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ABSTRACT In recent years, the model predictive control (MPC) algorithm has been increasingly applied
to the path tracking of self-driving vehicles due to its capacity to deal with dynamic constraints explicitly.
The control performance of MPC is highly dependent on the accuracy dynamic model; however, as vehicles
are strongly coupled nonlinear systems, the prediction accuracy of the classical mechanism model decreases
significantly at high-speed conditions, leading to increased control errors. This paper proposes replacing the
classical mechanism model with a recurrent neural network (RNN) for vehicle dynamical state prediction
under the framework ofMPC to achieve higher control effects under high speed steering processes. The RNN
vehicle dynamic model uses historical data of control and state variables to predict future states. Based on
this novel model, longitudinal/lateral coupled model predictive control is realized. The differential evolution
algorithm is proposed to solve the optimization problem in the controller. Finally, the prediction accuracy
of the RNN model is verified on the real vehicle dataset and compared with linear/nonlinear mechanism
models. The control algorithm proposed in this paper is compared with classical MPC against low and high
speeds (10m/s and 30m/s) on the ADAMS/Python/Simulink joint simulation platform. The results show that
the control accuracy and stability of the longitudinal/lateral coupled neural network MPC are higher than
classical MPC, especially at high speed.

INDEX TERMS Model predictive control (MPC), recurrent neural network (RNN), longitudinal/lateral
coupled control, path tracking.

I. INTRODUCTION
With the rapid development of the automobile industry, the
increase in traffic accidents has become an important social
problem. Among them, when a traffic accident occurs at
high speed, it is difficult for the driver to make an adequate
response, which often bringsmore severe consequences. Self-
driving technology has developed rapidly in recent years, and
how to use self-driving technology to reduce traffic accidents
has become a hot spot for research [1], [2], [3], [4], [5].
Self-driving technology can be mainly divided into

four parts: environment sensing, decision making, motion
planning, and path tracking. The path tracking control
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module receives the reference path output from the path
planning module and calculates the control variables of the
chassis actuator through the control algorithm. Ultimately,
the vehicle’s driving stability is ensured while minimizing the
tracking error [6].

The lateral control of self-driving vehicles has been studied
since the 1950s and continued until now, and the control
methods have gone through classical control, modern control,
and intelligent control [7], [8], [9], [10], [11]. Among them,
model predictive control has become a hot research topic
due to its strong robustness and ability to provide vehicle
control and state constraints explicitly [12], [13], [14], [15],
[16], [17], [18]. Yu et al. [19] introduced a novel framework
for path tracking control in autonomous vehicles, which
integrates tube model predictive control with time-delayed
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motion prediction. Within this study, they presented a method
for handling path tracking in the presence of signal delays and
employed a vehicle kinematics model to anticipate alterations
in vehicle position and yaw. Cheng et al. [20] developed a
dynamicmodel that accounts for nonlinear tire characteristics
and varying vehicle speeds. Using this model, they designed
an MPC-based vehicle path tracking controller capable of
robustly handling uncertainties in system parameters.

However, there are still some unsolved problems in the
field of model predictive control of vehicle path tracking.
A large number of the path tracking control algorithms
use a linearized two-degree-of-freedom or three-degree-
of-freedom bicycle model. The prediction accuracy will
be greatly reduced due to the nonlinearity of the vehicle
significantly increasing in extreme working conditions such
as high speeds [21]. Therefore, some researchers started to
use nonlinear models directly in the MPC algorithm for state
prediction without linearization [22], [23], [24]. It makes a
higher accuracy of the state prediction, meanwhile still brings
some problems. On the one hand, it takes a longer time in
the procedure of optimization [25], which brings a significant
impact on the real-time performance of the algorithm. On the
other hand, The wire control chassis of the intelligent vehicle
is a complex system with electro-mechanical-hydraulic
coupling and multiple nonlinear components. It is hard for
the mechanism model to express all the nonlinear features
of the real vehicle. Moreover, most of the path tracking
control algorithms use the front wheel angle and tire force
as the control variables. Still, there is a complex transfer
function from these variables to the actual actuator, which
is challenging to express explicitly. It leads to a decrease in
control accuracy [26].

Additionally, The vehicle is a complex, strongly coupled,
variable parameter nonlinear system. Its longitudinal and
lateral movements are coupled and interact with each
other. Especially when the vehicle travels at high speed
on the uneven road surface, its coupling characteristics
are more obvious. In the past, the longitudinal and lateral
control of the vehicle was accomplished by two independent
controllers without considering the coupling influence, which
led to a significant controller error and affected the control
accuracy [27].
A number of scholars have been working on the above

problems. Among them, algorithms combining neural net-
work models with model predictive control have great
advantages in dealing with nonlinear control problems.
Spielberg and colleagues [28], [29] introduced a neural
networkMPC system. Remarkably, this system outperformed
the conventional counterparts that relied on physics-based
predictive models, despite not utilizing any tire-pavement
friction information. Rokonuzzaman and his team [24]
constructed a feed-forward neural network with two hidden
layers. This network was designed to forecast the time
derivatives of lateral slip velocity and yaw speed. The
integral of the network’s output was employed to generate
the system state. Utilizing this network architecture, they

FIGURE 1. Vehicle dynamics model in a road-aligned coordinate frame.

introduced a novel Inverse Optimal Control (IOC) algorithm.
Montanaro et al. [30] offered an outline of the state estimator
framework and sensor fusion system utilized in path tracking
algorithms based on connected vehicle Model Predictive
Control (MPC). They integrated a system that gathers
data regarding the communication with the leading vehicle.
Consequently, this information can be shared with the trailing
vehicle, providing crucial insights into the tire-road friction
coefficient ahead.

