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ABSTRACT As an important aspect of reliability theory, availability has now been considered a very
meaningful design criterion of repairable system. This paper investigates the availability evaluation and
design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The
system availability is evaluated by extending the recursive algorithm (RA) and universal generating function
(UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve
the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator,
which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed
two system design optimization models under availability or cost constraint respectively, and genetic
algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight
distribution of multi-state components of the suggested system. Finally, through numerical examples, the
flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition,
two evaluation methods are compared to show that the customized UGF method features higher generality
than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case
of increasing component quantity and state. The results can be helpful for engineers to optimize the design
of complex systems.

INDEX TERMS Multi-state k-out-of-n: G system, availability, design optimization, universal generating
function, recursive algorithm.

I. INTRODUCTION
In traditional binary reliability/availability studies, a system
or component is typically assumed to have two states: com-
pletely working or totally failed. However, complex systems
in the real-world, such as power systems, communication
systems, and production systems [1], [2], [3] etc., often
present multiple states during operation, and different states
have different performance rates, which are called multi-state
system (MSS). As a more flexible and accurate tool for
complex system analysis, the MSS model has been widely
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studied, because it can characterize the multi-state deteriorat-
ing nature of complex systems [4].

The k-out-of-n structure is widely used in both industrial
and military systems [5]. An n-component system is said to
be a k-out-of-n system, 1 ≤ k ≤ n, if it operates as long as
at least k components out of n operate [6], [7]. Two general
types of generalized MSS models are obtained from the
binary k-out-of-n: G systems. The first category comprises
component-based models, such as multi-state k-out-of-n: G
systems [8], [9] and multi-state consecutive-k-out-of-n: G
systems [10], where the state of the system depends on the
number of components in a specified state space. Here, k
represents the threshold of the number of components when
the system is working. The second type is weighted-based
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systems, such as multi-state weighted k-out-of-n: G systems
[7], [11], where the state of the system depends on the weight
of the components. Here, k is the weight threshold for the
system work. The ‘‘weight’’ (or performance rate) of each
component represents its utility. When the weight of each
component is equal to one, the multi-state weighted k-out-
of-n: G system can be simplified to a multi-state k-out-of-n:
G system. However, Levitin [12] pointed out that these two
types of models cannot be mapped to each other, this means
that the two elements of quantity and weight cannot be sub-
stituted for each other in the definition of system state.

In most studies involving generalized multi-state k-out-
of-n: G systems, the quantity threshold of the component
and the performance threshold of the system are usually
considered individually, and assumed to be constant [13],
[14], [15], [16]. In fact, system states may be affected by both
quantitative and weight elements in real-world applications.
For example, a rope transportation system used to transfer
ships coming to the shipyard for repairs from platform to
the repair post and back from repair post to the platform
[17]. The mission of taking the ships coming to the shipyard
for repairs can be divided into five stages, which are ship
docking, ship’s transportation to the repair post, the repair
measures, ship’s transportation to the platform, and ship
undocking. Depending on its mission stage and operating
environment, the requirement of system transport capacity
will change constantly. Moreover, the system is composed of
three broaching machines working independently equipped
in steel ropes. Depending on the weight and length of the
vessel and the repair station at which the vessel should be
trans-shipped, at least one broaching machine will be used to
transport the ships on the traverse, and in the extreme case
of trans-shipping large vessels of more than 1,800 tons, all
three pulling machines are operated. We consider broaching
machine as basic components of the system. The broach-
ing machine presents a variety of states corresponding to
different performance levels depending on the degree of
corrosion. The system can successfully complete the trans-
port mission only when the transport capacity of the system
reaches the required value, and at least a fixed number
of broaching machines transport the ship on the wire rope
simultaneously.

Both quantity requirement of and random performance
requirement should be considered in the availability def-
inition for above system. The existing MSS availability
evaluation model can no longer accurately describe the state
of this complex system and evaluate its availability. Consid-
ering both quantity threshold and weight threshold, Eryilmaz
[18] proposed a recursive formula for the state probability of
a k-out-of-n: G system. However, the multi-state characteris-
tic of system and the randomness of performance threshold
were not considered in the analysis of system reliability.
To address above problem, this paper proposes an availability
evaluation method for MSS that comprehensively consid-
ers quantity and random weight threshold. Furthermore, the

reliability design optimization problem of the components in
the system is studied.

