the following process-
ing is required: (i) delete the ramp change data; (ii) delete
samples of average velocity below 3m/s; (iii) Delete contin-
uous lane change samples. After randomly shuffling the lane
change data and lane keeping data, 80% of all data samples
were selected as training samples; The remaining 20% were
used as test samples. In order to ensure data consistency, the
data is dedimensionalized and the maximum and minimum
values are limited and normalized. Limit the longitudinal
distance to -150m to 150m and velocity to 0-25m/s. Attributes
of longitudinal velocity, lateral velocity, longitudinal relative
distance, lateral relative distance, and longitudinal acceler-
ation are extracted, and all the data of same attribute are
fused together for preprocessing. The distance between traffic
participants and ego vehicle represents former’s left and right
orientation information to the letter. The acceleration of the
vehicle represents the physical properties of the acceleration
and deceleration state of the vehicle. Normalize the posi-
tive and negative distance and acceleration values between
[0, 1] and [−1,0] with 0 as the dividing line, respectively.{

xstd = x/xmax , x ≥ 0
xstd = −x/xmin, x < 0

(8)

where x represents the lateral and longitudinal distance or
longitudinal acceleration, xmax , xmin represents the maximum
and minimum values of the lateral and longitudinal distance
or longitudinal acceleration, and xstd represents the normal-
ized result.

Since the vehicle velocity is positive, velocity is directly
normalized to [−1,1]:

xstd= −1 + 2
(

x − xmin
xmax − xmin

)
(9)

where x represents the vehicle velocity, xmax , xmin represents
the maximum and minimum vehicle velocity, and xstd repre-
sents the normalized result.

The risk UL of left lane, the risk UE of ego lane, and the
risk UR of right lane are calculated and normalized.

(UL ,UE ,UR) =
(UL ,UE ,UR)
UL + UE + UR

(10)

C. LANE CHANGE DECISION MODEL
The Long Short-Term Memory (LSTM) neural net-
work is selected, and the input layer nodes include the
30 attributes involved in the lane change decision proposed in
Section III-A and the risk of ego lane and adjacent two lanes.
The reason why acceleration less considered in model input is
that LSTM network has memory function, once the velocity
term is entered, its first derivative (i.e., acceleration) will
appear in the network. The LSTM layer of the lane change
decision model should have three output nodes, activation
function selects softmax.

Si =
eyi∑
j e
yj

(11)

where Si is the output of i-th node, yi is the input of i-th node,
and

∑
j e
yj means the exponential sum of all node inputs.

A layer of softmax function is used to produce three output
nodes, the values of which are all between [0 1], and the
node value is probability of choosing the corresponding lane.
The output of the lane change decision corresponds to the
three dimensions of left lane change, lane keep and right lane
change, the decision result should be [LLC LK RLC]. The
hidden layer of lane change decision model is dominated by
LSTM neural network units. After the LSTM layer, a fully
connected layer with three output nodes is set. In order to
prevent the model from overfitting, add a dropout layer after
each hidden layer, and the probability will temporarily dis-
card some neural units from the network, setting the dropout
probability to 0.5. The loss function takes cross-entropy loss,
while for classification problems, the loss value for each
output is calculated as

L = −

3∑
c=1

yc log pc (12)

where yc is a sign function (0 or 1), take 1 if true class of
sample i is equal to c, otherwise take 0; pc is the predicted
probability that the observed sample i belongs to category
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FIGURE 4. Lane change decision model based on LSTM.

FIGURE 5. Change in accuracy rate of training process.

FIGURE 6. Change in loss of training process.

c; L is loss value. A decrease in cross-entropy loss means
that the predicted value is close to the real. All inputs are
normalized to [-1 1], and all data values and amplitudes that
need to be adjusted are not large, so it is more suitable to use
a small learning rate, set to 10−7. The training epoch is set to
300, the batch size is set to 128, and a complete batch can be
completed after 30 iterations.

Finally, the number of LSTM layers is 2 and the number
of LSTM hidden layer is 16. The model structure is shown in
Figure 4. The output of LSTM layer passes through a fully
connected layer, then processed by the softmax classifier to
obtain the value of the lane change decision:

P = [PLLC ,PLK ,PRLC ] (13)

TABLE 2. Comparison results of different lane-change decision methods.

where PLLC ,PLK ,PRLC is the probability of left lane change,
lane keep, and right lane change respectively.

