
Received 4 October 2023, accepted 21 October 2023, date of publication 25 October 2023, date of current version 3 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3327427

CGSNet: Channel Group Shuffling Network for
Remote Sensing Image Fusion
HONGHUI JIANG1, (Member, IEEE), HU PENG 2, (Member, IEEE),
AND GUOZHENG ZHANG 3, (Member, IEEE)
1Anhui Technical College of Mechanical and Electrical Engineering, Wuhu 241003, China
2School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
3School of Mechanical Engineering, Anhui Technical College of Mechanical and Electrical Engineering, Wuhu 241003, China

Corresponding author: Guozheng Zhang (jenuel@163.com)

This work was supported in part by the Academic Funding Project for Top-Notch Talents in Disciplines (Specialties) of Colleges and
Universities under Grant gxbjZD2020108; and in part by the 2023 Anhui Province Higher Education Research Project, under Grant
2023AH052692.

ABSTRACT High-resolution multi-spectral (HRMS) images have been widely used in various fields,
however, they can not be directly obtained due to the physical hardware limits of existing remote sensing
satellites. Therefore, the pansharpening technique has been widely explored as an effective tool to generate
HRMS images by fusing the complementary information of low-resolution multi-spectral (LRMS) images
and high-resolution panchromatic (PAN) images. Existing deep learning-based pansharpening methods
mainly focus on enhancing the spatial representation ability of the network, while paying little attention to
modeling spectral dependencies in spite of its significance for remote sensing data. In this paper, we propose
a simple yet effective channel group shuffling (CGS) module to explore the implicit relationships with
regard to the adjacent and cross-channels while considering spatial information. To be specific, the proposed
CGS module consists of two components: the channel group module and the feature shuffle fusion module.
The former enhances the diversity of spectral information and cross-channel information communications
while ensuring the spectral order of the input feature. The latter integrates the cross-group feature maps
with rich spatial-spectral information. Equipped with the proposed functional module, our image fusion
network, dubbed CGSNet, produces favorable results against existing state-of-the-art counterparts over
various satellite datasets. Ablation studies further verify the flexibility and effectiveness of our core design.

INDEX TERMS Pansharpening, deep learning, channel group, feature shuffle fusion.

I. INTRODUCTION
The rapid development of remote sensing satellites facilitates
the acquisition of remote sensing data, which thus receives
much attention from image processing and remote sensing
communities. Due to the physical limitations, however, exist-
ing remote sensing satellite sensors commonly capture both
low-resolution multi-spectral (LRMS) images containing
abundant spectral information and high-resolution panchro-
matic (PAN) images showing rich spatial details, instead
of directly observing high-resolution multi-spectral (HRMS)
images that are desirable in remote sensing applications,
such as object detection [1], change detection [2], [3],
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environmental monitoring [4], [5], and mapping services [6],
[7], [8]. Therefore, the pansharpening technique is developed
to produce HRMS images by fusing the complementary
information from the obtained MS images and PAN images.
Over the past decades, pansharpening has been widely
explored and made prominent achievements.

Traditional pansharpening approaches can be roughly
divided into three streams, including component substitution
(CS) methods [9], [10], multiresolution analysis (MRA)
approaches [11], [12], and variational optimization-based
(VO) [13], [14] methods. The CS approaches commonly
separate the spatial component and spectral component of
the MS image by projecting it into a suitable space, and
further substitute the spatial component with the PAN image.
The representative CS methods include the band-dependent
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spatial-detail with local parameter estimation (BDSD) [15],
the intensity-hue-saturation (IHS) method [16], the principal
component analysis (PCA) method [9], [17], and the Gram-
Schmidt (GS) spectral sharpening [18]. The sharpened
outcomes of CS methods usually show high spatial fidelity
paid but suffer from greater spectral distortions [19].
The MRA methods are mainly based on the spatial