As the main availability evaluation methods of MSSs,
Universal generating function (UGF) technique and recursive
algorithm (RA) are widely used in both component-based
systems, such as multi-state k-out-of-n: G systems [19], and
weighted-based systems, such as multi-state weighted k-out-
of-n: G systems [20], [21], [22]. The UGF method is a
simple and efficient method for discrete random variable
combination operations. By designing combination operators
and filter operators, the availability of systems with different
topologies, interactions between different elements, and dif-
ferent physical performance indicators can be evaluated [4].
More information on the UGF technique can be found in [23].
Compared with the UGF method, RA is more efficient in
reliability evaluation for some classical topological systems
[24], [25]. However, the traditional RA is based on the total
probability theorem and is suitable for the case where the
weight threshold follows a discrete random distribution. It is
difficult to evaluate the availability of the system accurately
when the system weight variables obey the continuous ran-
dom distribution. In view of the above characteristics of
the two methods, this paper presents the availability model
and algorithm of MSS with quantity threshold and ran-
dom weight threshold based on the UGF method and RA
respectively.

Previous design optimization studies of MSS mainly focus
on the problem of determining the optimal redundancy level
for each component in the system, where the reliability value
of the component is known [26], [27]. However, when we
want to determine what components are optimal to use in
a system, the reliability characteristics of the components
themselves are more of a concern. Li and Zuo [28] proposed
two optimization models of a multi-state weighted k-out-of-
n: G system with a fixed weight threshold, which considered
system availability constraints or cost constraints respec-
tively. The optimal reliability distributions and performance
(weight) distributions of multi-state components are obtained
by running the GA program. Faghih-Roohi et al. [17] devel-
oped an optimization model to minimize the expected total
system cost subject to system availability requirements. The
above optimization model only considers the weight thresh-
old of the system, and the value of the threshold is fixed.
To the best of our knowledge, few studies on availability
optimization problems consider the quantity threshold and
random weight threshold.

To address the above problem, two design optimization
models for MSS that consider both the quantity threshold and
random weight threshold of components are proposed in this
paper. The first model minimizes the expected total cost of
the system while satisfying the system availability require-
ments. The other is to maximize the system availability for a
given budget. Due to the low differentiability and continuity
requirements of the objective function and fast global conver-
gence of GA, it is widely used to solve various optimization
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problems of MSSs [29], [30]. The optimal component reli-
ability distributions and component performance (weight)
distributions in this paper are obtained using GA.

The main contributions of this paper are summarized
below.

• The quantity requirement and random performance
requirements are first considered comprehensively in
the MSS model. Comparing to the classical multi-state
k-out-of-n: G systems [19], and the multi-state weighted
k-out-of-n: G systems [20], [21], [22], the proposed
model is more general and realistic.

• The customized UGF method and RA are proposed
respectively for evaluation the system availability. Fur-
thermore, we verify the effectiveness of the proposed
algorithms in different scenarios and compare the effi-
ciency of the two algorithms.

• The system design optimization models are proposed
respectively to access the optimal state probability
distribution and weight distribution of multi-state com-
ponents of the suggested system.

The remainder of this paper is organized as follows.
In Section II, the availability definition of the system con-
sidering the quantity threshold and random weight threshold
are presented. In Section III, based on the UGF and RA
respectively, two evaluation methods for assessing sys-
tem availability are proposed. In Section IV, considering
the constraints of cost or availability, system reliability
design optimization models are established, and the GA
are presented to optimize the component reliability distri-
butions and performance (weight) distributions. Section V
shows a numerical example of a marine transportation sys-
tem. Finally, conclusions and further work are given in
Section VI.

II. SYSTEM DESCRIPTION
The considered system consists of N (N≥ 2) multi-state com-
ponents. The states of system and components are defined as
discrete states from perfectly functioning to complete failure.
More specifically, the system and components maybe inM+

1 possible states: 0, 1, 2, . . . ,M , where ‘‘M ’’ represents the
perfect functioning state and ‘‘0’’ represents the complete
failure state. The performance rate of component i in state
j(j= 0, 1, 2,..,M ) is denoted as gi,j. When component fails
completely, gi,j = 0.

We assume that the system performance depends determin-
istically on the performance of each of the component. The
deterioration of components would lead to a change of their
states and the degradation of their performance rates, which
may negatively affect system performance.

The proposed system is in state j or above, if and only if its
performance rateG is greater than or equal to a predetermined
value wj and no less than kj components are in state j or above
simultaneously. Let φ denote the state of the system, then the
state probability of the system in state j or above, that is, the

availability of the system can be defined as

pr (φ ≥ j) = pr

((
N∑
i=1

Xi ≥kj

)
∩
(
G ≥ wj

))