D. MODEL TRAINING AND VALIDATION
The changes in accuracy and loss function in the training
process are shown in Figure 5 and Figure 6.
In order to illustrate that the introduction of lane risk can

improve the accuracy of lane change decision, the model
training proposed in this paper is divided into two parts: the
training input layer of the first part is described in Fig.4,
and the input layer of the other part of training removes
the parameters representing lane risk. The result is shown
in Table 2, where LC means lane change, LK means lane
keeping, PR means precision rate, i.e., the real lane change
decision sample in the results output by model, RR means
recall rate, i.e., the proportion of lane change decision identi-
fied by the model. The final classification accuracy (CA) of
the LSTM model proposed in this paper for driving decision
is 92%, which is higher than 90% based on model without
lane risk input, 84% based on Bayes network [26], and 87%
based on support vector machine [27], as shown in Table 2.

III. TRAJECTORY PLANNING AND DYNAMIC CONTROL
In order to verify the reliability of the deep learning-based
lane change decision model described in the previous section,
this section performs trajectory planning and dynamic con-
trol on the samples which output as lane change decisions,
in order to obtain good regulation and control results, so as
to prove the correctness of the lane change model. Firstly,
the lane change trajectory cluster is generated by setting a
reasonable preview position interval, and the optimal trajec-
tory is selected from trajectory cluster as reference. Then,
simulation environment is set up to dynamically control the
vehicle so that ego vehicle can track the reference trajectory.
If simulated traffic flow is smooth, lane change decisionmade
by the sample is justified.

A. LANE CHANGE TRAJECTORY PLANNING
The quintic polynomial can better imitate the lane change
trajectory of human drivers for its smooth in acceleration, and
various parameters such as curvature and lateral acceleration
can meet the constraints in the lane change process, so it is
often used for lane change trajectory planning. The relation
between lateral displacement of vehicle time is

y = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 (14)
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where y is lateral offset of lane change. a5, a4, a3, a2, a1, a0
is coefficient of lane change trajectory; t is elapsed time since
the start of lane changing. In the process of lane change tra-
jectory planning, vehicle lateral velocity is the first derivative
of lateral displacement with time, vehicle lateral acceleration
is the second derivative of lateral displacement with time, and
the change rate of lateral acceleration is the third derivative
of vehicle lateral displacement with time.

vy = ẏ (t) = 5a5t4 + 4a4t3 + 3a3t2 + 2a2t + a1
ay = ÿ (t) = 20a5t3 + 12a4t2 + 6a3t + 2a2
ȧy = y (t) = 60a5t2 + 24a4t + 6a3

(15)

where vy is lateral velocity, ay is lateral acceleration. The tra-
jectory displacement, lateral velocity, acceleration, and rate
of change expressed by the quintic polynomial are continuous
and can satisfy kinematic constraints of vehicle. The specific
shape of the polynomial is determined by coefficients of
the polynomial A = [a0, a1, a2, a3, a4, a5]T . Suppose at the
initial moment of lane change t = t0:

Y (t0) = Y0, vy (t0) = v0, ay (t0) = a0 (16)

At the end moment of lane change t =tend:

Y (tend) = Yend, vy (tend) = vend, ay (tend) = aend (17)

Six polynomial equations can be constructed based on the
state of vehicle at the initial and end moments:

a0 + a1t0 + a2t20 + a3t30 + a4t40 + a5t50 = Y0
a0 + a1tend + a2t2end + a3t3end + a4t4end+
a5t5end = Yend
a1 + 2a2t0 + 3a3t20 + 4a4t30 + a5t40 = v0
a1 + 2a2tend + 3a3t2end + 4a4t3end + a5t4end = vend
2a2 + 6a3t0 + 12a4t20 + 20a5t30 = a0
2a2 + 6a3tend + 12a4t2end + 20a5t3end = aend

(18)

where a5, a4, a3, a2, a1, a0 is the lane change trajectory coef-
ficient; t0 is start time of lane change, which is generally
taken as 0; tend is end time of lane change; Y0, v0, a0 is the
lateral position, lateral velocity, and lateral acceleration at
the beginning of lane change, where the lateral position is
generally taken as 0, and the latter two can be obtained by sen-
sors; Yend , vend , aend is lateral position, lateral velocity, and
lateral acceleration at the end of lane change. Vehicle lateral
position is generally at the center line of target lane when the
lane change finishes, and the lateral velocity and acceleration
are 0. Under the premise of setting preview time, only the
coefficient A = [a0, a1, a2, a3, a4, a5]T of the polynomial in
the above multivariate equation is unknown. Substituting the
initial time t0 = 0 and the end time tend = tend into the
polynomial yields the coefficient

A = B−1C (19)

where

A =
[
a0 a1 a2 a3 a4 a5

]T (20)

FIGURE 7. Proportional distribution of space with front & rear vehicle at
end point of lane change.