details injection manner. Specifically, these approaches first
extract spatial details from the PAN image and then inject
them into the MS image. The products fused by the MRA
methods can achieve well-preserved spectral information
while possessing obvious spatial distortions even severe
artifacts. The most common instances of MRA include
smoothing filter-based intensity modulation (SFIM) [20],
the additive wavelet luminance proportional (AWLP) [11],
decimated wavelet transform (DWT) [21], atrous wavelet
transform (ATWT) [22], Laplacian pyramid (LP) [23], the
generalized Laplacian pyramid (GLP) [24], and the GLPwith
full-scale regression (GLP-Reg) [25].
In the last several years, the VO approaches have been

widely concerned thanks to their desirable fusion effect on
pansharpening. Methods belonging to this class attempt to
establish specific optimization functions based on certain
conditions [26]. The first VOmethod treats the PAN image as
the linear combination of diverse bands of HRMS image, thus
the LRMS image is the blurred version of HRMS image [27].
Afterward, various VO methods are developed to address
pansharpening problem, such as Bayesianmethods [13], [14],
[28], variational approaches [29], [30], [31], compressed-
sensing and sparse representation-based techniques [32],
[33], [34], [35], [36], [37] and so on. Despite these methods
achieving a good balance between spectral information
and spatial details by optimizing the loss function, they
inevitably introduce more tunable parameters and a higher
computational burden.

Recently, deep learning (DL) methods that are mainly
based on convolutional neural networks (CNNs) have
dominated various image processing tasks, such as object
detection [38], [39], [40], image segmentation [41], [42],
[43], [44], [45], image super-resolution [46], [47], [48], and
presented desirable performance. In the field of pansharp-
ening, Masi et al. [49] firstly introduced a simple CNN
architecture inspired by SRCNN [46], dubbed PNN, which
consists of only three convolution layers. Yang et al. exploited
a deeper network by adopting the residual learning module
in Resnet [50] for pansharpening, which achieved significant
progress in comparison to traditional pansharpeningmethods.
Afterward, more deeper and complicated CNN architectures
are developed for the pansharpening problem. Yuan et al.
[51] presented a good technique to inject the high-frequency
information into the up-sampled MS image when training
the network. DiCNN [52], a detail injection framework, was
proposed with two variants (i.e., DiCNN1 and DiCNN2),
which conducted the detail injections based on PAN or
MS and PAN together, respectively. Deng et al. [19]
developed a deep fusion network by borrowing the ideas from

the traditional CS and MRA methods, showing favorable
fusion results as well as desired generalization capacity.
Jin et al. [53] firstly explored the application of a highly
anticipated adaptive technique in the pansharpening task and
proposed a novel convolution operator by modifying the
standard convolution. Due to the effectiveness of the attention
mechanism, Liu et al. [54] utilized the attention module and
proposed an attention-based network to fuse the PAN andMS
image.

Although existing DL-based methods have achieved
remarkable progress against their traditional counterpart.
Most of them mainly focus on spatial feature extraction
while neglecting the significance of spectral character-
istics. Instead of only paying attention to the spatial
information, we also attempt to explore the implicit
relationships in the spectral space within the considera-
tion of spatial features. Specifically, we propose a sim-
ple yet effective group shuffle (GS) module to extract
the continuous characteristics of various channels while
enhancing the long-distance interaction among them. This
functional design possesses powerful representation ability
and is suitable for the pansharpening problem. Further-
more, we design a simple pansharpening network (dubbed
CGSNet) whose backbone is composed of several GS
modules, and we further validate its fusion ability on various
satellite datasets (i.e. WorldView-3(WV3), GaoFen-2(GF2),
QuickBrid(QB) and WorldView-2(WV2) dataset). Exten-
sive experiments demonstrate that our CGSNet achieves
competitive fusion results compared with state-of-the-art
pansharpening methods in both reduced and full-resolution
assessments.

The main contribution of this work can be summarised as
follows:

1) Existing deep learning-based pansharpening methods
mainly focus on enhancing the spatial representation
ability of the network, while paying little attention
to modeling spectral dependencies in spite of its
significance for remote sensing data.We first attempt to
explore the implicit relationships in the spectral space
within the consideration of spatial features.