= pr
(
G ≥ wj

)
pr

(
N∑
i=1

Xi ≥kj
∣∣G ≥ wj

)
, (1)

where wj and kj are dual requirements for the system to
be in state j or above, kj indicates the quantity requirement
of components in state j and above, wj denotes the weight
requirement of the system, andwj is a random variable greater
than 0 and subject to an arbitrary distribution. When compo-
nent i is in state j or above, Xi = 1; otherwise, Xi= 0. Due to
state 0 is the worst performing state, we have pr (φ ≥ 0) = 1.
The above state definition of the system is a function of

the component quantity threshold and system random weight
threshold.Whenwj= 0, the proposed system is simplified to a
multi-state k-out-of-n: G system, and when kj= 0, the system
is simplified to a multi-state weighted k-out-of-n: G system.
In (1), the first part of the conditional probability form rep-

resents the system state probability that satisfies the weight
requirement, and the second part represents the conditional
probability of satisfying the quantity requirement under the
condition of satisfying the weight requirement. Because Xi
and G are not independent and cannot be mapped to each
other, it is difficult to calculate the value of the second
part based on the one-to-one correspondence between the
component state probability and the state performance rate.
In particular, when the system scale is expanded, this map-
ping relationship would be more complicated.

The concerned system is further described as follows:

• The components in the system are independent.
• The component failure can be found immediately and
repaired in time, and the repair time of the components
is exponentially distributed.

• The degradation of each component appears as a homo-
geneous continuous time Markov process. The state
transition rate matrix of component i is

Ei =



λiM ,M λiM ,M−1 λiM ,M−2 · · · λiM ,1 λiM ,0
0 λiM−1,M−1 λiM−1,M−2 · · · λiM−1,1 λiM−1,0
0 0 λiM−2,M−2 · · · λiM−2,1 λiM−2,0
...

...
...

. . .
...

...

0 0 0 0 λi1,1 λi1,0
µi
0,M 0 0 0 0 λi0,0


,

(2)

where λiM ,0 indicate the failure rate from a better state M to
a worse state 0 and µi

0,M indicate the repair rate.

III. SYSTEM AVAILABILITY EVALUATION
In this section, we propose two availability evaluation meth-
ods for the suggested system using RA and UGF technique.
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A. RECURSIVE ALGORITHM
In this section, the RA of the binary weighted k-out-of-n: G
system is extended to multi-state cases.

Eryilmaz [18] gave the recursive equation to compute the
binary weighted k-out-of-n: G system state probabilities. For
N> 0 and k≤N , by condition the values of XN and gN (gN is
the performance rate of component N when it is working),

Q (w, k,N )

= pr

((
N−1∑
i=1

Xi ≥ k − 1

)
∩

(
N−1∑
i=1

giXi ≥ w− gN

))
pN

+ pr

((
N−1∑
i=1

Xi ≥ k

)
∩

(
N−1∑
i=1

giXi ≥ w

))
(1 − pN ) .

(3)

with Q (w, k,N ) = 1 for w≤ 0 and k ≤ 0; Q (w, k, 0) = 0
for w> 0, k> 0. In (3), w is the weight threshold of system,
k represent the quantity requirement of working components.
pN = pr (XN = 1) is the probability that component N is in
normal working condition.

When (3) is extended to the component of the proposed
multi-state weighted k-out-of-n: G system, pN should be
replaced by the sums of all the probabilities that the com-
ponent is in states j and above, that is states j, j + 1, . . . ,
through M , and (1 − pN ) should be replaced by the sums of
all the probabilities that the component is in other states, that
is states 0, 1, . . . , through j− 1. And accordingly, gN should
be replaced by the performance rate of component N when
it is in state j and above. Therefore, (3) should be revised to
read (4), as shown at the bottom of the page.

Since the state of each component corresponds to the per-
formance rate individually, there is pr

(
w = gN ,j

)
= pN ,j.

Then, the recursive equation for the system availability can
be expressed as follows

A
(
wj, kj,N

)
= Qj

(
wj, kj,N

)
=

M∑
l=j

A
(
wj − gN ,l, kj − 1,N − 1

)
pN ,l

+

j−1∑
l=0

A
(
wj, kj,N − 1

)
pN ,l . (5)

In (5), the system weight threshold wj is constant. The
boundary conditions are: A

(
wj, kj,N

)
= 1 when wj≤ 0, and

kj≤ 0; A
(
wj, kj, 0

)
= 0 when wj> 0, kj> 0.

When the system weight threshold wj follows a dis-
crete random distribution (such as a two-point distribution,
binomial distribution, Poisson distribution, geometric distri-
bution, etc.), the system availability can be obtained based on
the above equation. All possible values ofwj form collectively
exhaustive events, according to the total probability theorem,
the availability of the system is given by (6), as shown at the
bottom of the page, whereH is the number of possible values
of the random variable wj. whj is the hth (h = 1, 2, . . . ,H)

possible value of wj.

