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ABSTRACT Automated Medication Identification (AMI) systems can significantly streamline the daily
tasks of pharmacists. Nonetheless, the image analysis methods utilized by AMI systems often encounter
difficulties in real-world settings. For example, glare reflections from transparent packaging and color
distortions from different lighting conditions may alter the visual appearances of medication images, thereby
degrading the recognition accuracy. This paper proposes an innovative approach to mitigate these issues,
incorporating image registration techniques to eliminate glare reflections and correct color discrepancies
to improve recognition accuracy. The proposed solutions are integrated with a novel ResDenseNet neural
network architecture, which efficiently merges cross-level features via skip connections, harnessing the
combined merits of ResNet and DenseNet. Empirical evaluations reveal that this integrated solution
significantly elevates the recognition rate from 15.19% to 96.85% for a ResDenseNet model trained on
a dataset with limited appearance variations. Furthermore, the ResDenseNet outperforms ResNet and
DenseNet by 7.5% and 3.3% in recognition rate, respectively.

INDEX TERMS Deep learning, medication identification, color correction, glare removal, object detection,
YOLO, ResNet, DenseNet, image registration.

I. INTRODUCTION
Automated Medication Identification (AMI) technology has
become increasingly important for hospitals facing high
demands of medications for patients. It helps pharmacists
verify medications and reduce the burden of manual confir-
mation on each patient’s prescriptions. Moreover, an AMI
system integrated with medication inventory management
systems can further enhance its benefits in accelerating
the medication dispensing process, improving medical effi-
ciency, reducing human errors, ensuring patient safety,
and becoming a critical tool for enhancing operational
efficiency in hospitals [1]. Despite its advantages, AMI
faces several technical challenges. One of the significant
obstacles is color distortions, which can occur due to different
light sources or imaging devices. This can significantly
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hinder AMI’s effectiveness since color is often a critical
identification feature for many medications. Additionally,
transparent packaging can create glare reflections, obscuring
the medications’ appearance and making identification more
difficult. Fig. 1 illustrates some problematic cases caused by
glare reflections and color distortions. Moreover, accurately
distinguishing betweenmedications with similar appearances
highly depends on defining subtle features and developing
algorithms to extract them which pose non-trivial technical
challenges.

While several studies on medication identification have
achieved high accuracy, challenges such as glare reflections
and color distortions have never been addressed [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10]. To improve the performance of
AMI systems in hospitals, our goal in this paper is to propose
effective solutions to overcome these challenges. To achieve
this, we develop methods for removing glare reflections
and correcting distorted colors during image preprocessing.
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FIGURE 1. Some examples of packaged medications with glare
reflections and color distortions: (a) medications with distorted colors;
(b) medication packages with glare reflections.

Additionally, we design deep learning models that can learn
to extract effective features for distinguishing similar-looking
medications.

The main contributions of our work in this paper include:
• designing a glare removal method that repairs pix-
els disrupted by glare reflections through registration
between multiple images taken under different lighting
and viewpoints;

• designing a color correction method that corrects
distorted colors through registration between the input
image and a color checker;

• designing a deep learning model that leverages the
strength of both ResNet [11] and DenseNet [12] to
extract more effective cross-level features for medica-
tion identification.

II. RELATED WORKS
AMI is a specialized research topic with dedicated applica-
tions. Few techniques are specifically crafted for AMI, par-
ticularly in addressing the challenges and issues mentioned
previously. Therefore, we review some general-purpose
methods related to the core tasks of AMI systems in this
section.

A. GLARE REMOVAL
There can be two approaches to address the glare reflections:
non-learning-based methods and learning-based methods.
Non-learning-based methods detect and remove glare by
specifically human-crafted image processing techniques,
while learning-based methods involve training a model to
convert input images with glare to output images without
glare through automatic data-driven training.

Non-learning-based methods often utilize prior assump-
tions to distinguish between reflection and background.
These assumptions can include ghosting cues [13], depth of
field maps [14], [15], and sparsity priors [16]. For example,
the retinex-based algorithm [17] uses the distribution of
gradients to reduce the reflection component and reveal
the underlying scene. Another technique is the polarizer-
based approach, which uses external polarizing filters

to suppress reflections and reduce glare. However, non-
learning-based methods have limitations such as requiring
additional hardware costs, being less adaptable to varying
lighting conditions, being sensitive to specific application
scenarios, and requiring time-consuming parameter tuning to
achieve satisfactory performances.

Several deep learning-based algorithms have been pro-
posed to effectively and comprehensively capture reflection
properties. For instance, Fan et al. devised CEILNet [18] to
eliminate reflections from a solitary image by predicting the
edgemap and reconstructing the glare-free target image using
two subnetworks. CoRRN [19] andCRRN [20] also consisted
of sub-networks for extracting background information,
estimating the background gradient, and separating the
background from reflection layers. Zhang et al. [21] designed
one subnetwork to separate reflection and background layers
to restore overlooked details with an attention strategy. Abiko
and Ikehara [22] proposed a GAN-based algorithm utilizing a
UNet++L4 [23] generator to produce the desired reflection-
free image. Li et al. proposed the IBCLN (Iterative Boost
Convolutional LSTM Network) [24], which comprises two
cascaded blocks, GT and GR, for iteratively refining the
estimates of the transmission and reflection layers in an
image.

Despite the demonstrated effectiveness of these learning-
based glare removal methods, they have several limitations,
such as extensive demands in training data, difficulty in
adapting to new glare situations, susceptibility to training
biases, high computational costs, and long training duration.
These limitations motivate further research into developing
more robust and efficient glare removal algorithms for AMI
systems.

B. COLOR CORRECTION
Two main approaches exist for developing color correction
methods: the reference-free-base approach and the reference-
based approach. Reference-free methods correct color distor-
tions within an image without using a reference image. These
methods include white balance [25], histogram equalization
[26], and the gray world algorithm [27]. They adjust the
color or brightness distribution of the image to match a
presumed normal distribution. However, these methods may
not be suitable for practical applications that involve complex
and fluctuating lighting conditions. Assuming a generic
distribution for the image could lead to significant color
disparities if the lighting conditions do not align with the
assumption.