Although these studies demonstrated improved perfor-
mance using the NNMPC, they are only tested at relatively
low speeds with different friction surfaces, the effects of
vehicle lateral-longitudinal coupling effects are not consid-
ered, and use simpler controllers in the longitudinal direction.
In addition, the front wheel angle and the ground tire force
are used as control variables in these studies. However, the
tracking accuracy will be degraded since the actuator system
has nonlinear characteristics, which are difficult to model.

This paper uses the data generated from the driving process
to establish a deep learning vehicle dynamics model, and
based on this, a longitudinal/ lateral coupled model predictive
controller for path tracking is realized. The configuration
of this paper is as follows. Section II mainly describes the
establishment process of the RNN vehicle dynamics model.
In section III, a path tracking controller that realizes the
lateral/longitudinal coupled control based on the prediction
of the RNN model is established, and a differential evolution
algorithm is introduced to solve the optimization problem.
In Section IV, the model built in sectionII is firstly verified
using real car datasets and compared with the mechanism
model. The path tracking effect of the controller built in
sectionIII is verified at low and high speeds. Section V
presents the conclusion of this paper.

II. DYNAMIC MODELING
A. MECHANISM DYNAMIC MODELING
A mechanism-based model, which is currently the most
used, is established as a benchmark [31], [32], [33]. The
mechanism-based model is first analyzed to illustrate its
limitations at the theoretical level. In the later part of this
paper, the MPC algorithm based on the RNN model is
compared with the MPC algorithm based on this mechanism
model. Figure1 is a vehicle dynamics model considering only
the longitudinal, lateral, and yaw, ignoring the load transfer
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FIGURE 2. Lateral force of tires under different vertical loads.

and aerodynamics in each direction. The body dynamics
equilibrium equations in the three degrees can be expressed
as equation(1):

mv̇x = mẏω + 2(Fxf cos δ − Fyf sin δ) + 2Fxr
mv̇y = −mẋω + 2(Fxf sin δ + Fyf cos δ) + 2Fyr
Izω̇ = 2a(Fxf sin δ + Fyf cos δ) − 2bFyr (1)

where vx /vy is the longitudinal/lateral speed of the vehicle.
ω is the yaw speed. δ is the equivalent front wheel steering
angle. a, b denotes the distance from the center of mass to the
front and rear axles, respectively. Fxf ,Fxr ,Fyf ,Fyr are the
longitudinal and lateral forces on tires of front and rear axles.
m is the gross mass of the vehicle. Iz is the vehicle moment
of inertia about the z-axis.

Using the magic formula Proposed by Pacejka to calculate
the ‘‘lateral force-tire slip angle’’ curves at different loads
(3KN, 5KN, 8KN, 14KN) for the 235-40R18 tires, which will
be used in the subsequent study, the result is shown in the
figure2.

Under the small angle assumption, the front and rear tire
slip angle are assumed to be approximately equal to 0, the
tire force in the x-direction is approximately equal to the
tire longitudinal force, and the tire force in the y-direction is
approximately equal to the tire lateral force. The tire lateral
force can be expressed as a linear function of the tire slip
angle, i.e.:

Fc = C̄αα (2)

where C̄α is linear tire cornering stiffness, α is tire slip angle.
Combining equation(1) and equation(2), under the small

angle assumption, the nonlinear dynamicmodel of the vehicle
can be established as:

mv̇x = mvyω + 2[C̄lf sf + C̄αf (δ −
vy + lf ω

vx
)δ + C̄lrsr ]

mv̇y = −mvxω + 2[C̄αf (δ −
vy + lf ω

vx
) + C̄αr

lrω − vy
vx

]

Izω̇ = 2[lf C̄αf (δ −
vy + lf ω

vx
) − lf C̄αr

lrω − vy
vx

]

Ẋ = vx cosϕ − vy sinϕ

Ẏ = vx sinϕ + vy cosϕ (3)

whereC̄lf and C̄lr are longitudinal stiffness of front/ rear tire.
sf and sf are indicates tire slip rate.
It can be seen from figure2: the tire lateral force curve

can be seen as linear when the tire slip angle is small.

But when the vehicle is driven at high speed, the tire slip
angle will further increase, resulting in the tire lateral force
showing nonlinear characteristics. In addition, the vehicle
is accompanied by constant load transfer during operation,
which affects the tire lateral force. It is difficult for the
mechanism model to model this nonlinear characteristic.

In addition, by observing equation(3), it can be found
that all three output parameters of the vehicle system are
not determined by a single directional input only. There
are complex coupling relationships. Moreover, for dynamic
coupling effects, such as the lateral force of a tire, there is
a component in the longitudinal direction that affects the
longitudinal acceleration. Lateral and longitudinal forces in
tires are also coupled to each other. For a given coefficient
of friction of the tire pavement, the lateral and longitudinal
forces acting on each tire limit each other so that the
combined force does not exceed the attachment limit.
Load transfer also has a significant coupling effect. When
load transfer is caused by longitudinal acceleration, the
redistribution of vertical loads between the front and rear tires
will significantly affect lateral dynamics. It can be concluded
that the longitudinal and lateral coupling is firm and not easy
to decouple by the analytic method.

In order to solve the above problems, this paper takes
advantage of the neural network model in nonlinear modeling
to replace the mechanism model in traditional model
predictive control for state prediction and achieve higher
prediction accuracy. In addition, the longitudinal and lateral
of the vehicle are predicted with the same neural network,
which in turn establishes a controller to realize coupled
control of the vehicle in the longitudinal and lateral.

B. RECURRENT NEURAL NETWORK DYNAMICS
MODELING
Hornik et al. proposed the ‘‘universal approximation the-
orem’’ in 1989. This principle indicates that ‘‘a feedfor-
ward neural network with a linear output layer and at
least one hidden layer with an activation function that
is ‘squeezed’ in nature can approximate any function
from one finite-dimensional space to another with arbitrary
accuracy.’’ Throughout the training process, a prediction error
propagates backward, and the loss function continues to
decline in the direction of the gradient to reach the local
optimal value or a small value meeting the demand.