B. UGF METHOD
In this section, system availability with different thresholds
is evaluated by designing the operators in the UGF. There
are usually two types of operators in the UGF methods. One
is the combinatorial operator, which essentially defines the
operational rules of discrete random variables and is used to
describe the structure of the system in this paper. The other
operator is used to filter the random variables that meet the
filter conditions, and it is used to define the requirements that
the system needs to satisfy for normal operation in this paper.
The key of availability evaluation is to provide a random joint
operator that combines the quantity and weight threshold.

The specific implementation process is as follows: the
system state probability distribution meeting the random
weight threshold is calculated according to the cumulative
distribution of the system weight threshold firstly, and then,
the system state probability meeting the quantity threshold is
extracted through screening.

Let the vector pi (t) =
(
pi,0 (t) , pi,1 (t) , . . . ,pi,M (t)

)
denote the state probability of component i in states
0, 1, 2, . . . ,M at time t . Then, the Kolmogorov differential
equation for the multi-state component i is

dpi (t)
dt

= pi (t)Ei. (7)

Qj
(
wj, kj,N

)
=

M∑
l=j

[
pr

((
N−1∑
i=1

Xi ≥ kj − 1

)
∩

(
N−1∑
i=1

giXi ≥ wj − gN ,l

))
pr
(
w = gN ,l

)]

+

j−1∑
l=0

[
pr

((
N−1∑
i=1

Xi ≥ kj

)
∩

(
N−1∑
i=1

giXi ≥ wj

))
pr
(
w = gN ,l

)]
(4)

A
(
wj, kj,N

)
=

H∑
h=1

 j−1∑
l=0

pN ,lA
(
whj , kj,N − 1

)
+

M∑
l=j

pN ,lA
(
whj − gN ,l, kj−1,N − 1

) pr
(
wj = whj

) (6)
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The sum of the probabilities of all the states of component i
at time t is 1,

pi (t)
T

· 1 = 1, (8)

where 1 is anM+1 column vector in which all elements are 1.
Assume that all components are in the working condition at
t= 0, that is

pi,0 (0) = pi,1 (0) = . . . = pi,M−1 (0) = 0, (9)

pi,M (0) = 1. (10)

The state probability of component i can be obtained by
solving (7), (8), (9) and (10). The steady state probability can
be calculated using t→ ∞.

Thus, the UGF of component i can be represented by the
following polynomial function

Ui (z) =

M∑
j=0

pi,jzgi,j . (11)

Based on (11), the parallel structure composition operator
�par can be used to obtained the system UGF. For a system
consisting of N components in a parallel structure, the UGF
is

U (z) = �par (U1 (z) ,U2 (z) , . . . ,UN (z))

=

M∑
j=0

M∑
j=0

. . .

M∑
j=0

(
N∏
i=1

pi,jzϕ(g1,g2,...,gN )

)
, (12)

where ϕ
(
g1, g2, . . . ,gN

)
is the system structure function.

gi =
(
gi,0, gi,1, . . . ,gi,M

)
is the performance vector of com-

ponent i corresponding to states 0, 1, 2, . . . ,M . The system
performance G is the sum of the performances of component
i in state j or above, that is

ϕ
(
g1, g2, . . . , gN

)
= G =

N∑
i=1

Xigi,j. (13)

Then, when the weight threshold is fixed, the probability
that the system is in state j or above can be calculated by
designing a joint operator δ to introduce the quantity thresh-
old and weight threshold

Qj
(
wj, kj,N

)
= δ

(
U (z) ,wj, kj,N

)
= δ

 M∑
j=0

M∑
j=0

. . .

M∑
j=0

(
N∏
i=1

pi,jzϕ(g1,g2,...,gN )

)
,wj, kj,N


=

M∑
j=0

M∑
j=0

. . .

M∑
j=0

(
N∏
i=1

pi,jzϕ(g1,g2,...,gN )

)
· 1 (φ ≥ j)

=

M∑
j=0

M∑
j=0

. . .

M∑
j=0

(
N∏
i=1

pi,jzG
)

·

× 1

((
N∑
i=1

Xi ≥kj

)
∩
(
G ≥ wj

))
, (14)

where 1(·) is the indicator function, 1(TURE)=1, 1 (FALSE)=0.
It is assumed that the system operates normallywhen it is in

the j or above state. When the weight thresholdwj is constant,
the availability of the system can be expressed as

A
(
wj, kj,N

)
= Qj

(
wj, kj,N

)
= U (z) · 1

((
N∑
i=1

Xi ≥kj

)
∩
(
G ≥ wj

))
.

(15)

Furthermore, when the weight threshold wj changes ran-
domly, it is difficult to directly screen out the system state
probability that satisfies both the quantity and weight thresh-
olds. In this paper, a new stochastic joint operator 1δ is
proposed, and the probability of the system in state j and
above with a random weight threshold is given as

Qj
(
wj, kj,N

)
= 1δ

(
U (z) ,wj, kj,N

)
= 1δ

 M∑
j=0

M∑
j=0

. . .