Reference-based color correction methods use a color
reference image with patterns of known true colors to achieve
color correction. This can be accomplished through two kinds
of methods: location-independent and location-dependent
methods. The location-independent methods determine the
color correction model by aligning the global color distribu-
tions of the input image and the color checker. As a result,
the primary colors appearing in the image would significantly
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impact the results of color correction. Conversely, the
location-dependent methods infer the color correction model
based on scene matching between the color-distorted image
and the reference image. The accuracy of color correction
would highly depend on the accuracy of image registration
between the two images. Examples of location-independent
methods include Histogram Matching [28] and PCA Color
Matching [29]. The method proposed in [30] is an example
of the location-dependent method.

Recent studies have utilized deep learning techniques,
such as the one presented in [31], to create color correction
models based on an extensive collection of samples. Although
deep learning methods can produce sophisticated color
correction models, they require many training samples.
These samples must encompass a broad spectrum of lighting
conditions; otherwise, the resulting model may struggle with
diverse lighting variations. Given that lighting conditions
can vary widely across different application scenarios,
gathering sufficient representative samples would pose a
challenge. Therefore, utilizing deep learning techniques
for color correction may not be cost-effective in practical
applications.

C. MEDICATION DETECTION
In recent years, deep learning methodologies have led to
significant advancements in object detection, surpassing
traditional computer vision approaches in detection accu-
racy, stability, and speed. Three prominent deep-learning
paradigms for object detection are the two-stage, one-stage,
and attention-based approaches.

The two-stage approach, introduced by Girshick et al. [32],
is based on the framework of Region-based Convolutional
Neural Network (R-CNN). This approach involves generat-
ing region proposals via a selective search algorithm in the
first stage, followed by classification using a Convolutional
Neural Network (CNN) in the second stage. Several variants
of the R-CNN, such as Fast R-CNN [33], Faster R-CNN [34],
and Spatial Pyramid Pooling Network (SPP-Net) [35], have
been proposed to address issues such as slow speed and high
computational complexity.

The one-stage approach, first presented by Redmon et al.
[36], is a real-time object detection technique known as You
Only Look Once (YOLO). This approach utilizes a single
neural network to simultaneously predict bounding boxes and
class probabilities. Another noteworthy one-stage method is
the Single Shot Detector (SSD) [37], which also integrates
image classification and object detection within a unified
neural network.

The attention-based approach is a technique that employs
attention mechanisms to identify crucial areas within images.
One such method is Reverse Connection with Objectness
Prior Networks (RON) [38]. This model enhances the Faster
R-CNN algorithm by creating feature maps from different
convolutional layers. Attention scores are then used to
weigh the level of feature activation within the bounding

boxes, thereby improving object detection accuracy in
images.

D. MEDICATION IDENTIFICATION
Identifying medications can be a difficult task as medi-
cations often bear a striking resemblance to one another.
Discriminating between them requires professional expertise
to explore their subtle discerning features. One potential
solution is employing deep learning models that can
automatically learn effective visual features for medication
identification.

In a recent study conducted by Delgado et al. [1], four
deep networks, namely ResNet50 [2], SqueezeNet [3], and
InceptionV3 [4], were compared for identifying 924 types
of medication. The results showed that ResNet50 achieved
the highest accuracy, with an averaged Top-1 accuracy of
76.3% and an averaged Top-5 accuracy of 94.8%. Another
study by Chang et al. [5] developed a system for identifying
pills using smart glasses and advanced neural networks.
The study evaluated three backbone architectures within
the SSD and Faster R-CNN networks, including Mobilenet,
Inception Net, and ResNet50. The ResNet50 backbone
outperformed the others, achieving a recognition rate of
95.1%, but only for four types of pills with noticeable visual
differences. In another study, Wu et al. [6] proposed an
Attention-YOLO deep learning model specifically designed
for recognizing round pills in images. The model achieved
an accuracy of 92.28% for identifying 316 types of round
pills.

Ting et al. [7] employed YOLOv2 [39] to identify
250 different medications based on images of their blister
packaging. Two models were developed using images of
the front and back sides of the packaging, respectively.
The back-side model was more accurate, with an accuracy
of 96.26%, compared to the accuracy of 94.09% for the
front-side model. It is essential to note that the blister
packs used in the study are distinct and have no transparent
packaging. Chen et al. [8] also developed a system for
recognizing medications with distinct packaging. The system
had two processing stages. The first stage used a deep
residual network and a feature pyramid network (FPN) [9]
to identify the rotation of bounding boxes for medications
and crop the medication patches accordingly. In the second
stage, a feature embedding network combined a derived
embedding feature with the geometric feature obtained from
the first stage. The system achieved an accuracy of 99.87%
when evaluated on 828 samples of 21 types of packaged
medications.

Heo et al. [10] developed a pill retrieval system that com-
bines models for image classification and text recognition to
retrieve similar pills from a large database. The system uses
YOLOv5 [9] to extract and recognize characters imprinted
on the pill and ResNet-32 to classify using the pill’s visual
features, such as shape, color, and form. The search results of
each query are then obtained based on the recognized texts
and visual features. The system achieved a Top-1 accuracy of
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85.65% and a Top-3 accuracy of 92.35% when evaluated on
a MFDS dataset [10].

While previous studies on medication identification have
achieved remarkable recognition rates, they have predomi-
nantly focused on medications without any packaging or with
easily recognizable packaging. There are no glare reflections
and color distortions caused by transparent packaging that
impede the recognition rates. Hence, these issues have never
been addressed in previous studies.

Based on the survey of the general methodologies for
the four core tasks in developing an AMI system, we can
see that previous glare removal methods, both non-learning
and learning, have limitations and are not tailored for
medication identification tasks. The non-learning approach,
relying upon a specific model separating the background
from glare, is less adaptable due to inherent presump-
tions. In contrast, the learning approach faces restrictions
from training bias and computational efficiency. In color
correction, reference-free methods, which rely on preset
assumptions, are not well-suited for diverse real-world condi-
tions. Reference-based methods, meanwhile, necessitate the
accurate registration between the input and standard reference
images.