Due to the universal fitting capacity of neural networks
for nonlinear systems and the fact that they do not require
complex modeling mechanism studies of the system, they
have been increasingly used for the establishment of
various nonlinear models in recent years [34], [35], [36].
Compared with the vehicle dynamics mechanism model,
after a large number of assumptions and simplifications, the
neural network-based dynamics model makes full use of
the dynamics data during the vehicle driving process and
is modeled based on machine learning, which avoids the
need to study the complex electromechanical-liquid coupling
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FIGURE 3. Structure of RNN vehicle dynamics prediction model. The
historical state variables and control variables are used to predict the
change rate of state variables to the next time step.

nonlinear mechanism in the by-wire-chassis system, and
improves the prediction accuracy of the model.

Recurrent Neural Network (RNN) is often used to deal with
the prediction of time-series data. Time-series data generally
refers to the existence of some kind of chronological
correlation features in the data, and the vehicle dynamics
state data studied in this paper is typical time-series data. The
nodes in the hidden layer of the basic artificial neural network
cannot effectively transfer information between them, and the
time-step correlation information on the time-sequential data
can not be transferred to the next hidden layer node, resulting
in the network being insensitive to the time sequence of the
data. The network model of a recurrent neural network with
time series data as input, which has a chain loop network
structure, and the data time-step correlation information is
realized to be transferred, can effectively solve the above
problems. A more accurate prediction of the future state
variables of the vehicle can be realized by using the time
series of historical data.

There also exist many gated RNNs, for example, LSTMs,
and GRUs. Most of these networks are used to solve the
problem of gradient explosion and gradient disappearance in
long-term dependence. However, in this paper, only a short
sequence of driving data is needed to predict the future state.
In the test, the two problems mentioned above did not appear,
in contrast, The general RNN model has higher prediction
accuracy and shorter prediction time compared to the other
gated RNNs. Therefore, the general RNN prediction model
was chosen.

Based on the above analysis, with reference to the state
variables and longitudinal and lateral control variables of
the vehicle mechanism analysis model, the RNN vehicle
dynamics model is established, and its specific model
structure is shown in figure3.

Themodel is a recurrent neural network of sequence length
N. The network inputs state and control variables for N time
steps and outputs the predicted value of the change rate of the
state variables from the last time step to the next time step,

i.e.:

dXN = fRNN (X1,X2, . . . ,XN ,U1,U2, . . . ,UN , ) (4)

The reason why the change rate of the state variables
is used as the output of the network instead of directly
outputting the state variables of the next time step is that
during the testing process, we found that due to the short
time interval of the prediction process, the change of the state
variables in the interval is very small from, which leads to
the difficulty of the network to learn the trend of the future
change.

Every single network in the RNN sequence, i.e., the part in
the red box in figure3, inputs the state and control variables
of that step and outputs the predicted change rate of the
state variables from that step to the next step. Eventually, the
change rate of the state variables calculated at the last time
step is used as the output of the whole network.

The state variables can be expressed as:

X
{
vx , vy, ω

}
(5)

The control variables are expressed as:

U {acc, brake, steer} (6)

where ‘‘acc’’ is the percentage of accelerator pedal input,
‘‘brake’’ is the brake oil pressure (which is set to 0 when not
braking), and ‘‘steer’’ is the steering wheel angle.

Both longitudinal and lateral control variables are included
to provide a basis for the subsequent realization of lon-
gitudinal and lateral coupling control. The above control
variables can be directly controlled by the actuator in order to
improve the real control accuracy. For example, the steering
wheel angle instead of the equivalent front wheel Angle was
selected as the lateral control variables, which avoids the
control error caused by the complex nonlinear transmission
system between the two.

The output variables are expressed as:

Y = Ẋ
{
dvx , dvy, ω̇

}
(7)

That is, the differential of the state variables, where dvx is the
differential of the longitudinal velocity, dvy is the differential
of the lateral velocity, and ω̇ is the differential of the yaw
speed.

The authors trained the neural network with a single hiding
layer and the neural network with multiple hiding layers
(2 and 3 layers), respectively, recorded the lowest value of
loss function decline after 5000 epochs of training, and
counted the time required for forward propagation of neural
networks with different hiding layers. The result shows that
the loss function of the single-hidden layer neural network
also drops to a very low level, which is similar to that of the
multi-hidden layer neural network. Still, the time required for
forward propagation (only 0.4 ms) is much less than that of
the multi-hidden layer neural network. In order to ensure the
real-time performance of the model, the single hidden layer
neural network was finally chosen. ‘‘TANH’’ was selected
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FIGURE 4. The control instruction distribution of HDD datasets. There is a large amount of parking data in the datasets.

FIGURE 5. Distribution of the datasets within the stable envelope region.
(a) is the distribution before supplementing. (b) is the distribution after
supplementing.

as the hidden layer activation function to introduce nonlinear
factors into the model.

To sum up, the data is propagated forward through
RNN, and the continuous time state data series generated
during vehicle operation can be used to calculate the current
state change rate of the vehicle. The forward propagation
calculation process is shown as equation(8):

at = b+Wht−1
+ Ux t

ht = tanh(at )

Y t = c+ Vht (8)

where the bias vectors b and c of the parameters, together
with the weight matrices U , V , and W , correspond to the
connections of the input layer to the hidden layer, the hidden
layer to the output layer and the hidden layer to the hidden
layer respectively. a is the input to the hidden layer activation
function. h is the hidden layer output and Y is the model
output.