M∑
j=0

(
N∏
i=1

pi,jzG
)

,wj, kj,N


=

M∑
j=0

M∑
j=0

. . .

M∑
j=0

(
N∏
i=1

pi,jpr
(
G ≥ wj

))
· 1

(
N∑
i=1

Xi ≥kj

)
.

(16)

If the cumulative distribution function of the systemweight
threshold wj is F

(
wj
)
, then the availability of a system with

random weights is

A
(
wj, kj,N

)
=

M∑
j=0

M∑
j=0

. . .

M∑
j=0

(
N∏
i=1

pi,jF
(
wj
))

· 1

(
N∑
i=1

Xi ≥kj

)
. (17)

The above system availability evaluation method intro-
duces quantitative and weight elements, and considers the
randomness of the system weight threshold, which enhances
the flexibility of the method and is more realistic than the
existing availability model.

IV. OPTIMIZATION OF COMPONENT DESIGN
This section addresses the problem of optimizing the reli-
ability distributions and performance (weight) distributions
of multi-state components in the system. Considering the
availability or total cost of the system as constraints, two
optimization models are established.

A. OPTIMIZATION MODEL
The system optimization model with the system availability
constraint is represented as Model 1, as shown below

Min C =

N∑
i=1

ci +
(
1 − A

(
wj, kj,N

))
cj

s.t. A
(
wj, kj,N

)
≥ Â,
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M∑
j=0

pi,j = 1,

0 ≤ pi,j ≤ 1,

gi,0 = 0,

gi,j ≥ 0, j > 1, (18)

where C denotes the total cost of the system. ci denotes the
design cost of component i.cj denotes the penalty cost of the
system failure and is a constant greater than 0. Â is the design
requirement for the system availability.

The system optimization model considering the total cost
constraint is represented as Model 2, as shown below

Max A
(
wj, kj,N

)
s.t.

∑N

i=1
ci +

(
1 − A

(
wj, kj,N

))
cj ≥ Ĉ∑M

j=0
pi,j = 1,

0 ≤ pi,j ≤ 1,

gi,0 = 0,

gi,j ≥ 0, j > 1, (19)

where Ĉ is the maximum acceptable values of total cost.
In the above models, the system availability A

(
wj, kj,N

)
can be calculated from (6) and (17). The design cost of com-
ponent ici mainly consists of two main parts. One part is the
cost related to the state probability of the component, and the
other part is the cost related to the component performance
rate.

ci = cpi + cgi , (20)

where

cpi = exp

(1 − fi)

∑M
j=1 pi,j − pimin

pimax −

M∑
j=1

pi,j

 . (21)

cgi = viexp
(∑M

j=0
pi,jgi,j − gimin

)
. (22)

Equation (21) is a function to describe the relationship
between the component cost and component reliability [28].
cpi is the cost associated with the reliability (state probability)
of component i.

∑M
j=1 pi,j represents the reliability of com-

ponent i. There are three parameters in (21), namely, fi, pimin
and pimax. The first parameter fi, called the feasibility param-
eter, is a positive constant, which represents the difficulty in
increasing the reliability of component i relative to the rest of
the components in the system, and it assumes values between
0 and 1. pimin is the initial (current) reliability value of the
component i obtained from the failure distribution of that
component and for the specified time. pimax is the maximum
achievable reliability of the component i. When pimin and
pimax are fixed, the closer fi is to 1, the higher the possibility of

improving the component reliability and the lower the design
cost.

Equation (22) is a function to describe the relationship
between the component cost and component performance
rate [28]. cgi is the cost of component i in terms of the relation-
ship between component performance rate and component
cost. gimin indicates the minimum value for the weighted
average of the component i’s performances in all possible
states. vi is the feasibility parameter, indicate the feasibility of
increasing the performance rate of component i. The higher
the vi, the lower the cost.

Furthermore, the sum of the state probabilities of each
component and expected performance rate of each compo-
nent should satisfy the following inequalities

pimin ≤

M∑
j=1

pi,j ≤ pimax, (23)

M∑
j=0

pi,jgi,j ≥ gimin. (24)

In optimization Model 1, the total cost of the system is
minimized under the constraint of availability. Model 2 max-
imizes the system availability under the constraint of the
total system cost. The decision variables of the two optimiza-
tion models are the component state probability distribution
p =

(
p1, p2, . . . , pN

)
and the component weight distribution

g =
(
g1, g2, . . . , gN

)
. The number of decision variables

is related to the number of components and the number of
component states, and can be expressed as 2N (M + 1). Both
Model 1 and 2 are nonlinear optimization problems with
discrete random decision variables, whose feasible solution
space increases exponentially with an increase in the number
of components and the number of states of components in the
system.