Our study aims to tackle the challenges posed by glare
reflections and color distortions in AMI, setting our work
apart from previous studies and underlining its significance.
In light of the limitations of previous works, we design an
automated imaging platform to capture images from multiple
viewpoints under multiple lighting conditions. The controlled
imaging environment of the platform allows for stable image
registration, thereby enhancing both glare removal and color
correction. Besides, both ResNet and DenseNet architectures
employ skip connections to effectively integrate features
across different granularity levels. To leverage the strengths
of both ResNet and DenseNet, we propose a ResDenseNet
model to achieve a recognition rate superior to that of either
individual model.

III. THE PROPOSED METHOD
A. SYSTEM COMPONENTS AND OPERATIONS
The proposed AMI system, as shown in Fig. 2, comprises
a client-side subsystem and a server-side subsystem. The
client-side subsystem manages an automatic imaging appa-
ratus that captures images of medications in transparent
packages. The server-side subsystem performs four key
operations on the captured images: glare removal, medication
detection, color correction, and medication identification.
To support the proposed methods of glare removal and color
correction for medications in transparent packaging, we build
an automatic imaging apparatus utilizing a medication
conveyor belt, two LED light sources, and a smartphone,
as shown in Fig. 3. The smartphone, accompanied by a
designated app, controls an ESP32 microcontroller to operate
the conveyor belt via Bluetooth. The app alternates between
different light sources via the ESP32 controller as the

conveyor belt moves medication packages to predefined
positions. This setup enables the automatic acquisition of
medication package images from multiple viewpoints under
different light conditions.

After capturing images of medication packages under
different viewpoints and lighting conditions, the client-side
subsystem sends these images to the server-side subsystem
via WiFi. Once the images are received, the glare removal
module in the server-side subsystem removes the glare
reflections and then sends the glare-removed image to the
detection module. After receiving the glare-removed image,
the detection module detects and extracts the color checker
from the image, which is required by the color correction
module. On receiving the extracted patch of the color
checker, the color correction module performs the color
correction on the glare-removed image and then sends the
color-corrected image back to the detection module. The
detection module detects medications on the color-corrected
image and crops them into individual patches. Afterward,
each cropped medication patch is sent to the identification
module for recognition. Finally, the identification result is
relayed to the client-side app via WiFi for displaying on the
smartphone.

FIGURE 2. The diagram of components in the proposed AMI system.

B. PREPROCESSING
1) GLARE REMOVAL
Generally, there can be two strategies to mitigate the detri-
mental effects of glare reflections on transparent packages,
including:

1) re-positioning the light source to prevent direct illumi-
nation on the package surface might help if the glare is
due to lighting, or

2) capturing the image of the medication package from
a different viewpoint could reduce or eliminate the
glare.
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FIGURE 3. The developed apparatus for automatic image capturing of
medication packages.

Following these two strategies, we implement the apparatus
illustrated in Fig. 3 to capture multiple images of packaged
medications from different viewpoints under varying lighting
conditions. We then perform glare removal by registration
between the captured multiple images. With this apparatus’s
well-controlled imaging environment, the image registration
becomes stable and accurate to identify the positional
correspondences among the images which allows us to rectify
pixels disrupted by glare reflections using their non-glared
counterparts from alternate images. The detailed method is
presented in the following.

Given any pair of images Im and In, we detect SIFT
feature points [40] on them and match these feature
points to obtain a set of pairs of matched feature points,
MP = {(p(m)i ,p(n)i )}Ki=1, where p(m)i and p(n)i represent the
homogeneous coordinates of the i-th pair of matched feature
points. We apply the RANSAC algorithm [41], as listed in
Algorithm 1, to iteratively estimate a homography H∗

m,n for
mapping any coordinate p(n) on In to its corresponding point
q on Im. In each iteration of this algorithm, the function
RandomSample() in Step 5 randomly samples k (k ≥ 4)
pairs of matched feature points fromMP into a set S. With S,
the function EstimateHomography() in Step 6 estimates the
homographyH∗

m,n by employing the Direct Linear Transform
algorithm [42]. Consequently, any pair of matched feature
points (p,q) in MP is considered an inlier if it satisfies the
following condition:

∥H · q − p∥ ≤ ϵ, (1)

where ∥·∥ denotes the Euclidean norm. This condition states
that the mapped position of q is close to p within a
predetermined threshold ϵ (e.g. 3 pixels) with respect to H ,
meaning that p and q validly identify a pair of corresponding
pixels on Im and In, respectively. This condition creates a set
of inliers � in Step 7 in each iteration. During the iterations,
the best homography H∗

m,n is determined by the estimated

homography that identifies the most inliers, as shown in Steps
8-10 of Algorithm 1.

Algorithm 1 RANSAC Image Registration
Require: The Homogeneous coordinates of the set of

matched pair of feature points on Im and In, MP =

{(p(m)i ,p(n)i )}Ki=1
Require: The identification numbers of Im and In, m and n
Require: A maximum number of iterations, T
Require: The number of matched points for estimating a

homography matrix, k
Require: A threshold for inliers, ϵ
Ensure: The homography matrix, H∗

m,n
1: procedure Ransac(m, n,MP,T , k, ϵ)
2: � = {}

3: M = 0
4: for i = 1 to T do
5: S = RandomSample(MP, k)
6: H = EstimateHomography(S)
7: � = {(p,q) ∈ F | ∥H · q − p∥ ≤ ϵ}

8: if |�| > M then
9: H∗

m,n = H
10: M = |�|

11: end if
12: end forreturn H∗

m,n
13: end procedure

Given M images, Ij for j = 1, . . . ,M , of a medication
package captured by our imaging apparatus, let Ij(p) denote
the intensity value of the pixel at position p in image Ij.
To repair a glared pixel p in image Ij, we first compute a mean
intensity for this pixel p from all corresponding pixels of p on
other images by