C. MEODEL TRAINING
This paper trained the model using the ‘‘Honda Research
Institute Driving Dataset (HDD)’’ [37], which consists of
104 hours of real vehicle driving data collected in the San
Francisco Bay Area using instrument vehicles equipped
with different sensors, including multi-sensor acquisition
data such as CAN bus data, camera data, Lidar data, etc.
Data collection includes high-speed, low-speed, dry road
surface, wet road surface, city, highway, suburban, and other
scenarios. This data set is used to train the RNN dynamic
model established above, so that the model can predict the
dynamic state of various speeds and various environments.

The data set needs to be processed before RNN can be
trained using this data set. Because the sampling frequency
and sampling time of different sensors are different in the
original data, the sampling time should be unified when
entering the model. If the time difference is less than 0.05ms,
it is considered as simultaneous data frames, and if there
are multiple frames matching, they are arranged in order.
The brake oil pressure sensor with the largest sampling step
(0.02s) is used as the time step of the final input data.
In addition, there are some outliers in the data set, so it
is necessary to remove abnormal data such as jumping,
exceeding the input range, and null data frames, and perform
low-pass filtering on the data to eliminate the jitter of the data
collected by the sensor.

The control input distribution of the processed data
set is analyzed. Figure4 shows the distribution of control
instructions in the HDD data set, and it can be seen that
the data on parking accounts for a large proportion of the
data set. To avoid the imbalance of the data set, which
makes it difficult for the model to learn the vehicle dynamics
characteristics under extreme working conditions such as
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FIGURE 6. ADAMS multi-body dynamics model, modified from the ‘‘sedan
FWD’’ template in the official document of Adams2020.

TABLE 1. Some important parameters of ADAMS model.

high speed, some of them are removed during processing to
make the working conditions distribution of the data set more
balanced. After processing, a total of about 720,000 pieces of
data were obtained.

In this paper, the phase-plane analysis proposed by
Erlien et al. [38] is used to draw the vehicle stability envelope
to analyze the distribution of the processed data within the
range of the stability envelope. As shown in figure5 (a), the
distribution of the data set in the ‘‘yaw speed-side slip angle’’
plane is analyzed. The parallelogram depicts the vehicle
kinematic stability envelope, and the data distribution of the
HDD data set species is shown in blue. It can be seen that the
data set only covers a part of the stable driving area, and it is
necessary to supplement the data set to avoid overfitting of
the model prediction model.

In this paper, the data set is supplemented by simulation,
so a more accurate model needs to be established. As a
mature commercial software, the model established by the
ADAMS model is a full degree of freedom model, which can
reflect the nonlinear characteristics of the real vehicle parts.
Based on the ADAMS/car module, this paper establishes a
multi-body dynamic vehicle model corresponding to the data
set, as shown in figure6. With the ADAMS model, virtual
environment simulation is carried out, and new data sets are
generated to supplement the training data. The model is also
used in the subsequent joint simulation platform construction,
which provides a basis for verifying the neural network
dynamic model and control algorithm in the simulation
environment.

As shown in Figure6, this model is modified based on
the ‘‘sedan FWD’’ template in the official document of
Adams2020, and some parameters are shown in table1.

FIGURE 7. Comparison between the ADAMS model simulation output and
the sensor data of the real vehicle dataset. (a) is the comparison of
longitudinal speed. (b) is the comparison of lateral speed. (c) is the
comparison of yaw rate. (d) is the error of longitudinal speed, lateral
speed, and yaw rate during the test.

The accuracy of the ADAMS model is demonstrated by
comparing it with the real sensor data in the dataset. The
control variables of the data sets are input into the ADAMS
model, and the state variables output of the simulation
platform is compared with the state variables in the datasets.
Since this paper mainly focuses on the vehicle dynamic char-
acteristics, the three dynamic outputs(longitudinal velocity,
lateral velocity, and yaw rate) mainly used in the following
work are compared and verified. In figure7, the simulation
results of the ADAMS model are compared with a segment
of 100s real sensor data from HDD datasets, where the black
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solid line is the real vehicle reference of the data set, and
the red dashed line is the simulation output of the ADAMS
model. In the test segment, the longitudinal speed varies
constantly on straights and curves, and the max speed is
68.6 km/h. The error of the compared variables is shown in
figure7(d). The maximum error of vx is 1.21 × 100m/s, the
maximum error of vy is 3.50 × 10−2m/s,and the maximum
error of ω is 6.91 × 10−1rad/s. The variation trend of the
error is similar to that of the value being compared, and the
maximum values appear around the peak of each compared
variables but are still in an acceptable range. Furthermore,
all the 720, 000 sets of data obtained above were used to
test the ADAMS model. Within the all-data test, the MAE
of longitudinal speed is 4.45 × 10−1m/s, the MAE of lateral
speed is 7.52 × 10−3m/s, and the MAE of yaw speed is
1.36 × 10−1rad/s, all within a small range. It is shown that
the simulation platform can be used in the dynamics areas to
represent real vehicles in the described dataset.

Based on the ADAMS multi-body dynamics model
established above, the data generation module based on the
ADAMs-MATLAB/ SIMULINK co-simulation platform is
built. The authors used this platform to supplement the
dataset. First, the initial state is determined at an appropriate
position within the stability envelope area of the vehicle.
Then, based on the initial state, uniform random control
sampling is carried out, that is, the control variables of the
vehicle is a reasonable random number. After the calculation
of the model, the vehicle state data is obtained, so that the
vehicle state can cover the entire state space of the stability
area as far as possible. Figure5 (b) shows the distribution of
the supplemented data set inside the stable envelope. It can be
seen that the supplemented data set almost covers the entire
stable region, indicating that the data set meets the needs of
neural network training. Finally, data beyond the stable area
is then removed.

The data set generated by the ADAMS model was merged
with the real data in the HDD data set, and the time step
was 0.02s. Each data of one time step included vehicle
state variables and control variables, and the label was set
as the change rate of state variables. For each time step,
the current time step data, and the 9 historical time steps
before the time step data, a total of 10 time steps are merged
and extracted into a group. The RNN prediction model uses
the data of 10 time steps as the model input to predict the
change rate of the state variables from the current time step
to the future time step. Some duplicate data is deleted to
balance the distribution of the data set. A total of around
960,000 sets of data were obtained after the collation. The
datasets were used for training the RNN vehicle dynamics
model, with 70% as the training set and 30% as the test
set.