2) We propose a simple yet effective channel group
shuffling module which consists of two basic oper-
ations: channel grouping and feature shuffle fusion.
The first is utilized to enhance the spectral diversity
of the modality features. The latter is responsible
for integrating the cross-group feature maps with
rich spatial-spectral information, thus obtaining more
informative features.

3) Extensive experiments show that our CGSNet out-
performs other state-of-the-art (SOTA) counterparts
over different satellite datasets and the ablation studies
further prove the flexibility and effectiveness of the
proposed module.

We organize the remaining parts of this paper as fol-
lows: Section II introduces the related works and channel
shuffling mechanisms. Section III formulates the proposed
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methodology. Section IV presents the experimental details,
including the datasets simulation, evaluation metrics, exper-
imental settings, comparison experiments, and ablation
studies. Section V concludes the proposed method.

II. RELATED WORKS
In this section, we first introduce some representative
DL-based pansharpening methods, and then we present the
previous channel shuffling mechanism.

A. DL-BASED PANSHARPENING METHODS
Over the past years, DL-based pansharpening methods have
shown remarkable progress in comparison to traditional
algorithms, which mainly benefit from the excellent non-
linear fitting and feature representation abilities of CNNs.
Masi et al. [49] first introduced a CNN network that
consists of three convolution layers for pansharpening.
Yang et al. [55] developed a deeper CNN architecture,
dubbed PanNet, for gathering spatial information. Afterward,
deeper and more complicated network architectures have
been proposed for pansharpening. To capture spatial features
with different scales, Yuan et al. [51] designed a multi-
scale-and-depth convolutional neural network (MSDCNN)
using themulti-scale convolution block as a basic component.
Deng et al. [19] designed an interpretable network for
pansharpening by combining the ideas of traditional CS
and MRA methods, i.e., FusionNet, which presented a
favorable fusion effect and desirable generalization capacity.
Jin et al. [53] argued that standard convolution with static
kernels suffers from limited representation ability, and
proposed an adaptive convolution technique (i.e., LAGConv)
whose kernels are generated according to the input patch.
Inspired by LAGConv, ADKNet [56] constructed two
adaptive kernel generation branches for gathering spatial and
spectral information, respectively. Zhou et al. [57] devel-
oped a task-specific transformer architecture to capture the
long-range spatial features and then introduced the invertible
neural module to effectively fuse the obtained features. All
of these models mainly focus on learning the complementary
information between the MS image PAN image, while
rarely considering the implicit relationships among spectral
bands. Unlike natural images, however, remote sensing data
commonly contain multi-bands that embrace complicated
spectral dependencies. Therefore, we attempt to explore the
implicit relationships among various spectral bands within
the consideration of spatial information to enhance the fusion
ability of the network.

B. CHANNEL SHUFFLING OPERATION
Channel shuffling operation was originally developed for
lightweight network design. Zhang et al. [58] first inves-
tigated the usage of channel shuffle operation in tiny
model design and proposed a computation-efficient CNN
architecture, called ShuffleNet, for mobile devices. After-
ward, channel shuffling operation is increasingly adopted to
enhance the cross-channel information interaction. In [59],

the channel shuffle operation is implemented on the feature
maps with different levels to promote cross-channel infor-
mation communication among the pyramid feature maps.
Huang et al. [60] proposed a novel Shuffle Transformer
based on the spatial shuffle to achieve connections among
windows. Sun et al. [61] proposed a simple yet effective
lightweight image super-resolution network, dubbed Shuf-
fleMixer, which adopts the channel splitting and shuffling
operation to achieve the feature interaction. Pang et al.
[62] proposed a new Transformer-MLP paradigm, called
3D Shuffle-Mixer, for medical dense prediction. Despite
channel shuffling operation being widely used in various
vision tasks, there are few works that focus on exploring the
implicit relationships in the spectral space that is common and
significant for remote sensing images with multi-bands.

III. METHODS
In this section, we first introduce the math notation and
then elaborate on the design of our CGSNet with the unique
channel group module and feature shuffle fusion module.
Finally, we introduce the loss function used to train our
CGSNet.