µj(p) =

∑M
k=1 1(H

∗
k,j · p ∈ Ik )Ik (H∗

k,j · p)∑M
k=1 1(H

∗
k,j · p ∈ Ik )

. (2)

where 1(q ∈ Ik ) denotes an indicator function that outputs
one if the pixel position q falls within the image Ik , and
0 otherwise. Note that (H∗

k,j · p) maps the position of p on
Ij to the position of its corresponding point on Ik using the
homography H∗

k,j. We can then repair each pixel at p in Ij by
updating Ij(p) as follows:

Ij(p) =

{
min
k

{Ik (H∗
k,j · p)}, if Ij(p) − µj(p) ≥ τ

Ij(p), otherwise
(3)

where τ is a threshold, 30, determined empirically. Equa-
tion (3) states that if any pixel p on Ij has a brightness
level exceeding the computed mean intensity µj(p) by the
threshold τ , then it is judged as a glared pixel and can
be repaired with the lowest intensity among those of the
corresponding pixels of p. Algorithm 2 shows the steps
to repair the glared pixels. The function ComputeMean()
in this algorithm computes the mean intensity according
to equation (2). Both the DetectSIFT() and Match() are
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FIGURE 4. The flowchart of the proposed glare removal method.

implemented using built-in functions in OpenCV. Fig. 4
shows the flowchart of the glare removal method.

Algorithm 2 Glare Removal Algorithm
Require: The captured images to be processed: I1, . . . , IM
Require: The threshold parameter: τ
Ensure: The output images with glare reflections removed:

I ′1, . . . , I
′
M

1: procedure RemoveGlare([I1, . . . , IM ], τ )
2: for j from 1 toM do ▷ Detect SIFT on each image
3: Sj = DetectSIFT(Ij)
4: end for
5: for j from 1 toM do ▷ Repair images one by one
6: for k from 1 toM and k ̸= j do
7: MP = Match(Sk , Sj)
8: H∗

k,j = Ransac(k, j,MP, 100, 4, 3)
9: end for

10: for p ∈ Ij do
11: µj(p) = ComputeMean({H∗

k,j}
M
k=1,p)

12: if Ij(p) − µj(p) ≥ τ then
13: I ′j (p) = mink{Ik (H∗

k,j · p)}.
14: else
15: I ′j (p) = Ij(p).
16: end if
17: end for
18: end for
19: return I ′1, . . . , I

′
M .

20: end procedure

2) COLOR CORRECTION
Our method for color correction employs the reference-based
approach, incorporating the use of a standard color checker.

FIGURE 5. The color checker used for our color correction.

As shown in Fig. 5, this color checker contains a broad
spectrum of colors and is placed strategically within the
camera’s field of view on each captured image. Let CR be
the referenced image of this standard color checker which
has no color distortions. Assume that the color checker in
a color-distorted image I is represented by CI . The color
correction aims to infer a color correction function, denoted
as f (), to remap the color-distorted pixels in CI back to the
colors of their undistorted counterparts in CR.
Like the glare removal method, finding the pixel cor-

respondences between CI and CR requires the image
registration between them. We exploit a YOLOv5 neural
network to detect the color checker and crop it, denoting
it as CI , from the input image. Subsequently, the Ransac
algorithm, as detailed in Algorithm 2, is employed to find a
homography T ∈ R3×3 which identifies the position of the
corresponding pixel q in CI for any given pixel position p in
CR by (T · p).
Once the homography T between CI and CR is derived,

we then map a set of uniformly sampled reference pixels,
denoted by P = {pi|pi ∈ CR, i = 1, . . . ,N }, on CR to their
corresponding pixels, denoted by Q = {qi|qi = T · pi, ∀pi ∈

P}, on CI . Let cI (q) = [r Iq, g
I
q, b

I
q]
T denote the RGB color

tuple of the pixel q in I . In this study, we assume the color
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correction function f () to be a linear transformation which
can be expressed as:

f (cI (q)) = F · cI (q) ∈ R3, (4)

where F is a 3 × 3 transformation matrix. To minimize
the differences between the corrected colors and their
corresponding true colors, the color correction function f ()
must ideally minimize the following objective function:

L(F) =

N∑
i=1

∥cR(pi) − F · cI (qi)∥2 (5)

where ∥·∥ represents the Euclidean norm. Let F be repre-
sented as

F =

f1 f2 f3
f4 f5 f6
f7 f8 f9

 . (6)

To solve the least squares problem given by equation (5),
we can first reshape F into a vector f ∈ R9 and then obtain f
using the pseudo-inverse operation [43] as follows:

f =



f1
f2
f3
f4
f5
f6
f7
f8
f9


= (XTI XI )

−1XTI cR(P), (7)

where

XI =



cTI (q1) 0 0

0 cTI (q1) 0

0 0 cTI (q1)

cTI (q2)

0 cTI (q2) 0

0 0 cTI (q2)
...

...
...

cTI (qN ) 0 0

0 cTI (qN ) 0

0 0 cTI (qN )



∈ R3N×9, (8)

and cR(P) = cR(p1) ⊕ cR(p2) ⊕ · · · ⊕ cR(pN ) ∈ R3N

represents the ordered concatenation of the color tuples of all
pixels in P. The detailed steps of the above color correction
procedure are listed in Algorithm 3 and the data flow of
this algorithm is illustrated in Fig. 6. The PrepareX() and
PrepareR() functions in Algorithm 3 construct the matrix
XI in equation (8) and the vector cR(P), respectively. The
function PseudoInv() performs the computation presented

in equation (7) and Reshape() reshapes the vector f as a
3 × 3 homography matrix F presented in equation (6).
Fig. 7 illustrates an example of the registration between
CI and CR.
The above method allows for the efficient computation of

the matrix F . Moreover, due to the registration between CI
and CR, our color correction method is adaptable to various
imaging conditions in real-world scenarios. Furthermore, the
method involves no collection and training of a large volume
of comprehensive samples required in those learning-based
methods.