FIGURE 8. Relative position of lane change decision time.

B =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 tend (tend)2 (tend)3 (tend)4 (tend)5

0 1 2tend 3 (tend)2 4 (tend)3 5 (tend)4

0 0 2 6tend 12 (tend)2 20 (tend)3

 (21)

C =
[
Y0 v0 a0 Yend vend aend

]T (22)

The vehicle state is the only certainty at the moment when
lane change behavior is determined, so the quintic polyno-
mial trajectory is only related to lane change time under
specific driving conditions. When generating the ideal lane
change trajectory, it is assumed that the vehicle is moving at
a constant velocity in the longitudinal direction, so the lane
change time can be calculated by tend = L/vx , L is the lane
change preview displacement. Due to ego vehicle velocity
is known, the lane change trajectory is determined by the
preview distance, and the preview distance should be related
to the relative distance of vehicles in front and rear of the
target lane and their velocity. The ratio of distance from the
front vehicle to the rear vehicle at the end of the lane change
in the NGSIM dataset is shown in Figure 7.
When changing lanes, the driver has weak knowledge in

intent and distance with rear vehicle, so the driver will first
consider the distance from the front vehicle. After the end of
lane change, the ratio of distance between the front and rear
vehicles is the most between 0.6-0.8, followed by 0.8-1.0.
Ratio greater than 1.5 is too far to give enough reference
significance. Therefore, it can be considered that the ratio
of distance from ego vehicle to front and rear vehicles after
lane change is 0.8, which is the driver’s priority lane change
consideration.
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Set a motion model in longitudinal direction and obtain the
position relationship between ego vehicle obstacle vehicles
in front and rear of target lane at the current moment. Set the
complete time of lane change is tLC , the longitudinal velocity
of the lane change process is vego, and the longitudinal coor-
dinate x of ego vehicle at the end of the lane change is

x = vego ∗ tLC (23)

The longitudinal coordinates of the front and rear obstacle
vehicles after lane change is{

xtarF = x0F + vtarF ∗ tLC
xtarR = x0R + vtarR ∗ tLC

(24)

where xtarF and xtarR are the longitudinal coordinates of front
and rear vehicle at the end of the lane change, x0F and x0R
are the coordinates of front and rear vehicle at the beginning
of lane change, vtarF and vtarR are the longitudinal velocity
of front and rear vehicle at beginning of the lane change,
respectively. The ratio of distance to front and rear vehicle
at the end of the lane change is 0.8.

x − xtarR
xtarF − x

= 0.8 (25)

When lane change has finished, the change time to meet
the ideal distance between the front and rear vehicle is tLC

tLC =
x0R+0.8x0F

1.8vego − vttarR−0.8vtarF
(26)

According to the conclusion of [25], the time distribution of
the lane change execution stage is between 1.5-13.9s, and the
average value is 6.97 s. This paper limits the lane change time
to 5-10s, if the calculated lane change time is less than 5s,
take 5s, take 10s if it is greater than 10s, and if the calculation
conditions are not met, take the average lane change time 7s.
the preview distance disLC can be obtained with lane change
time tLC by

disLC = vego ∗ tLC (27)

Set 5 and 4 alternate preview points at intervals of 2 meters
in front and rear of the preview distance, and calculate the
trajectory cluster formed by the ten preview points.

B. SELECTION AND SIMULATION OF LANE CHANGE
TRAJECTORY
Under the premise that the lateral distance of the lane change
is fixed, the long lane change time will bring a small yaw rate
and angular acceleration, so as to increase comfort. However,
too long time of lane change can affect the flow of traffic.
Therefore, the selection of lane change trajectory should
consider both traffic efficiency and drive comfort, expressed
by cost function

J = w1Jeff + w2Jcom (28)
w1 + w2 = 1
0 < w1< 1
0 < w2< 1

(29)

FIGURE 9. Lane change trajectory cluster.