A. MATH NOTATION
Satellites often capture two types of images simultaneously,
which are single-band high-resolution panchromatic (PAN)
image P ∈ RH×W×1 and multi-band low-resolution image
M ∈ Rh×w×C . We need to fuse these two images together
and obtain a multi-band super-resolution (SR) image S ∈
RH×W×C . We denote the fused ground truth image as G ∈
Rh×w×C if it exists. The deep neural network for fusion is
denoted as fθ (·) with parameters θ . Usually, the fused process
can be defined as follows:

S = fθ (M,P). (1)

When there exists the ground-truth fused image, a supervised
loss can be formed to enable the gradient descent. After many
training epochs, the network is trained and converged.

B. OVERALL ARCHITECTURE
As shown in Fig. 1, we propose a simple and effective
network, Channel Group Shuffle Network (CGSNet), which
contains two main modules, channel group module (CG) and
feature shuffle fusion (FSF) module. The CG module groups
the spectral information in successive and interval manners
along the feature channel dimension, and the FSF module
is responsible for fusing grouped spectral information back
into a feature map. The corporation of these two modules can
help the network gather the spectral information explicitly
(which is important for multi-spectral images) and the spatial
information propagation is guaranteed by the simple fusion
head.

First, the PAN image P and upsampled LRMS M̂ are
concatenated along the channel dimension and fed into
the CG module. After performing grouping, we get two
different grouped feature maps. Then, the two feature maps
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FIGURE 1. Our CGSNet contains two modules, which are the channel group shuffle module and the channel feature fusion module, respectively. The
fusion head close to the output is simple, which is a combination of convolution, ReLU, and batchnorm. These two modules are stacked N layers for full
information exchange.

are sent into the FSF module to fusion and propagate spectral
information back to a single feature map, which completes
long-term dependency construction. Finally, the residual
patch from the input to the output is added for learning
high-frequency components which is proven to be useful.
The output of the network S = fθ (M̂,P) + M̂ is used for
computing loss function with the ground-truth (GT) images.

C. CHANNEL GROUP MODULE
The Channel Group (CG) module is the main module of
our CGSNet. It explicitly groups the feature maps along the
channel dimension. Traditional 1 × 1 convolution can only
respond to the feature just in its kernel, regardless of the
features outside. Sliding along the channel dimension only
expands its receptive field but does not help with responding
two points far away. Aware of this, the CGmodule groups the
features successively and intervally, which can be denoted as
follows,

GPsu = {GPisu} = {[F0,F1, . . . ,Fg−1], . . . ,

[F(i−1)g,F(i−1)g+1, . . . ,Fig−1]}, 1 ≤ i ≤ I , (2)

GPin = {GPiin} =
{ [

F0,Fg, . . . ,F⌊ d
I

⌋] , . . . ,[
Fd−g,Fd−g+1, . . . ,Fd−1

] }
, 1 ≤ i ≤ I , (3)

where i is the group index. I denotes the number of groups of
successive groups GPsu and interval groups GPin. F is the
input feature maps with d channel dimensions. Successive
group operation maintains a similar feature gathering manner
as 1× 1 convolution, and interval grouping operation gathers
two channels together by an interval g.

These two group operations can be implemented really
neatly and easily with the pseudocode shown in Alg.1.

Algorithm 1 Python-Like Pseudocode for Successive
and Interval Grouping Operation

# F:input feature maps
# d:the number of dimension
# ngroups:the number of groups
def CG(F, d, ngroups)

# Successive group operation
GPsu← Split(F, d // ngroups,
dim=1)
# Interval group operation
GPin← EmptyList()
for i in range(ngroups) do

GPin← append(F[:, i::ngroups])
end
return GPsu, GPin

By grouping different channels of the feature maps into
successive and interval groups, the consistency of channels
and long-range dependency are guaranteed, respectively.