Algorithm 3 Color Correction Algorithm
Require: Color distorted image: I
Require: Reference image of the color checker: CR
Require: Uniformly sampled pixels on the reference image

CR: P
Ensure: Color corrected image: I ′

1: procedure ColorCorrect(I , CR)
2: CI = YoLoDetect(I )
3: P′

= DetectSIFT(CI )
4: Q′

= DetectSIFT(CR)
5: MP = Match(P′,Q′)
6: T = RANSAC(I ,CR,MP, 100, 4, 3)
7: Q = {T · pi|∀pi ∈ P}

8: XI = PrepareX(Q,CI )
9: cR = PrepareR(P,CR)
10: f = PseudoInv(XI , cR)
11: F = Reshape(f)
12: for q ∈ I do
13: [r I

′

q , gI
′

q , bI
′

q ]
T

= F ·[r Iq, g
I
q, b

I
q]
T .

14: end for
15: return I ′.
16: end procedure

C. MEDICATION DETECTION
Medication detection can be accomplished using object
detection technology and deep learning is currently the
most groundbreaking approach in this area. Among several
neural network models, we have chosen YOLOv5 as our
preferred medication detector due to its impressive features,
including real-time speed, no region proposal requirement,
superior detection of small objects, and integration of object
recognition with detection. Although YOLOv5 can also be
used to identify medications, it may fall short in charac-
terizing finer details such as markings, imprints, or labels
that are crucial for fine-grained identification of similar-
looking medications. Therefore, we direct YOLOv5’s task
solely toward medication detection. Namely, all 218 types
of medications to be identified by our AMI system are
labeled as a single object category on training YOLOv5
for detection. In addition to the color checker required by
our color correction method, the total number of object
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FIGURE 6. The data flow of the proposed color correction method.

FIGURE 7. The top image shows the standard color checker CR , while the
bottom image shows the detected one CI . The estimated homography is
used to map the smaller colored squares centered at uniformly sampled
points pi ’s inside the color grids on CR to their corresponding
quadrilaterals with the same color centered at points qi ’s on CI .

categories to train YOLOv5 for detection is only 2, thereby
significantly reducing our efforts needed to label the data for
training.

D. MEDICATION IDENTIFICATION
ResNet comprises successive ‘‘residual blocks,’’ whereas
DenseNet comprises successive ‘‘dense blocks.’’ Every
residual block in ResNet employs skip connections, allowing
the direct addition of its input to the output of the block,
as depicted in Fig. 8(a). This mechanism provides a more
immediate pathway for integrating results from adjacent
residual blocks. Similarly, within a DenseNet, each dense
block concatenates the features extracted by a neural layer
with those extracted by all preceding layers via skip

connections, as shown in Fig. 8(b). This also facilitates
efficient feature fusion across different resolution levels.
In summary, through skip connections, both ResNet and
DenseNet are highly suitable for learning the integration
of cross-level features which assist in discerning subtle
differences between similar medications. To combine the
strength of these two models, we propose a ResDenseNet
model to integrate both networks as backbones for fea-
ture extraction in the identification module of our AMI
system.

The ResDenseNet consists of two backbones, ResNet and
DenseNet, employed for feature extraction, as depicted in
Fig. 8(c). Each backbone uses its final block to produce a
feature map, denoted as FB

= {FBc,h,w} ∈ RC×H×W , where
C , H , and W refer to the channel, height, and width of the
feature map, respectively. Note that the notation B can denote
either R (representing ResNet) orD (representing DenseNet).
Each feature map is then aggregated into a feature vector,
f′B = [f ′B

1 , . . . , f ′B
C ]T ∈ RC , through Global Average Pooling

(GAP). The i-th element, f ′B
i , of f′B computed from the GAP

operation is calculated as follows:

f ′B
i =

1
H ×W

H∑
h=1

W∑
w=1

FB
i,h,w, for i = 1, . . . ,C . (9)

A linear layer, accompanied by the ReLU activation,
is added after the GAP operation to transform f′B into
another feature vector fB with a specified dimension. Upon
obtaining the two feature vectors, fR and fD, from the
two linear layers, a final feature vector, f̂, is formed by
concatenating them, i.e., f̂ = fR ⊕ fD, where ⊕ represents the
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FIGURE 8. The architecture of the proposed ResDenseNet: (a) the residual
block used in ResNet; (b) the dense block used in DenseNet; (c) the
proposed ResDenseNet.

concatenation operator. Subsequently, this final feature vector
is supplied to a multilayer perceptron (MLP) for medication
identification.

IV. EXPERIMENTAL RESULTS
A. DATASETS AND ENVIRONMENTAL SETUP

We have received 218 packaged medications from a hospital,
each containing a single type of medication. This packaging
arrangement allows us to label image samples more easily.
We use these medication packages to create three datasets.
The first dataset, called the pretraining dataset, is acquired
using several smartphones under general imaging conditions.
The second dataset, called the pragmatic dataset, is created
with three different smartphones that can be mounted on
our automated imaging apparatus, exhibiting fewer variations
under a controlled imaging environment. The third dataset,
called the challenging dataset, is obtained by replacing
the smartphone, as well as the lighting source, in the
imaging apparatus with an entirely different one. Each
dataset has its distinct purpose in our experiments. The
pretraining dataset is used exclusively to pre-train the
YOLOv5 model to handle general imaging conditions. Given
that YOLOv5’s medication detection precedes medication
identification, its performance could potentially limit the
overall system’s recognition rate. Therefore, we hypothesize
that training data with more variations in imaging conditions

can enhance detection accuracy. The pragmatic dataset
is partitioned into training and testing subsets, serving
for finetuning/assessing YOLOv5 and training/testing the
three deep learning models for medication identification.
On the other hand, the challenging dataset is exclusively
used to evaluate the adaptability of the three models to
varied imaging conditions. Hence, it is not used in any
training process. Table 1 outlines the characteristics of these
three datasets, including the sizes, the numbers of train-
ing/testing samples, their intended purposes, and imaging
conditions.