B. OPTIMIZATION ALGORITHM
In this section, the Augmented Lagrange Genetic Algorithm
is used to solve the above nonlinear constrained optimiza-
tion models. The penalty function is used to transform
the complex constrained optimization problem into a sim-
ple unconstrained optimization problem. At the same time,
to avoid premature convergence, the population size is
enlarged and the population diversity is enhanced.

The objective functions and nonlinear constrains in
Model 1 are expressed in penalty function forms as follows

Min C =

N∑
i=1

ci +
(
1 − A

(
wj, kj,N

))
cj

+ ηmax
((
Â− A

(
wj, kj,N

))
, 0
)

s.t.
M∑
j=0

pi,j = 1,

0 ≤ pi,j ≤ 1,
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gi,0 = 0,

gi,j ≥ 0, j > 1,

pimin ≤

M∑
j=1

pi,j ≤ pimax,

M∑
j=0

pi,jgi,j ≥ gimin, (25)

where η is the penalty factor, it is a large number.
The optimization function in theGA toolbox is tominimize

the fitness function, subsequently, Model 2 is rewritten as

Min − A
(
wj, kj,N

)
+ ηmax

((
N∑
i=1

ci +
(
1 − A

(
wj, kj,N

))
cj − Ĉ

)
, 0

)

s.t.
M∑
j=0

pi,j = 1,

0 ≤ pi,j ≤ 1,

gi,0 = 0,

gi,j ≥ 0, j > 1,

pimin ≤

M∑
j=1

pi,j ≤ pimax,

M∑
j=0

pi,jgi,j ≥ gimin. (26)

V. NUMERICAL EXAMPLES
In this study, the data of the ship transportation system in [17]
is used for example analysis. The transport system consists
of N= 3 independent broaching machines, numbered M1,
M2 and M3. The three broaching machines have different
capacities and each has four states 0, 1, 2 and 3. State 3 cor-
responds to the best operating state, with the highest load
capacity and the highest weight (performance rate); state 0 is
the failure state, with a weight of 0 and no-load capacity; and
states 1 and 2 are the degraded states between states 3 and 0.
In some systems, even in the lowest state, the components can
still contribute the basic capabilities to the system. However,
in this example, the performance of each broaching machine
in state 0 is assumed to be 0. The degradation of each broach-
ing machine appears as a homogeneous continuous time
Markov process, and maintenance is performed only when
the broaching machines completely fails. The state transition
rates of M1, M2 and M3 and the weights corresponding to
different states are shown in Table 1.

At least two broaching machines are required to transport
the ship during the transport mission, and the weight thresh-
old of the system is a random variable with a distribution
function of F

(
wj
)
. According to the above description, the

ship transportation system is a typical multi-state 2-out-of-3:
G system with a random weight threshold.

TABLE 1. State transition rates and performances of each broaching
machine.

FIGURE 1. Case 1: System availability with different quantity thresholds
and weight thresholds.

A. SYSTEM AVAILABILITY
Two methods of availability evaluation are proposed in this
paper. Among these, the RA is applicable to the case where
the weight threshold is a discrete random variable. The UGF
method has a wider range of application, and it is applicable
not only to the case of discrete random variables, but also
to the case of continuous random variables. To illustrate the
effectiveness of these two approaches, the availability of the
system is evaluated for three cases.

In the first case, to show the availability with different
quantity threshold and weight threshold,w1 is taken as a fixed
value and a three-dimensional plot showing in Fig.1 was used.
We moved through the axis ‘‘quantity threshold’’ from 0 to 3.
At the same time, we change the weight threshold values from
0 kg to 8000 kg.
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TABLE 2. Case 2: Distributions of weight threshold.

TABLE 3. Case 2: System availability with different distributions of
weight threshold.

In the second case, w1 is a discrete random variable.
In order to verify the correctness and effectiveness of the two
methods, the availability of the transportation system when
k1 = 0, 1, 2, 3 is evaluated separately for three different
weight threshold distributions by using the RA and UGF
method respectively. The different distributions of wj are
given in Table 2, and the results are shown in Table 3.
In the third case, w1 is a continuous random variable.

Let w1 follows the uniform distribution of intervals [a, b] kg
and the Gaussian distribution with a mathematical expecta-
tion of µ and a standard variance of σ 2, respectively, and the
system availability with different quantity thresholds is evalu-
ated separately under different weight threshold distributions.
The results are show in Fig. 2, 3, 4 and 5.