D. FEATURE SHUFFLE FUSION MODULE
CG module only benefits feature gathering but without
shuffling the channel information, so it can not help propagate
the information, we then introduce the feature shuffle
fusion (FSF) module as shown in Fig.2. Given two groups
GPsu,GPin gathered above, we reshuffle the two groups
channel-wisely and form the new I groups ĜP = {GPi},
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FIGURE 2. Feature shuffle fusion module. First, the successive groups and
interval groups are shuffled channel-wisely into another I groups. Then,
several convolution layers are performed on these shuffled groups to
propagate information. Finally, the fused feature maps F̂ are produced by
concatenating reshuffled groups along channel dimension.

0 ≤ i ≤ I , which can be denoted as follows,

ĜPi = GPi
su C⃝ GPiin, (4)

F̂i = Conv(GPi), (5)

where C⃝ means channel concatenation, Conv represents
a resblock [50] and F̂i denote the i-th channel of the
fused feature map F̂. First, successive groups and interval
groups are extracted channel-wisely and shuffled into I
new groups ĜPi. Then, to propagate the information from the
new groups, a weight-sharing resblock is adopted. Finally,
we concatenate the groups along the channel dimension to
form a fused feature map F̂.

E. LOSS FUNCTION
Most previous works directly employ an L1 reconstruction
loss, which is spectrally adequate. For better fusion quality
and fidelity, we consider a combination of L1 loss and SSIM
loss for PSNR and SSIM (metric) orientation optimization,
respectively. The total loss function can be represented as
follows:

L1 =
1

HWC

∑
i,j,c

∥S(i, j, c)− G(i, j, c)∥1, (6)

Lssim = 1− SSIM (S,G), (7)

Ltotal = L1 + 0.1Lssim, (8)

where H ,W ,C are the height, width, and the number of
channels of the image. The L1 loss optimizes the PSNR
and the SSIM loss can better fuse the details. Ltotal is a
weighted loss of these two losses by a factor of 0.1. We ablate
the choices of the loss function and the weighted factor in
Sec. IV-H2.

IV. EXPERIMENTS
In this section, we will introduce the datasets, experiment
settings, the performance of our CGSNet, and comparisons
of other state-of-the-art methods.

A. DATASETS
We conduct extensive experiments on three widely used
remote sensing datasets, i.e. WorldView-3 (WV3), GaoFen-2
(GF2), and QuickBrid (QB).

• WV3 dataset contains 9714/1080 train/validation pairs,
each pairs are composed of PAN, LRMS, and HRMS
images.

• GF2 dataset contains 19809/2201 train/validation pairs,
each pairs are composed of PAN, LRMS, and HRMS
images.

• QB dataset contains 17139/1905 train/validation pairs,
each pairs are composed of PAN, LRMS, and HRMS
images.

We treat HRMS images as GT images. For testing, there are
20 pairs for examining reduced-resolution fusing capability
and another 20 pairs without the GT for testing full-resolution
fusing performance.

The training MS has the shape of 16 × 16 × c (c = 8 for
WV3 and 4 for GF2 and QB), and the training PAN has the
shape of 64× 64× 1. The validation MS and PAN maintain
the same shape. The reduced-resolution MS has the shape of
64× 64× c, while the reduced-resolution PAN has the shape
of 256 × 256 × 1. The full-resolution MS has the shape of
128 × 128 × c, while the reduced-resolution PAN has the
shape of 512× 512× 1.

B. EVALUATION METRIC
To evaluate the performances of our CGSNet and other
methods, we used seven widely-used quality metrics includ-
ing SAM [63], ERGAS [64], Q2n and SCC [65] for
reduced-resolution metrics, while Qλ, Qs and QNR [66] for
full-resolution metrics. The detailed mathematical formula of
these metrics are described as follows:

1) SPECTRAL ANGLE MAPPER (SAM)
The SAM metric calculates the angle between the fused
image and the HRMS image to evaluate the spectral quality.
The ideal value is 0. The SAM metric can be computed as
follows:

SAM =
1
C

C∑
i=1

arccos

(
Xi · X̂i
∥Xi∥2∥X̂i∥2

)
, (9)

where C represents the number of spectral, Xi and X̂i denote
i-th spectral vector of the GT and the fused image. ∥·∥2 means
the L2 norm.