Regarding the environmental setup, Table 2 details the
hardware/software configurations for model training and
testing. The architecture of the network layers and the
number of model parameters for ResNet, DenseNet, and
ResDenseNet are enumerated in Table 3.

1) TRAINING FOR MEDICATION DETECTION
We use the pretraining dataset to pretrain YOLOv5. To aug-
ment the training data, we apply randomized transformations,
including scaling, cropping, rotation, Gaussian blur, color
jittering, grayscale conversion, and histogram equalization.
All are supported by either YOLOv5 or PyTorch. Hav-
ing been trained on the pretraining dataset, YOLOv5 is
already capable of accurately detecting most medications.
To further enhance its detection capability, we identified
128 medication types that show room for improvement
in detection performance from the test results of the
pretraining dataset. We then randomly select 28 training
samples per type from the pragmatic dataset to bolster the
training on these 128 types of medications. Our primary
consideration for adopting this approach is to alleviate the
burden of manual data annotation for too many types of
medications.

2) TRAINING FOR MEDICATION IDENTIFICATION
Our ResDenseNet incorporates ResNet101 and DenseNet121
as backbone networks for feature extraction. The dimension
of each input medication patch to the network is 160 ×

160 pixels. As listed in Table 1, we use a pragmatic dataset
consisting of 6104 samples (28 samples per type) for training
and 2616 samples (12 samples per type) for testing.We follow
two approaches to train each model for different purposes of
experiments, including

• Uniform Training: Under this training approach, each
training sample undergoes glare removal and color
correction, thereby achieving a more uniform appear-
ance. This training approach can evaluate how the
proposed glare removal and color correction meth-
ods affect the recognition rate of a model trained
by samples with uniform and limited variations in
appearance.

• Diverse Training: Under this training approach, each
training sample does not undergo glare removal and
color correction, resulting in a diverse range of varia-
tions in appearance. This training approach can assess
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TABLE 1. The three datasets used in the experiments.

TABLE 2. The configurations of hardware/software/training parameters
for the experiments.

a model’s ability to handle glare reflections and color
distortions through data-driven training of diversified
samples.

Each medication patch, which is cropped from YOLOv5’s
detection, is typically smaller than 160 × 160 pixels under
the operation of our automatic imaging apparatus. To be
compatible with the input dimension of ResNet, DenseNet,
and ResDenseNet, we pad each patch with black pixels,
as shown in Fig. 9(a). This padding process preserves the
aspect ratio and relative sizes between different medications,
which is vital because different dosages of the same
medication must be treated as distinct types in the hospital’s

FIGURE 9. The resizing of image samples by padding black pixels.

identification task. The only visual difference between them
is size. Proportional scaling would lose the relative sizes
between different medication types, as illustrated in Fig. 9(b).
During the training process, the training epochs continue
until the recognition rate on the training set reaches 98%.
The learning curves of these three models are depicted in
Fig. 10. The curves indicate that ResDenseNet achieves the
most rapid learning.

B. EXPERIMENTAL RESULTS FOR PREPROCESSING
The pragmatic dataset is used to test the effectiveness of our
proposed glare removal and color correction methods. Fig. 11
presents some results of the glare removal process. The two
leftmost images in each row depict the two captured input
images from a test sample, with partial areas significantly
disrupted by glare reflections. The two rightmost images
exhibit the results after applying glare removal to the
respective input images. According to the outcomes, restoring
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FIGURE 10. The learning curves of ResNet, DenseNet, and ResDenseNet.

glared pixels in one image by using the corresponding
non-glared pixels from the other can notably reduce glare
reflections.

To verify the effectiveness of image registration done
before the glared pixel repairing, we illustrate the registration
results of three example cases in Fig. 12. As shown in this
figure, the registrations are pretty accurate thanks to the grid
patterns of the color checker.

In the experiment of color correction, we apply four
distinct color tones of lighting sources to induce different
color distortions. We then conduct color correction on
these four color-distorted images. After color correction,
we examine whether the results of these four images achieve
color consistency to verify the effectiveness of our color
correction method. Fig. 13 displays some color correction
results. In each odd row, columns one through four show
image samples of one medication package, while columns
five through eight show image samples of another. Images
in even rows show the color-corrected versions of their
corresponding color-distorted images in the odd rows above
them. The results show that our color correction method
maintains color constancy effectively in all four images of
each medication package. The satisfactory correction results
require accurate registration between the captured color
checker and the standard color checker. Fig. 14 shows the
registration of color checkers for three example cases. Again,
the registration results are pretty good because of the grid
patterns on the color checkers.

FIGURE 11. Some results of glare removal. The two leftmost images in
each row depict the two captured input images from a test sample. The
two rightmost images exhibit the results after applying glare removal to
the respective input images.
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TABLE 3. The layer constructions of ResNet101, DenseNet121, and ResDenseNet.

TABLE 4. The confusion matrices for the testing experiment on YOLOv5. Column 2 shows the results of testing samples without preprocessing, while
Column 3 shows the results of testing samples with preprocessing.

C. EXPERIMENTAL RESULTS FOR MEDICATION
DETECTION
We conduct two experiments using the pragmatic dataset to
evaluate the performance of YOLOv5’smedication detection.
The first experiment tests YOLOv5 using samples without
glare removal and color correction. The purpose is to assess
its ability to handle glare reflections and color distortions
through data-driven learning. In contrast, the second exper-
iment tests YOLOv5 with glare-removed samples to verify
whether our glare-removal method improves YOLOv5’s
detection. The testing samples for YOLOv5 cannot undergo
color correction because it requires the cropped color checker
from YOLOv5’s detection.

We selected 5136 samples, which are not involved in
finetuning YOLOv5, as the testing set. Table 4 presents
the confusion matrices for the two experiments. In the
first experiment, YOLOv5 fails to detect one medication
in a sample because the color of the medication closely
resembles the background color, as shown in Fig. 17.
Additionally, there are four false positives caused by glare
reflections. However, the results in the second experiment
indicate that our glare removal method can correctly remove
three of the four false positives. Fig. 15 and Fig. 16

show four example cases’ detection and identification
results.