The process of training the model using the constructed
dataset is the process of driving the network to learn the
intrinsic connections of the data, and the key to this is to
design a correct loss function. During the training process,
the internal parameters of the network are adjusted through

FIGURE 8. Decline of the loss function on the training and test sets.

error back-propagation to make the loss value decrease, and
the smaller the loss value, the higher the accuracy of the
network’s fit to the data. The training loss function using the
mean square error is defined as equation(9):

min
W ,b

J =
1
Ne

Ne∑
i=1

∥∥∥∥∥∥∥
U̇xU̇y
ω̇


t

−

 ˆ̇U x
ˆ̇U y
ˆ̇ω


t

∥∥∥∥∥∥∥
2

(9)

where U̇x , U̇y, ω̇ is reference value, ˆ̇Ux , ˆ̇Uy, ˆ̇ω is output value
of the model, Ne is the epoch of training

‘‘Adam’’ is chosen as the optimization algorithm in
this paper. The algorithm has the advantages of high
computational efficiency, lessmemory requirement, and large
sample data size. In the process of vehicle dynamics model
training, the initial learning rate is set to 0.001. Due to the
large amount of data in the constructed vehicle dynamics
data set, 1000 batch samples were selected for each training
iteration.

RNN network model programming is based on Python
and is implemented by the Pytorch deep learning library.
The hardware configuration of the training environment
is as follows: (1) CPU: Intel(R)Core(TM)i7 79900K
CPU@2.59GHz; (2) GPU: NVIDIA T2000; (3) Memory:
DDR4 16G.

RNNs with different numbers of neurons in the hidden
layer were trained for 5000 epochs with the same data set,
and the structure of 64 neurons in the hidden layer was
finally selected after considering the prediction accuracy
and prediction time. Figure8 shows the decline of the loss
function on the training set and the test set during the training
process. After 5000 epochs of training with a batch size of
1000, the loss curves of both the training set and test set
dropped smoothly to 10−6 orders of magnitude. It indicates
that this RNNmodel has a high accuracy and is not overfitted.
The single forward propagation time of the network, after the
completion of training, is only 0.4ms, which can meet the
real-time requirements.

III. RNN MODEL PREDICTIVE CONTROLLER BUILDING
Based on the RNN predictive model established above, the
improved model predictive controller for path tracking is
built. The prediction model of the MPC algorithm is replaced
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FIGURE 9. RNN model predictive control algorithm framework.

by an RNN model to improve the prediction accuracy of
future system output in nonlinear regions. The input of
the prediction model contains both longitudinal and lateral
control variables, based on which the coupling control in
longitudinal and lateral is realized in the subsequent control
algorithm.

As shown in Figure9, the neural network model predictive
control algorithm is mainly divided into two parts: the model
predictive controller and the controlled object. The controlled
object sends the current and historical state variables to
the model prediction controller. After the solution of the
controller, the control sequence at the next time is sent
to the controlled object. The neural network prediction
model in the controller is responsible for predicting the state
variables of future Np time steps according to the current
and historical state variables and control variables given
by the controlled object, and sends the prediction result
to the optimizer. After receiving the future state variables,
the optimizer calculates the optimization objective function
value. After solved by the optimization algorithm, the control
sequence is given when the optimization objective function
reaches the minimum value, and the control sequence at
the latter moment is output to the controlled object. The
state variables are X{vx , vy, ω}, and the control variables are
U{acc, brake, steer}, referred to in sectionII.

In the model prediction controller, the ADAMS model is
used as the controlled object, and the RNN prediction model
has been built above. The subsequent work is mainly the
design and implementation of the optimizer.

A. PREDICTION MODEL
In the MPC algorithm, the predictive model is the basis
of model predictive control. It is able to predict the future

FIGURE 10. Rolling Call Process for RNN Predictive Models.

output of the system based on historical information and
control inputs. An essential idea of the MPC algorithm is to
predict the future state variables for Np time steps and use the
optimization algorithm to obtain the control variables in the
control horizon. Therefore, multiple rolling calls to the RNN
prediction model designed in this paper are made to predict
the state variables at Np time steps.
Since a single call to the network outputs the change rate of

the state variables, but the values of state variables are needed,
the Euler integration is utilized to calculate the state variables
at the next moment:

Xt+1 = Xt +1t × dXt (10)

During the rolling call, the predicted values of the state
variables are added to the end of the input sequence. Then,
the first data of the input sequence is deleted, so a new
set of predicted input data sequences is formed. The RNN
dynamics model is called again to predict the latter time step
state variables. The predicted values of the state quantities for
the next Np time steps can be obtained after multiple calls,
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as shown in figure10 and equation(11).

dX̂t = fRNN (Xt ,Xt−1, . . . ,Xt−9,Ut ,Ut−1, . . . ,Ut−9)

X̂t+1 = Xt +1t × dX̂t

dX̂t+1 = fRNN (Xt+1,Xt , . . . ,Xt−8,Ut+1,Ut , . . . ,Ut−8)

X̂t+2 = Xt+1 +1t × dX̂t+1 (11)

B. CONSTRAINT CONDITION
Control variables constraints and the side slip angle
constraints are considered in the dynamics-based model
prediction controller design.