2) RELATIVE DIMENSIONLESS GLOBAL ERROR IN
SYNTHESIS (ERGAS)
ERGAS is a metric for evaluating the overall synthesis effect
of multispectral images, which combines spatial and fre-
quency spectral information, enabling a more comprehensive
assessment of the quality of synthesized images. The ideal
value for ERGAS is 0. ERGAS can be expressed as the

VOLUME 11, 2023 121391



H. Jiang et al.: CGSNet for Remote Sensing Image Fusion

following formula:

ERGAS(X , X̂ ) =
100
s

√√√√ 1
C

C∑
i=1

MSE(Xi, X̂i)
µX̂2

i

. (10)

Among them, s represents the spatial downsampling ratio,
X is the GT image, and X̂ is the fused image. MSE(Xi, X̂i)
represents the mean square error between Xi and X̂i. µX̂2

i

represents the root mean square error of X̂i.

3) SPATIAL CORRELATION COEFFICIENT (SCC)
SCC is used to evaluate the similarity of the spatial details
of the fused image and the GT image through a high-pass
filter and to calculate the correlation coefficient (CC). The
high-pass filter is formed as follows,

F =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (11)

The ideal value of SCC is 1, the higher valuemeans the higher
spatial similarity between the fused image and the GT image.
The CC is calculated as follows,

CC =

∑w
i=1

∑h
j=1(Xi,j − µX )(X̂i,j − µX̂ )√∑w

i=1
∑h

j=1(Xi,j − µX )2(X̂i,j − µX̂ )
2
, (12)

where X is the GT image and X̂ is the fused image. w and h
are the width and height of the image, respectively. µ denotes
the mean value of the image.

4) QUALITY INDEX (Q2N)
Metric Q2n combines three factors to calculate image
distortion, which are correlation loss, brightness distortion,
and contrast distortion. The Q function is defined as follows,

Q =
|σZ1,Z2 |

σZ1 · σZ2
·
2σZ1 · σZ2
σ 2
Z1
+ σ 2

Z2

·
2|Z̄1| · |Z̄2|

|Z̄1|2 · |Z̄2|2
, (13)

where Z1 and Z2 represent the b-th band of the fused image
and the GT image, respectively. When Q2n is 1, this repre-
sents the best fidelity. Q2n metric is defined following [67].
When the spectral number is 8 (e.g. WorldView-3 dataset),
Q2n is Q8. When the spectral number is 4 (e.g. GaoFen2
dataset), Q2n is Q4.

5) SPECTRAL DISTORTION INDEX (Dλ)
The spectral distortion index Dλ measures the degree of
image distortion in the frequency domain, mainly considering
the color information of the image. The calculation formula
of Dλ is as follows,

Dλ =

q
√√√√√ 1
N (N − 1)

N∑
i=1

N∑
j=1,j̸=i

|di,j(M, M̂)|q, (14)

where N is the number of pixels and di,j = Q(M i,M j) −
Q(M̂ i, M̂ j).

6) SPATIAL DISTORTION INDEX (QS)
The spatial distortion index Ds measures the degree of image
distortion in space, considering the edge texture information
of the image, the calculation formula is as follows,

Ds =

q
√√√√ 1
N

N∑
i=1

|Q(M̂ i,P)− Q(M i,PLS )|q, (15)

where, P,M represent the PAN image and LRMS image
respectively, and PLS is the low resolution PAN image
downsampled by r times. q is usually set to 1.

7) QUALITY W/O REFERENCE METRIC (QNR)
The QNR index is defined as,

QNR = (1− Dλ)α(1− Ds)β , (16)

where usually α = β = 1. The QNR metric can reflect the
spectral and spatial distortion of the fused image.

C. BENCKMARK
For comparisons, we choose three widely used traditional
methods and SOTA DL-based methods listed as follows:
• Traditional methods: BDSD-PC [68], MTF-GLP-FS
[25] and BT-H [69]

• DL-based methods: PNN [49], PanNet [55], DiCNN
[52], MSDCNN [51], FusionNet [19] and CTINN [57].