D. EXPERIMENTAL RESULTS FOR MEDICATION
IDENTIFICATION
As detailed in Section IV-B, we employ two distinct
training approaches: uniform training, which entails training
on samples that have undergone glare removal and color
correction, and diverse training, which involves training on
samples without glare removal and color correction. Based on
these two training approaches, we evaluate the models using
the following five options:

• Option I: Recognizing test samples without
preprocessing by training models using uniform
training.

• Option II: Recognizing test samples that undergo only
glare removal by trainingmodels using uniform training.

• Option III: Recognizing test samples that undergo
only color correction by training models using uniform
training.

• Option IV: Recognizing test samples that undergo both
glare removal and color correction by training models
using uniform training.
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FIGURE 12. The results of image registration in glare removal for three
example cases. Each pair of matched corresponding points is connected
with a colored line. The results are quite accurate because of the regular
grid patterns of the color checker.

• Option V: Recognizing test samples without
preprocessing by training models using diverse
training.

Tests with Options I through IV aim to examine the
effect of the two proposed preprocessing methods on the
recognition accuracy of the models trained with samples
of uniform appearance variations. Tests with Option V aim
to evaluate the neural network’s ability to resist diverse
variations purely through data-driven training. The recogni-
tion accuracies of ResNet, DenseNet, and ResDenseNet are
assessed to see if ResDenseNet outperforms both ResNet and
DenseNet.

Table 5 shows the Top-1, Top-3, and Top-5 recognition
rates for tests of the five options on the pragmatic dataset.
The Top-K recognition rate is defined as

Top-K recognition rate =

∑
xi∈D 1(rank(xi) ≤ K )

|D|
(10)

where xi denotes the ith sample in the testing set D, |D|

denotes the size of D, rank(xi) denotes the ranking of
xi among the candidates of the identification output, and
1(c) is 1 if condition c is true, and 0 otherwise. The
five columns, with the identifiers A1∼A5 at the bottom
row, correspond to the tests with the above five options,
respectively, using the pragmatic testing set. Test A1 tests

the three models trained with samples without glare removal
and color correction. Unfortunately, the Top-1 recognition
rates achieved by the three models are below 16% in this
test, indicating that these models trained only with samples
of uniform variations have very weak resistance to various
glare reflections and color distortions. Moreover, DenseNet
performs worse than ResNet in Test A1, implying that
estimating its larger number of model parameters from only
samples of uniform variations acquires poorer generalization
ability. The proposed ResDenseNet, which combines ResNet
and DenseNet, achieves a recognition rate that situates
between the two individual models. This outcome can
be attributed to the ResNet’s remedies to the DenseNet’s
weakness to some extent.

When testing samples undergoing glare removal in Test
A2, we find that the Top-1 recognition rates ranged from
10.98% to 15.42%, which are even lower than the recognition
rates evaluated in Test A1. This result indicates that our glare
removal method may occasionally repair some normal pixels
with improper pixels, e.g. color-distorted pixels, from other
images. Consequently, some samples correctly recognized
in Test A1 are misclassified, thereby causing a decreased
recognition rate in Test A2. To rectify this, applying color
correction after glare removal can eliminate the side effects
and improve the recognition rate.

In Test A3, applying color correction to the test sam-
ples significantly reduces color variability across samples,
leading to a substantial increase in Top-1 recognition rates
of the three models to 80.65%, 83.76%, and 89.21%,
respectively. These results underscore the critical role of
color in medication identification. Since both the testing
set and the training set now exhibit a comparable level
of diversity in appearance changes, DenseNet121 quickly
outperforms ResNet101 due to its better integration of cross-
level features. As a result, ResDenseNet also begins to extract
superior cross-level features through the DenseNet121 and
experiences a significant increase in recognition accuracy,
making its recognition rate the highest among the three
models.

Test A4 performs both glare removal and color correction
on the test samples and all three models show further
improved Top-1 recognition rates, ranging from 89.33%
to 96.85%. ResDenseNet remains in the leading position.
Table 5 shows that all three models perform better in Test
A4 than in Test A5, implying that the glare removal and color
correction enable a model trained with samples of uniform
variations to outperform a model trained with samples of
diverse variations.

We also test the three models on the challenge dataset,
mentioned in Section IV-A, to assess their adaptability to
different imaging conditions. Using this dataset, we repeat
the tests of the above five options for each model. These
five tests are identified as B1∼B5 in Table 5, respectively.
The achieved rates shown in Test B1 again indicate that
the models cannot well handle interferences not present in
the training dataset because the samples do not undergo
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FIGURE 13. Some results of color correction. Odd rows show input image samples, and even rows show the results of color
correction,

FIGURE 14. The results of color checker registration in color correction
for three example cases. Each pair of matched corresponding points is
connected with a colored line.

glare removal and color correction. However, in Test B4,
it becomes evident that applying our proposed preprocessing
methods still significantly improves the ResDenseNet’s Top-
1 recognition rates from 15.65% in Test B1 to 82.83%. On the
contrary, as shown in the results of Test B5, themodels trained
with diverse samples attain Top-1 recognition rates of merely
around 34.23∼35.86%, indicating that their adaptability to
new imaging conditions cannot be improved solely by data-
driven training. These results verify that our proposed glare

FIGURE 15. The results of YOLOv5’s detection for four example cases.

FIGURE 16. The identification results for the four example cases given in
Fig. 15 using ResDenseNet.

removal and color correction methods significantly improve
each model’s adaptability even though the model is trained
with only a dataset that encompasses uniform appearance
variations.
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TABLE 5. Evaluated Top-1, Top-3, and Top-5 recognition rates of different recognition models using different testing options.

FIGURE 17. The case missed by YOLOv5’s detection.