1) Control variables constraints. Limit values for acceler-
ator pedal percentage, brake oil pressure, and steering wheel
angle in the control algorithm are set based on the control
variables input information in the dataset. The accelerator
pedal output value ranges from 0 to 100%. The brake oil
pressure ranges from 0 to 7000 kPa (the oil pressure is
set to 0 when not braking) in the range, and the steering
wheel turning angle ranges from −720◦ to 720◦. In addition,
constraining the increment of the control variables and
limiting the control increment in each sampling cycle within
a reasonable range can avoid sudden changes in the control
variables and ensure the continuity of the control variables.
Since the accelerator pedal and brake pedal cannot be output
simultaneously, an additional constraint is added. The control
variables constraint is expressed as follows:

acc× brake = 0

acc ∈ [0, 100]

brake ∈ [0, brakemax]

steer ∈ [steermin, steermax]

1acc ∈ [1accmin,1accmax]

1brake ∈ [1brakemin,1brakemax]

1steer ∈ [1steermin,1steermax] (12)

2) Side slip angle constraints. The side slip angle signif-
icantly impacts the vehicle’s stability, so the side slip angle
must be limited to a reasonable range. BOSCH conducted
by the vehicle stability study results [39] show that: in good
adhesion on dry asphalt, the limit of the side slip angle can
reach +12 ◦ during stable driving, that is:

−12◦ < β < 12◦ (13)

C. TRACKING ERROR MODEL
In the MPC algorithm, it is necessary to calculate the error
value according to the predicted state and the reference
state to determine the control input. Since the controller
controls both the longitudinal and lateral of the vehicle,
the longitudinal and lateral errors need to be calculated
separately in the error model. As shown in figure1, the yaw
angle error is defined as the angle between the vehicle yaw
angle and the yaw angle of the reference track. The lateral
error is defined as the length of the vertical line segment
from the vehicle centroid to the path of the reference track.

The longitudinal error is defined as the deviation value
between the reference longitudinal speed and the vehicle
longitudinal speed. The error value can be calculated by
equation(14).

ėtψ = ψ̇ t
− ψ̇ t

s

ėty = V t
x sin(etψ ) + V t

y cos(etψ )

et v =
∣∣V t

x − V t
ref

∣∣ (14)

In the equation, the superscript t represents the value of the
variable at time step t . The value of the variable at the future
time step is predicted using the RNN model proposed above.

D. OPTIMIZED OBJECTIVE FUNCTION
Reasonably designing the optimized objective function in
the model predictive control algorithm is an important
component to ensure that the intelligent vehicle tracks
the reference path quickly and stably. When designing
the RNN-based model predictive control, the increment
of the control variables is also added to the optimization
objective function while considering the state variables error,
with the aim of preventing excessive acceleration and shock.
The optimization objective function is shown in equation(15).

Minimize J

J =

t=Np∑
t=t0

(
Qvx

(
et vx

)2
+ Qy

(
et y

)2
+ Qψ

(
etψ

)2)

+

t=Nc∑
t=t0

(
Q1acc(1acc)2 + Q1brake(1brake)2

+Q1steer (1steer)2
)

(15)

where Np is the prediction horizon and Nc is the control hori-
zon. Throttle input increment 1acc, brake input increment
1brake, and steering wheel angle control increment 1steer
are used as optimization variables. Qvx , Qy, and Qψ are the
weight matrices of the errors.Q1acc,Q1brake, andQ1steer are
the weight matrix of the control increment.

The first term of equation(15) indicates the ability of the
system to follow the reference path, which requires that
the vehicle track the reference path with the smallest
possible longitudinal speed error, lateral error, and heading
deviation to enhance the path tracking effect. The second term
indicates the requirement for control increment constraints
to ensure that the control variables change smoothly.
The overall goal of the objective function is to enable
fast, accurate, and stable path tracking of the controlled
object.

By solving a nonlinear optimization problem in a particular
control horizon, the sequence of control increments in that
period is solved:

1u(t) = [1u(t),1u(t + 1), . . . ,1u(t + Nc − 1)] (16)
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The first value in the solved sequence of control increments
is used to calculate the control variables for the next time step:

u(t) = 1u(t − 1) + u(t − 1) (17)

E. OPTIMIZER BASED ON DIFFERENTIAL EVOLUTION
ALGORITHM
In the classical MPC algorithm, the predicted values of the
state variables are calculated by the explicit set of dynamics
equations, and there is only one control variable, the front
wheel angle. As shown in equation(11),(14) and (15), the
predicted values in the optimization problem involved in this
paper come from the output of the RNN neural network, and
the control variables include a total of three in the longitudinal
and lateral directions, which is more than classical MPC.
This brings the following problems to the optimization
solution:

1) Classical MPC generally utilizes the interior point
method or active set method to solve nonlinear optimization
problems. The gradient of the optimization objective function
is needed in these two methods. However, due to the RNN
neural network inside the optimization objective function,
its expression is not explicit, and the gradient solution is
complicated.

2) As there are 3 control quantities (only one control vari-
able in the classical MPC), the constraints and optimization
objective function become more complicated. After testing,
the optimization solution algorithm with classical MPC very
easily falls into the local optimum, reducing the control
accuracy significantly.

Based on the above two reasons, the optimization problems
involved in this paper are difficult to solve by traditional
optimization algorithms, so it is proposed to solve the
optimization problems in this paper by using ‘‘differential
evolution(DE)’’ Algorithm.

Differential evolution algorithm originates from the
improvement of genetic annealing algorithm, does not
need to provide the gradient information of the opti-
mization objective function, can effectively avoid falling
into the local optimum, and the convergence speed is
the fastest among the intelligent optimization algorithms
[40]. Therefore, it is suitable for using in the control
of vehicle path tracking. The population evolves to the
next generation through mutation, crossover, and selection
operations. It repeats the cycle until the algorithm reaches a
predetermined maximum number of iterations or the optimal
solution of the population reaches a predetermined error
accuracy.