D. EXPERIMENT SETTING
We conduct our experiments with the Pytorch deep learning
package with one 3090 Nvidia GPU. We use the AdamW
optimizer and set the initial learning rate to 0.001 then halve it
in multistep with steps 300 and 800. We train the CGSNet for
1000 epochs with a batch size of 64. We set N = 1 and found
one grouping and shuffling are adequate and g is empirically
set to 16. We will re-examine this setting in the ablation
studies.

E. REDUCED ASSESSMENTS
In the WV3 reduced-resolution test set, compared with
previous SOTA methods, it can be found that our CGSNet
reached a new SOTA performance on SAM, ERGAS, and
Q4 metrics and a competitive performance on SCC metric
in Tab. 1. The traditional methods are less competitive
than all DL-based methods. When comparing with the
previous best method CTINN [57], our CGSNet owns a
3.20/2.37/0.91/0.9826 better SAM, ERGAS, Q4, and SCC
metrics. The fused HRMS of CGSNet have clear boundaries
and less spatial distortion, which can be seen in the
boundaries of buildings in Fig. 3. The error map with the GT
clearly shows that CGSNet is closer to the GT as it has the
darkest color.

For GF2 reduced-resolution fusion, our CGSNet still owns
the best performances on all metrics. The SAM, ERGAS, and
Q4 metrics of CGSNet are improved by≈7.3%/5.2%/0.87%.
For a clear visual comparison, the fused HRMS and the
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TABLE 1. Average quantitative metrics on 20 examples for the WV3 dataset. Some conventional methods (the first three rows) and CNN methods are
compared. (Bold: best; Underline: second best).

FIGURE 3. Visual comparisons of the fused HRMS from traditional methods and previous SOTA DL-based methods on WV3
reduced-resolution test set. The upper panel is the fused HRMS and GT. The lower panel is the error maps compared with the GT.

error maps with the GT are illustrated in Fig. 4. It is clear
that CGSNet can fuse a clearer HRMS with less spatial and
spectral error.

When it comes to QB reduced-resolution test set, CGSNet
still performs well. The quality metrics of CGSNet are better
than previous SOTA methods. The previous best method

CITNN lags behind 0.05/0.02/0.012 on SAM/ERGAS/Q4
metrics. Similarly, we plot the visualizations of fused images.
Our CGSNet fuses distortion-free HRMS images with better
visual qualities as shown in Fig. 5.
For the reduced-resolution assessments, SAM and Q2n

metrics significantly represent the spectral distortions of the
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TABLE 2. Average quantitative metrics on 20 examples for the GF2 dataset. Some conventional methods (the first three rows) and CNN methods are
compared. (Bold: best; Underline: second best).

FIGURE 4. Visual comparisons of the fused HRMS from traditional methods and previous SOTA DL-based methods on GF2
reduced-resolution test set. The upper panel is the fused HRMS and GT. The lower panel is the error maps compared with the GT.

fused images. As presented in the left panels of Tab. 1,
Tab. 2, and Tab. 3, our CGSNet obtains the optimal SAM
and Q2n values in comparison to other methods, showing its
superiority in modeling the spectral dependencies of the input
modality features.

F. FULL ASSESSMENTS
To verify the generalization quality of the proposed
method, the non-reference performance assessments on
the full-resolution test set can be used to represent.
We separately test the quality assessments on WV3,
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TABLE 3. Average quantitative metrics on 20 examples for the QB dataset. Some conventional methods (the first three rows) and CNN methods are
compared. (Bold: best; Underline: second best).

FIGURE 5. Visual comparisons of the fused HRMS from traditional methods and previous SOTA DL-based methods on QB
reduced-resolution test set. The upper panel is the fused HRMS and GT. The lower panel is the error maps compared with the GT.

GF2, and QB full-resolution test sets after obtain-
ing models trained on the reduced-resolution dataset.
Since the model has a train-test resolution gap, the
better-fused performances indicate a better generalization
ability.