It is clear from above results of different cases that, for
different quantality thresholds, there are A (w1, k1,N ) ≤

A
(
w1, k ′

1,N
)
when k1 > k ′

1. This indicates that an increase
in the quantity threshold may lead to a decrease in system
availability. The system availability is equal when k1= 0 and
k1 = 1, because there must be at least one broaching machine
involved in the mission, regardless of whether there is a
quantality threshold of the broaching machine. When k1≥ 2,
system availability is unequal. In this case, the quantality
threshold affects the value of the system availability, the
larger the quantality threshold, the stricter the availability
requirements, and the lower the availability. The above results
show the influence of the weight threshold and quantity
threshold on system availability, and verify the effectiveness
of the availability evaluation method proposed in this paper

FIGURE 2. Case 3: System availability with different quantity thresholds
when weight threshold follows the uniform distribution of intervals [a, b]
(b=1000).

FIGURE 3. Case 3: System availability with different quantity thresholds
when weight threshold follows the uniform distribution of intervals [a, b]
(a=1000).

FIGURE 4. Case 3: System availability with different quantity thresholds
when weight threshold follows the Gaussian distribution with a
mathematical expectation of µ and a standard variance of σ2 (σ =3000).

under the condition that the quantity threshold and weight
threshold cannot map each other.
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FIGURE 5. Case 3: System availability with different quantity thresholds
when weight threshold follows the Gaussian distribution with a
mathematical expectation of µ and a standard variance of σ2 (µ = 4000).

In addition, using the method in [17], it can be observed
that when the weight threshold is 3000 kg, the instantaneous
availability of the system at a certain time is 0.8439. The
method in this paper can be used to obtain a steady-state
availability of the system is 0.8021 when the weight threshold
follows the uniform distribution of the interval [2000,3000]
kg. The method in this paper considers the quantity threshold
of component and random weight threshold of system, which
can better reflect the long-term state of the system, be closer
to engineering practice, and provide a more valuable refer-
ence for the design optimization of the system.

B. COMPARISON OF METHODS
This section compares the computing efficiency of the RA
and UGF method proposed in this article.

Computer programs for both methods were developed
using MATLAB 2020a. Under the premise that the sum of
the state probability of each component is 1, a randomnumber
between 0 and 1 is generated to represent the state probability
value of the component. Under the premise that the weight
of the component in the complete failure state is 0, a ran-
dom number between 0 and 2500 is generated to represent
the component weight. Assume that the weight threshold is
3000 kg. Then, the CPU times required by the two approaches
for different system sizes and different number of states are
given in Table 4 and 5.

As can be seen from Table 4 and 5, the CPU time required
by the UGF method increases more slowly than that of
RA as the number of components increases. When the val-
ues of the system parameters M and N are greater than
3 and 4, respectively, the CPU time required by the UGF
method is shorter than that required by the RA. This is
because that the UGF method filters out many items that
do not satisfy the quantity threshold of the component. The
computational complexity of the RA is the same as that of
the recursive method in [31], which is O

(
(M + 1)N

)
. The

proposed UGF method requires (M + 1 − j)kj (M + 1)N−kj

operations, the computational complexity of UGF can be

TABLE 4. CPU time comparison of two methods as a function of state
number of the component M (N= 5,k1= 4).

TABLE 5. CPU time comparison of two methods as a function of system
size N (M= 5,k1= 4).

TABLE 6. Related parameters of the transport system.

expressed as O
(
(M + 1 − j)kj (M + 1)N−kj

)
. In general, the

UGF approach is more computationally efficient than the RA
for the system in this paper.

C. OPTIMIZATION OF SYSTEM
Suppose that the shipyard decides to design a new trans-
portation system. The new transport system is still a
multi-state 2-out-of-3: G system, with a random weight
threshold w1, conforming to a uniform distribution of inter-
val [2000,3000] kg. In this case, the probability distribution
and weight distribution of the three broaching machines in
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TABLE 7. Optimization results of model 1.

TABLE 8. Optimization results of model 2.

different states are unknown. Therefore, it is necessary for
designers to optimize the state probability and weight of the
broaching machine.

In this section, the optimization models proposed in
Section IV are used to optimize the state probability and
weight of the broaching machine under the condition of
satisfying the availability requirements of the transportation
system or the total cost of system constraints respectively. The
values of the relevant design parameters for the transportation
system are shown in Table 6.

In order to study the influence of the quantity thresh-
old on the system design optimization, when the system
weight threshold follows a uniform distribution of interval
[2000,3000] kg. the GA program of MATLAB 2020a is used
to calculate the optimization results of the components quan-
tity threshold k1 = 0 and k1 = 3, respectively. In the penalty
functions, η= 100000. The population size (number of pop-
ulations) is set to 100, simulated generation (stall generation)
is 2000, crossover rate is 0.8, and mutation rate is 0.05.