The primary hyperparameters of the differential evolution
algorithm include the population size np, the variation factor
F , the crossover rate CR, and the number of evolutionary
generations G. Since path tracking is a task with high real-
time requirements, it is necessary to make a trade-off between
the convergence speed and the optimization accuracy.
Among them, the population size greatly impacts real-time
performance. In order to ensure the real-time performance

FIGURE 11. A simple experiment to test the performance of DE at
different evolutionary generations to determine the final evolutionary
generations.

FIGURE 12. Optimization objective function values and computing time
with evolutionary generations.

TABLE 2. Parameters of RNN model predictive control.

of the algorithm, the population size is reduced as much
as possible. A large maximum number of evolutionary
generations(1000) is fixed to determine the population size,
variance factor, and crossover probability using orthogonal
experimentation.

In addition, the idea of ‘‘early stopping’’ is utilized to
prioritize the real-time performance of the algorithm by
setting the maximum number of evolutionary generations
to limit the convergence time. The larger the number of
evolution generations, the higher the optimization accuracy
of the objective function, but at the same time, it will take
more computation time. The differential evolution algorithm
with different evolutionary generations is simulated to track
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FIGURE 13. A segment of driving data of a human driver on an urban road with variable speeds is used to test the RNN dynamic state predictive model.
(a) shows the driving instructions from the human driver. (b) shows longitudinal/lateral speed and yaw rate during the test process. (c) shows the
driving path throughout the test.

FIGURE 14. The model outputs (v̇x , v̇y , ω̇) are compared with the data collected by real car sensor. (a) is the comparison of longitudinal speed change
rate. (b) is the comparison of lateral speed change rate. (c) is the comparison of yaw speed change rate.

FIGURE 15. The predictive effect of RNN dynamic model and linear/nonlinear mechanism model is compared under double lane change condition.
(a) shows the control variables sequence. (b) shows longitudinal/lateral speed and yaw rate during the double lane change test. (c) shows the path
throughout the double lane change test.

the same path at the same speed to select the best evolutionary
generations.

The simple experiment shown in figure11 is designed
to analyze the performance of the control algorithm with
different evolutionary generations under the GPU parallel
computing environment, and the appropriate evolutionary
generations are selected. The vehicle travels at a speed

of 20m/s, with a lateral deviation of 1m and a heading
deviation of 5◦. Figure12 shows the value of the objective
function and the optimization solution time at different
evolutionary generations during the simulation. It can be
seen that the objective optimization function decreases
quickly before 20 generations of evolutionary generations.
After 20 generations, the objective function value decreases
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FIGURE 16. The model outputs(v̇y and ω̇) of the RNN model are compared with that of the mechanism-based model, and the predictive errors are
shown in (b) and (d). The black line is the actual output data of the vehicle, the red line is the performance of the RNN model, the blue line is the
performance of the linear mechanism model, and the green line is the performance of the nonlinear mechanism model. (a) is the lateral speed
change rate. (b) is the error of lateral speed change rate. (c) is the yaw speed change rate. (d) is the error of yaw speed change rate.

insignificantly. However, the time consumed by the algorithm
always increases linearly with the number of evolutionary
generations. Therefore, 20 is finally chosen as the evolu-
tionary generation, at which point the algorithm operation
consumes 63.9ms.

IV. EXPERIMENT
The RNN dynamic model and control algorithm established
above are tested in the last section of this paper. Firstly,
the prediction accuracy of the RNN vehicle dynamics
model developed in sectionII is validated. The validation
is performed on a segment of a continuous real vehicle
dataset. Then, the RNN model is compared with a classical
linear vehicle dynamics model and a nonlinear vehicle
dynamics model (with a nonlinear tire model). The controller
built in sectionIII is then validated by simulation at low
(10m/s) and high (30m/s) speeds on the co-simulation
platform, and compared to the mechanismmodel-basedMPC
control algorithm whose lateral and longitudinal control
are separated (longitudinal using a PID controller). Double
lane change is selected as the simulation condition. Table2
shows the control parameters. The ADAMS multi-body
dynamics model established in sectionII is utilized to build
the ADAMS/ Python/ Simulink joint simulation model. The
ADAMSmodel is used as the controlled object, and the RNN
prediction model and controller code are written based on
Python. Finally, the integration is carried out in Simulink to
complete the data transfer.

A. MODEL VALIDATION
The RNN prediction model is validated using data from the
HDD real vehicles dataset. A segment of 3000 continuous
time steps (60s) from the HDD dataset that is not added
to the training set is extracted to test the model. The test
uses driving data of a human driver on an urban road with
variable speeds, including turning and going straight. Control
instructions (acc, brake, steer) from the dataset are input to
the RNN model, and then the model outputs {dvx , dvy, dω}

are compared with the real vehicle sensor data in the dataset.
Figure13 shows the control variables(acc, brake, steer), lon-
gitudinal/lateral velocity, yaw rate, and trajectory during the
test segment.

The comparison result of the model output and real sensor
data is shown in figure14. In order to prove the accuracy of the
model prediction, the mean square error between the model
output and the real data is calculated. The MSE of dvx(m/s2)
is 7.28 × 10−3, the MSE of dvy(m/s2) is 8.94 × 10−5, and
the MSE of dω(deg/s2) is 1.01 × 10−2. This result shows
that, in the general driving scene, the prediction errors of the
state variables for all three directions(longitudinal, lateral,
and heading) are minor and within the acceptable range.
Additionally, good performance on the dataset that is not
added to the training set indicates that the model is not
overfitting.

Moreover, the advantage of the RNN vehicle dynamics
model compared with the classical mechanism model is
tested. The vehicle is run under the double lane change
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FIGURE 17. The longitudinal/lateral coupled RNN model predictive control algorithm is compared with the mechanism-model-based model predictive
control algorithm. The black line is the reference path, the red line is the performance of the RNN model, the blue line is the performance of the
mechanism model. (a), (c), (e), and (g) are tested under a relatively low speed(10m/s), and (b), (d), (f), and (h) are tested under a relatively high
speed(30m/s). (a) and (b) is the tracking performance of the two for lateral displacements. (c) and (d) is the tracking performance of the two for
longitudinal speed. (e) and (f) is the tracking performance of the two for yaw angle. (g) and (h) is the comparison of the side slip angle.

test condition built into ADAMS/Car( maintain a speed
of 20m/s). The control variables(acc, brake, steer), longitu-
dinal/lateral velocity, yaw rate, and trajectory are shown in
figure15.