FIGURE 10. Selected optimal lane change trajectory.

FIGURE 11. Three-degree-freedom vehicle dynamics model based on
ground coordinate system.

where Jeff characterizes lane change efficiency, Jcom char-
acterizes driving comfort, w1 and w2 represent the weight
of lane change efficiency and comfort, respectively. In this
paper, traffic efficiency is characterized by the ratio of the
longitudinal distance xfin to the maximum longitudinal dis-
tance xmax of lane change, the longer the continuous distance
of the lane change, the lower traffic efficiency.

Jeff =
xfin
xmax

(30)

The ratio of the average lateral acceleration aavg to its
maximum aavglimit during lane change and the ratio of the
maximum lateral acceleration amax to its maximum amaxlimit
are used as evaluation criteria for drive comfort.

Jcom =
aavg
aavglimit

+
amax
amaxlimit

(31)

Then cost function J is expressed as

J = w1
xfin
xmax

+ w2

(
aavg
aavglimit

+
amax
amaxlimit

)
(32)

In trajectory cluster, the trajectory with smallest evaluation
function is screened out as the final reference trajectory.
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Based on the above method for simulation, a piece of vehi-
cle data is selected from NGSIM data set, and surrounding
environment of ego vehicle is shown in Figure 8. Select
w1 = w2 = 0.5, and ego vehicle velocity is vego =

12.2m/s. The velocity of front obstacle vehicle in current
lane is vfront = 10.11m/s. The velocity of rear obstacle
vehicle in current lane is vrear = 12.18m/s. The velocity
of right front obstacle vehicle is vrightfront = 13.72m/s. The
velocity of right rear vehicle is vrightrear = 14.03m/s. The
calculated lane change time and longitudinal distance are:
tLC = 8.2s; disLC = 100m, the trajectory cluster generated
according to the driving conditions at the time of lane change
decision is shown in Figure 9. The lateral velocity and accel-
eration of the above trajectory cluster are calculated. Based on
the evaluation function, all trajectories in the trajectory cluster
are quantitatively evaluated, and the lane change trajectory
with the smallest evaluation function is the one with the
lane change distance equal to 94m, and preview time is 7.7s,
as shown in Figure 10.

C. MPC-BASED DYNAMICS CONTROL
After lane change trajectory planning, a reasonable trajectory
tracking method needs to be designed so that ego vehicle can
follow the desired trajectory quickly and smoothly. Firstly,
the vehicle dynamics model is built, and then the trajectory
tracking controller is designed based on MPC. The used
three-degree-freedom dynamic model is shown in Figure 11,
where OXY is the ground coordinate system, oxy is the
vehicle coordinate system, the o point is at the position of
vehicle center of mass, the x-axis points to the longitudinal
axis of vehicle, and the y axis is perpendicular to the x-axis
to the left.

From geometric relations we can get

Ẋ = ẋ cosϕ − ẏ sinϕ (33)

Ẏ = ẋ sinϕ + ẏ cosϕ (34)

Under the ground coordinate system, X is longitudinal
displacement, Ẋ is longitudinal velocity, Y is lateral displace-
ment, Ẏ is lateral velocity. Under vehicle coordinate system,
ϕ is yaw angle, ẋ is longitudinal velocity, ẏ is lateral velocity.

The force balance equation for the vehicle’s translational
motion in the x-axis and y-axis, and rotational motion around
the z-axis is 

mẍ = mẏϕ̇ + 2Fxf + 2Fxr
mÿ = −mẋϕ̇ + 2Fyf + 2Fyr
Izϕ̈ = 2aFyf − 2bFyr

(35)

where ẍ is longitudinal acceleration; ϕ̇ is vehicle yaw rate;
Fxf ,Fxr is force in the x direction of front and rear wheels; ÿ
is longitudinal acceleration;Fyf ,Fyr is force in the y direction
of front and rear wheels; Iz is vehicle inertia around the
z-axis; ϕ̈ is vehicle yaw angle acceleration; a, b are front and
rear wheelbase.