We test the full-resolution performance on the WV3
test set. As the Dλ and Ds contribute equally to the
QNR metric [66], the QNR metric can be considered as
the dominant quality metric. As can be seen in Tab. 1,
our CGSNet can outperform our previous SOTA methods,
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including traditional and DL-based methods. The Dλ metric
only lags behind 0.0012 which is relatively small. The Ds
metric of the proposed method still outperforms all the
previous SOTA method.

As for GF2 full-resolution test set, the quality metrics are
reported in Tab. 2. We can see that our CGSNet performs
the best on the QNR metric (i.e. 0.8933 compared with the
previous SOTA 0.8927). The other two non-reference metrics
Dλ and Ds are still competitive.

For QB dataset, the SOTA performances are still obtained
by our CGSNet, as the QNR metric reaches 0.9154 while
comparing the previous SOTA 0.9041.

For the full-resolution evaluation, the QNR indicator
indicates the overall fusion performance including both
spatial and spectral qualities of the fused products. It is
clearly shown in the right panels of Tab. 1, Tab. 2, and
Tab. 3, our model yields the best results on all three datasets,
demonstrating its desirable spatial and spectral preservation.

G. ABLATION STUDY
In this section, we conduct an ablation study on the
effectiveness of CG, FSF modules, group interval g, loss
functions, and the number of stacked layers N to verify their
effectiveness.

H. ABLATION ON CG AND FSF MODULE
The effectiveness of the proposed module can be verified by
an ablation study. We design another two type of variants of
CGSNet:

1) variant 1, remove the CG module;
2) variant 2, replace the shuffling in the FSF module by

simply concatenating.
Then, we train the two variants on the WV3 dataset and test
their performances which are reported in Tab. 4. The Variant
1 net performs absolutely worse than the Variant 2 net and
the default net because the long-range dependency is not
obtained. Variant 2 is still worse since it does not fully use
the gathered channel information. This ablation denotes our
designed modules can take their effect correctly.

TABLE 4. Ablation on the proposed modules. The gray background
means the default setting.

1) ABLATION ON GROUP INTERVAL G
We ablate the number of groups g to verify the empirical
choice in our main setting is effective. We choose g to be 8,
16, or 32 and conduct the fusing experiment on the WV3
dataset, respectively (see in Tab. 5).

It is easy to find that our empirical setting (g = 16) outputs
the best fusing results. It is supposed that small g can not
obtain enough long-range dependency, and too large g harms
the local information.

TABLE 5. Ablation on the choices of interval g. The gray background
means the default setting.

2) ABLATION ON LOSS FUNCTION
To verify the effectiveness of the chosen loss function Eq. 6,
we design the ablation study on several loss functions, whose
performances on theWV3 dataset are presented in Tab. 6. The
default setting performs the best, besides, only with L1 loss
performs the worst due to lack of details supervised loss.
Large SSIM loss setting performs less satisfactorily because
its gradients domain the overall gradients which hinders the
optimization process.

TABLE 6. Ablation on choices of the loss functions. The gray background
means the default setting.

3) ABLATION ON THE NUMBER OF STACKED MODULES
We propose CG and FSF modules for modeling channel
long-range dependency and propagating information. Then
we stack the two modules together to form our CGSNet.
We set the number of stacked layers to 1 (N = 1). In this
section, we ablate the number of layers N to 1 (default
setting), 3, and 5. As shown in Tab. 7, CGSNet with N = 5
obtains the best performances, but the improvement can be
neglected when compared to its increases of parameters.
In practice, we set N = 1 to take the trade-off.

TABLE 7. Ablation on the choices of the number of stacked layers N . The
gray background means the default setting.

V. CONCLUSION
In this work, we propose a novel channel group shuffling
network, termed as CGSNet. Targeted at modeling spectral
relationships while preserving spatial information, two core
operations are devised to construct the image fusion network:
channel grouping operation and cross-group feature fusion
operation. Specifically, the former enhances the diversity
of spectral information and cross-channel information com-
munications, meanwhile ensuring the spectral order of the
input feature, benefiting the pansharpening task. The latter
integrates the cross-group feature maps with rich spatial-
spectral information. Extensive experiments show that our
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CGSNet is capable of outperforming existing state-of-the-art
over various satellite datasets.
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