In this simulation experiment, different models were used
to predict the change reate of lateral velocity and the
change rate of yaw rate. The linear mechanism model,
nonlinear mechanism model, and the RNN model were
compared. As shown in figure16, under the double lane
change condition, the prediction accuracy of the RNN

model is significantly better than that of the linear/nonlinear
mechanistic model for both lateral velocity and yaw speed.
As shown in figure16(b), the maximum error of the RNN
model when predicting the lateral velocity in this test
is 4.52 × 10−1m/s, while that of the linear model is
1.44 × 100m/s, and 1.01 × 100m/s for the nonlinear model.
In figure16(d), the maximum error of the RNN model when
predicting the yaw rate is 3.98 × 10−1rad/s, while that of
the linear model is 2.61 × 100rad/s, and 1.50 × 100rad/s
for the nonlinear model. Especially around the 4s and 6s,
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TABLE 3. Comparison of control results between longitudinal/lateral coupled RNN-based MPC and classical MPC agianst low and high speed(10 m/s and
30 m/s). Th mean square error (MSE), max error of state variables (vx , vy , and yaw), and the max side slip angle is compared. Length unit: m, angular
unit: rad, time unit: s.

when the lateral velocity is higher, the error of the mechanism
model increases significantly, while the error of the RNN
model is much smaller. The prediction accuracy of the
nonlinear mechanism model is still much lower than that
of the RNN model, although it is higher when compared
to the linear mechanism model. These results prove that
the RNN vehicle dynamic model developed in this paper
performs better than mechanical models under high lateral
velocity.

B. CONTROL ALGORITHM TESTING
The classical MPC, which uses a mechanism-based model
for lateral tracking and a PID controller for longitudinal
tracking, is compared with the longitudinal/lateral coupled
RNN-based MPC, as shown in figure17. The tracking effect
of the two kinds of controllers on lateral displacement, yaw
angle, and longitudinal velocity at low speed (longitudinal
velocity (10m/s)) and high speed (longitudinal velocity
(30m/s)) conditions are compared, respectively. Since a
smaller side slip angle is further away from the edge of
the stability envelope, it indicates good stability. The side
slip angle during vehicle travel at both conditions is also
compared to determine the travel stability of the two during
the control process. Table3 shows the mean square error
and the maximum error of the two controllers in different
directions, as well as the maximum side slip angle during the
simulation.

At low speeds(10m/s), as shown in figure17(a),(c),(e),
although both controllers have a low tracking error, the
tracking error of the MPC based on the RNN prediction
model is slightly lower than that of the MPC based on
the classical mechanism model. Moreover, there is a small
amount of uncanceled steady-state error in the following
of the longitudinal speed by the PID controller. As shown
in the figure17(g), when using the MPC based on RNN
model, themax side slip angle is 2.65×10−2rad , while that of
the MPC based on mechanismmodel is 8.16×10−2rad . This
indicates that the MPC based on RNN model has a higher
stability.

At high speeds(30m/s), as shown in figure17(b),(d),(f), the
mean square tracking error and maximum tracking error in
both longitudinal, lateral, and yaw directions increase a lot.
Especially when the vehicle is performing the third steering
at around 3s, due to the increase of lateral velocity and yaw
velocity, the prediction accuracy of both models is affected,
which leads to the decrease of the control accuracy. TheMPC
based on the mechanismmodel has a strong oscillation, while
the MPC based on the RNN remained within a small range
control error. As shown in table3, mean square error andmax-
imum error of RNN-based controller proposed in this paper
are far less than the classical MPC controller. Additionally,
Throughout the process, the side slip angle is smaller under
the RNN-based MPC control. The maximum side slip angle
is 5.03 × 10−2rad within the vehicle stability envelope, and
the controller control effect meets the vehicle control stability
requirements.

In conclusion, the longitudinal/laterral coupled RNN
model predictive controller established in this paper has
higher control accuracy and stability than the model pre-
dictive controller based on the classical mechanism model,
espechially at high speeds.

V. CONCLUSION
This paper proposes to replace the traditional state prediction
model in model predictive control with an RNN model,
which improves the accuracy of dynamic state prediction.
This model is trained in the framework of deep learning using
a large amount of data generated during driving, avoiding
the need to analyze the complex electromechanical-hydraulic
coupling characteristics of the vehicle. In addition, the
output of the RNN model includes both longitudinal and
lateral dynamics parameters, based on which the controller
is designed to realize longitudinal and lateral coupled
control. For the problem that the gradient of the objec-
tive optimization function is challenging to compute and
easily falls into the local optimum during the optimization
solution in the MPC control process, it is proposed to
solve the problem with a differential evolution algorithm.
Finally, the prediction accuracy of the RNN model and the
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control effect of the controller proposed in this paper are
verified. The RNN prediction model is validated on the
real vehicle data set and compared with linear/nonlinear
mechanism models under typical working conditions. The
results show that the prediction accuracy of the RNN model
is much higher than that of the mechanism model, and the
single prediction time is only 0.4 ms. Moreover, a joint
ADAMS/Simulink/Python simulation platform is built to
verify the control accuracy and stability of the RNN-based
MPC control algorithm against the mechanism model-based
MPC. The results show that the control accuracy and
stability of the RNN-based MPC controller are higher than
that of the MPC based on the mechanical model at high
speed, and the real-time performance of the algorithm is
guaranteed.
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