Longitudinal and lateral forces of the wheels are calculated
as follows: 

Fxf = Clf sf
Fxr = Clrsr

Fyf = Ccf

(
δf −

ẏ+ aϕ̇
ẋ

)
Fyr = Ccr

bϕ̇ − ẏ
ẋ

(36)

where Clf ,Clr are longitudinal stiffness of front and rear
wheels, Ccf ,Ccr are lateral stiffness of front and rear wheels,
sf , sr are slip rate of the front and rear wheels, a, b are front
and rear wheelbase of the vehicle, δf is front wheel angle.
Then the vehicle dynamics model can be expressed as

mẍ = mẏϕ̇ + 2
[
Clf sf + Ccf

(
δf −

ẏ+ aϕ̇
ẋ

)
δf + Clrsr

]
Ẋ = ẋ cosϕ − ẏ sinϕ

mÿ = −mẋϕ̇ + 2
[
Ccf

(
δf −

ẏ+ aϕ̇
ẋ

)
+ Ccr

bϕ̇ − ẏ
ẋ

]
Ẏ = ẋ sinϕ + ẏ cosϕ

Izϕ̈ = 2
[
aCcf

(
δf −

ẏ+ aϕ̇
ẋ

)
− bCcr

bϕ̇ − ẏ
ẋ

]
(37)

In this system, a set of state variables can be written as ξdyn =

[ẏ, ẋ, ϕ, ϕ̇,Y ,X ]T , a set of control variables can be written as
udyn= [δf ]. The linearization process yields a time-varying
equation as

ξ̇dyn = Adyn (t) ξdyn (t) + Bdyn (t) udyn (t) (38)

where (39) and (40), as shown at the bottom of the next
page.

Discretization as

ξdyn (k + 1) = Adyn (k) ξdyn (k) + Bdyn (k) udyn (k) (41)

where Adyn (k) = I + TAdyn (t) ,Bdyn (k) = TBdyn (t) , k is
the moment at which the current step is located, T is sampling
period, and I is unit matrix.

The constraint on the control variables is{
−25◦

≤ δ ≤ 25◦

−0.47◦
≤ 1δ ≤ 0.47◦

(42)

The ultimate goal of trajectory tracking is to ensure that the
vehicle follows the desired trajectory quickly and smoothly,
so the tracking offset is considered in the objective function.
The control increment into the objective function is written
as follows:

min
1u

J
(
ξdyn (t) , udyn (t − 1) , 1u (k)

)
=

Np∑
i=1

∥∥ηdyn (t + i | t) − ηdyn,ref (t + i | t)
∥∥2
Q

+

Nc−1∑
i=1

∥1u (k + i)∥2R (43)
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FIGURE 12. Illustration of the simulation process.

FIGURE 13. Real driving condition simulation (a). trajectory tracking (b).
lateral control deviation (c). steering wheel angel (d). lateral acceleration.

s.t.


umin ≤ u (k + i) ≤ umax
1umin ≤ 1u (k + i) ≤ 1umax
ymin ≤ y ≤ ymax

(44)

where 1u (k) is the increment of control variable in the k-th
period, ηdyn = [Y , ϕ] is predicted value (lateral offset and
yaw angle) output in control process, ηdyn,ref =

[
Yref , ϕref

]
is reference values for ηdyn, (t + i | t) means to predict infor-
mation at time t+1 based on information at the sampling time
t , i = 1, 2, 3, . . . ,Np. Np,Nc is predict horizon and control
horizon. Q,R represents weight matrix of output variable
and control variable increment, umin, umax is lower and upper
limits of the control variable, 1umin, 1umax is lower and
upper limits of the control variable increment.

FIGURE 14. Highway driving condition simulation (a). trajectory tracking
(b). lateral control deviation (c). steering wheel angel (d). lateral
acceleration.

The above equation is solved in every period to obtain a
series of control variable increments:

1U∗
dyn,t =

[
1u∗

dyn,t , 1u
∗

dyn,t+1, · · · , 1u∗

dyn,t+Nc−1

]T
(45)

The first element of the solved result acts on the controlled
system:

udyn (t) = udyn (t − 1) + 1u∗
dyn,t (46)

The above process calculations are carried out in every
control period to complete the target trajectory tracking of
ego vehicle.

IV. SIMULATION RESULTS
In the Carmaker platform, select ego vehicle model and
corresponding sensor model to establish a random traffic
flow. Next read the state of obstacle vehicles around ego
vehicle from the environment information. Then control the
vehicle model in Carmaker through the autonomous lane
change decision, trajectory planning, and tracking controller
established in Simulink. The simulation logic is shown in
Figure 12.