In [32], the randomness of GA was addressed by running
the optimization process 30 times and selecting the optimal
fitness function value as the final optimization result. This
method is used to determine the optimization results in this
paper. First, the optimization results for k1 = 3 in Model
1and 2 are calculated and selected. Then, considering that the
increase of k1 may leads to a decrease of system availability,
and the penalty cost increases accordingly, the system cost
at k1 = 0 should be lower than the optimization results at
k1 = 3, and the system availability at k1 = 0 should be
higher than the optimization results at k1 = 3. Finally, the
optimization program is run 30 times, and the return values
of multiple groups of fitness functions are compared and
selected according to the above deductions, and the optimal
fitness function value is selected as the final result. The results
are given in Table 7 and 8, respectively.

As shown in Table 7 and 8, the optimal cost or optimal
availability of the system differs when the k1 takes differ-
ent values. In Model 1, the optimal cost of the system is
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Q (w, k,N ) =

∑
g≥aN

[
pr

((
N−1∑
i=1

Xi ≥ k − 1

)
∩

(
N−1∑
i=1

giXi ≥ w− g

))
pr (gN = g) pN

+pr

((
N−1∑
i=1

Xi ≥ k

)
∩

(
N−1∑
i=1

giXi ≥ w

))
pr (gN = g) (1 − pN )

]
. (27)

3.3398 when k1 = 0, whereas when k1 = 3, the optimal cost
of the system increases to 5.0965. In Model 2, the optimal
availability of the system is 0.9923 when k1 = 0, whereas
when k1 = 3, the optimal availability of the system decreases
to 0.9738. The above results indicate that the quantity thresh-
old may affect the optimization results when considering the
random weight threshold of the system. The reason is that the
quantity threshold makes the definition of system availability
more stringent, which leads to an increase in the system
cost. It is clear that considering the quantity threshold of
components when designing a system is necessary to achieve
a better trade-off between the availability and cost of the
system.

In addition to considering the weight threshold of the
system, this paper introduces the quantity threshold of the
component in the system, and takes into account the ran-
domness of the system weight threshold. Compared with
the optimization results in [17], the results in this article
consider more reasonable optimization conditions and obtain
more satisfactory optimization results. For example, when
the availability constraints are all 0.9, the optimal system
availability obtained in this paper is 0.9107, whereas the opti-
mization result of [17] is 0.9677. The corresponding system
cost is 7.354, which is also much higher than the cost value
of 3.3398 in this article.

VI. CONCLUSION
Considering the random performance requirements and com-
ponent quantity requirements during the execution of sys-
tem missions, the availability evaluation and optimization
problem of multi-state k-out-of-n: G system with random
performance requirements is investigated in this paper.
Two methods are proposed to evaluate system availabil-
ity. Moreover, the performance distribution and probability
distribution for each state of the component are optimized
using two optimization models that consider the total cost
constraint or availability constraint. A case study was con-
ducted to consider the effect of the introduction of a quantity
threshold on the system availability and optimization results.
It revealed that the proposed methods and models enables the
more accurate results when the system state be affected by
both quantitative and randomweight elements. Moreover, the
proposed UGF method has higher computational efficiency
and stronger universality than customized RA for the sug-
gested system.

These results can be applied to model and optimize
the availability of complex MSS with random performance

requirements in practical engineering applications. In future
research, different maintenance strategies can be introduced
based on this study, and other complex mission scenarios
can be taken into account to study the availability eval-
uation and optimization problems. In addition, the future
direction will be considered as the multi-objective opti-
mization of MSS considering random weight thresholds and
quantity thresholds can also be further studied, such as the
reliability-redundancy allocation optimization problem, join
optimization of the design and maintenance, etc. Further-
more, some of the latest machine learning methods can be
used to study the dynamic optimization problems related to
the system in this study.

APPENDIX
The further explanation of (3) are as follows
Equation (3) refers to (27), as shown at the top of the

page, in [18]. Equation (27) is designed to represent the
probability in the working state of a k-out-of-n: G system
with components having random weights. The basic idea of
(3) is similar to that of the algorithm in (27): we enumerate
the cases where component N is in different possible states,
and thus evaluate a system with N components via evaluating
several systems withN−1 components. For each certain state
on the right-hand side of (27), we need to reorganize w and
k . The idea is that if component N is in working state, the
required number of working components should be decreased
by one, and the required system performance should be
decreased by gN . On the contrary, the required number of
working components and system performance remain the
same.

In (27), the non-zero random weight gi of component
i is assumed to have a discrete probability distribution
with the support [ai, bi], i.e., pr

(
ai ≤ gi ≤ bi

)
= 1 for

0 < ai < bi < ∞.
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