E. DISCUSSIONS
The experimental results indicate that our glare removal
technique is notably effective when applied to images of
medication packages taken under our designed imaging
apparatus. The key to the technique’s success is utilizing
two distinct images captured from closely situated positions,
specifically 0.5mm to 1cm apart. This spatial arrangement
was empirically determined to minimize the likelihood of
glare reflections affecting the same regions in both images
and to maintain a sufficient overlap between the two images
for stable registration, thereby enabling the method to repair
glared pixels in one image using the non-glared pixels from
the other. Our other findings reveal that utilizing a color
checker with regular grid patterns in the imaging setup
significantly improves the stability of image registration,
especially under the controlled environment that our imaging
apparatus offers. Since the transparent medication packages
would not obscure the color checker under the operation of
the imaging apparatus, its grid patterns remain consistently
visible, thereby contributing to stable registrations. The
correction results maintain a remarkable level of color
constancy across all test samples. This can be primarily
attributed to a good color correction function estimated from
the stable and accurate registration between the reference

color checker and the captured ones. Again, this is facilitated
by the color checker’s regular grid patterns which also can
reduce the demand for a sophisticated method for feature
detection.

As to medication detection, we have some findings from
the experimental results.

• Focusing the YOLOv5’s detection solely on two
primary object categories, namely, the medication
and the color checker, reduces the complexity of
distinguishing subtle features among many different
types of medications, thereby enhancing its detection
accuracy.

• Pre-training YOLOv5 using the pretraining dataset is
crucial in bolstering its ability to manage various appear-
ance variations effectively. Without such pretraining, the
detection accuracy of YOLOv5 would not achieve the
elevated levels attained in our experiments.

• Our glare removal feature can mitigate false positives
caused by glare interference, effectively addressing a
limitation on YOLOv5’s data-driven learning.

Analyzing the results of medication identification, our
observations are itemized as follows.

• The recognition rate of ResDenseNet soars from 15.19%
in Test A1 to 89.21% in Test A3. This improvement
underscores the pivotal role of color fidelity in med-
ication identification tasks, thereby emphasizing the
importance of the color correction method in enhancing
medication recognition.

• The results of Tests A3, A4, B3, and B4 show
that color correction plays a crucial role in boosting
the performance of ResNet and DenseNet, thereby
facilitating the effective integration of both net-
works in our ResDenseNet to improve performance
further.
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• Applying glare removal and color correction in Test
B4 significantly improved the Top-1 recognition rates
to around 78.5% ∼ 82.83%. Interestingly, relying
solely on data-driven training did not improve adapt-
ability, as shown in Test B5, with rates only reach-
ing around 34.23 ∼ 35.86%. This finding reiter-
ates that our proposed preprocessing techniques are
instrumental in enhancing model adaptability beyond
what can be achieved through diversifying the dataset
alone.

• The attained Top-5 recognition rate of our system is as
high as 99.96%, implying that our system also has good
potential to serve as an excellent medication retrieval
system for searching similar medications through image
queries.

• Suppose that a further improvement on the Top-1 recog-
nition rate (96.85%) is required. A possible approach
is to concentrate solely on re-ranking the top five
candidates of each recognition outcome, disregarding
the other 213 types of medications, through another
stage of a finer-grained identification process.

Regarding the execution speed of this system, we use the
system to recognize 218 images and count the processing
time for each processing stage. We have tabulated the
average percentage of total processing time taken by each
processing stage, as shown in Table 6. According to the
tabulated data, our system recognizes about one image per
second. Though the recognition speed is not very impressive,
it still matches the speed of the conveyor’s mechanical
transportation and wireless transmission of images on our
automatic imaging apparatus. The data from the table
indicates that color correction and glare removal take up
most of the processing time. These two operations not
only require feature point detection and matching but also
necessitate updating all pixels in the entire image. Moreover,
they cannot benefit from GPU acceleration, making them
more time-consuming. To assess the computation costs of
the three recognition models, we use the THOP package to
count the computational operations in ResNet, DenseNet,
and ResDenseNet models, obtaining 4.22G, 5.91G, and
17.53G in terms of MACs (Multiply-Accumulate Opera-
tions), respectively. The higher computation costs of Res-
DenseNet come from the independent operations performed
in ResNet and DenseNet backbones. To reduce the costs,
inventing an architecture to facilitate the sharing of neural
layers between the two backbones could be a possible
solution.

While the current system establishes a robust foundation
for AMI, it has limitations. These include mutual occlusions
ofmedications in a package, which can compromise detection
and identification accuracy, and the need for adaptability
to accommodate new types of medications, which requires
retraining all deep learning models. Another limitation lies
in detecting medications whose colors closely match the
background, as observed in our YOLOv5 experiments.
Addressing these limitations will be essential for refining

TABLE 6. The percentage of time taken by each processing stage.

the system’s capabilities and ensuring its adaptability and
reliability in diverse conditions.

V. CONCLUDING REMARKS
In this paper, we present solutions to address the challenges
of glare reflection and color distortion in identifying med-
ications with transparent packaging. Our solutions incor-
porate two preprocessing methods: one for glare reflection
removal and the other for color distortion correction. Both
methods employ image registration techniques to estab-
lish locational correspondences of pixels across multiple
images.

Through extensive experimentation, we have demonstrated
that our preprocessing methods allow deep learning models
trained with only a dataset of preprocessed samples to
achieve recognition rates comparable or even superior to
those trained with datasets encompassing diverse appearance
variations. Furthermore, our proposed preprocessingmethods
enable the models to better adapt to varying imaging
conditions.

For our medication identification module, we propose the
ResDenseNet architecture to combine the strengths of the
ResNet and DenseNet networks, specifically their ability to
integrate cross-level features through skip connections. As a
result, our ResDenseNet can better distinguish medications,
achieving a higher recognition rate than either of the
individual networks.

Aiming at removing the limitations of the current system,
future work will focus on implementing advanced techniques
such as generative deep learning models to recover missing
appearances of medications due to mutual occlusion, few-
shot learning to adapt the system to new types of medications
with limited labeled data, and the utilization of multiple
lighting sources with distinct color tones to increase color
differences on the different surface materials of medications
and the background. We believe these forthcoming advance-
ments will significantly enhance the system’s accuracy and
adaptability, making it more viable and deployable in real-
world scenarios.
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