First, the real driving condition described in Section III-A
is simulated, under which the velocity of ego vehicle is
12.2 m/s, and the preview time is calculated as 7.7 s and
preview distance is 94 m according to the driving condition at

Adyn (t) =
∂fdyn
∂ξdyn

∣∣∣∣
ξ̂t ,ut

=



−
2(Ccf +Ccr)

mẋt
∂fẏ
∂ ẋ 0 −ẋt +

2(bCcr−aCcf )
mẋt

0 0

ϕ̇ −
2Ccf δf ,t−1

mẋt
∂fẋ
∂ ẋ 0 ẏt −

2aCcf δf ,t−1
mẋt

0 0
0 0 0 1 0 0

2(bCcr−aCcf )
Izẋt

∂fϕ̇
∂ ẋ 0 −

2
(
a2Ccf +b2Ccr

)
Izẋt

0 0
cos (ϕt) sin (ϕt) ẋt cos (ϕt) − ẏt sin (ϕt) 0 0 0
−sin (ϕt) cos (ϕt) −ẏt cos (ϕt) − ẋt sin (ϕt) 0 0 0


(39)

Bdyn (t) =
∂fdyn
∂udyn

∣∣∣∣
ξ̂t ,ut

=

2Ccf
m

,
2Ccf

(
2δf ,t−1 −

ẏt+aϕ̇t
ẋt

)
m

, 0,
2aCcf
Iz

, 0, 0

 (40)
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FIGURE 15. Urban driving condition simulation (a). trajectory tracking (b).
lateral control deviation (c). steering wheel angel (d). lateral acceleration.

the beginning of lane change, and the simulation results are
shown in Figure 13.
Highway condition simulation, ego vehicle velocity is:

vego = 20m/s. Velocity of the vehicle in front of current lane
is: vfront = 18m/s. Velocity of the vehicle in front of target
lane is: vrightfront = 23m/s, front distance is 40 m. Velocity of
rear vehicle in target lane is: vrightrear = 21m/s, rear distance
is -40 m. Lane change decision is made based on the low
speed of the vehicle in front and the condition of adjacent
lane. At the beginning of lane change, trajectory planning is
carried out, and lane change time and longitudinal distance
are calculated as: tLC = 9s; disLC = 180m. The simulation
results are shown in Figure 14.

Urban condition simulation is similar with highway sim-
ulation, here we set vego = 15m/s, vfront = 10m/s, front
distance is 40 m, vrightrear = 15m/s, rear distance is -30m.
Then lane change time and longitudinal distance are calcu-
lated as: tLC = 7s, disLC = 105m. The simulation results are
shown in Figure 15.

The analysis of the simulation results shows that the model
can track the planning path with stable changes of the control
variable and state variable. The simulation results show that
the system can adapt to various velocity conditions to com-
plete the lane change task.

V. CONCLUSION
Through the analysis of lane change data, this paper links
the abstract free lane change decision with the physical char-
acteristics of vehicles, and extracts factors affecting driver’s
decision in free lane change, including lane risk and trajectory
information of ego vehicle and environmental obstacle vehi-
cles. While calculating the lane value, this paper considers
the size information of obstacle vehicles, which increases the
input dimension, and is an improvement on the past work.
Then, a data-driven method is used to obtain the training
sample set and build a deep learning model, and the model
training results proves that the correct rate of the selected
LSTM-based lane change decision model is more than 92%,
which can adapt to most driving conditions. Next, a lane
change trajectory cluster generation and evaluation method

based on preview time is proposed to select the optimal
lane change trajectory, and a lane change trajectory planning
method is obtained. The three-degree-freedom dynamic vehi-
cle model is analyzed and linearized, and a trajectory tracking
model based on MPC method is designed. The FLC decision
making and proportional distribution of front and rear space
at end point of lane change based on real driving data, and
the trajectory planner is based on quintic polynomial, which
can provide human-like elements for lane change process.
Finally, the Carmaker/Simulink co-simulation platform is
used to design different driving conditions to simulate the
lane changing system, and the results show that the deep
learning decision and autonomous lane change method pro-
posed in this paper can adapt to different driving conditions
to complete the lane change task.

The next step of this research can try to expand the amount
of data of the deep learning model with a richer dataset, add
more considerations such as driver’s t personalized style to
the model input, and further verify the real vehicle to improve
the randomness of the experimental scene.
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