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ABSTRACT Entropy is a crucial resource in the domains of cryptography, artificial intelligence, and science.
This paper introduces RAVA, a true random number generator based on avalanche noise. RAVA is an open-
source device designed to offer a transparent and customizable platform, making auditable and high-quality
entropy accessible to a wider audience. The device employs a differential design, which involves comparing
two similar noise sources to mitigate the impact of environmental factors. Furthermore, RAVA incorporates
a dual entropy core architecture featuring two independent entropy channels that generate random bytes
simultaneously. A stochastic model is theoretically derived and empirically confirmed, offering valuable
insights into the entropy extraction mechanism and allowing the estimation of the minimum bias attainable.
An implementation is presented as a discrete circuit with an ATmega32U4 microcontroller including a
USB interface, achieving an unbiased throughput of 136.0 Kbit/s without the necessity of post-processing
algorithms. The generated random bytes are evaluated for bias and serial correlation, their entropy is assessed
using NIST SP 800-90B estimators, and the randomness quality is verified using the NIST 800-22R1a test
suit. For comparison, the same tests are applied to a commercial device based on quantum optical phenomena,
revealing similar distributions for both devices across the studied metrics.

INDEX TERMS Random number generator, entropy source, reverse-biased diode, avalanche breakdown,
open-source hardware.

I. INTRODUCTION
True random number generators (TRNG) are devices that
perform measurements in fundamentally unpredictable phys-
ical systems to generate random outcomes. They are used
for various applications that rely on entropy as cryptography,
electronic games, and scientific simulations.

The outcome of an ideal TRNG is characterized by
uniform and unpredictable number sequences. If the device
generates a sequence of bits, uniformity means that each bit
should be 0 or 1 with 50% probability. The unpredictability
condition states that the previous outcomes cannot be used
to predict future measurements, meaning that the generated
bits are independent of each other. However, practical
TRNG implementations can exhibit imperfections due to
construction limitations and natural variations in electronic
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component properties. These factors can introduce biases
and correlations in the generated sequences, undermining
their randomness. To address these issues, deterministic post-
processing functions can be applied to the generated bit
sequences. The output of a post-processing function is a new
bit sequence, smaller than the one used as input but with an
enhanced entropy content.

The review literature [1], [2], [3], [4], [5] highlights
various categories of physical phenomena utilized as entropy
sources in TRNGs. These include thermal noise, electronic
noise (Shot, Zener, avalanche), chaos, phase jitter, radioactive
decay, and quantum optical effects. Examples of recent
developments can be found on [6], [7], [8], and [9],
highlighting the prevalent use of phase jitter and quantum
optical effects as entropy sources. These sources exhibit high
speeds, enabling throughputs on the order of millions or even
billions of bits per second. Moreover, their implementations
can be accommodated within compact designs, such as Field
Programmable Gate Arrays (FPGAs) systems, as well as
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integrated circuits like the IDQ250C3 and QN100 chips
produced by IDQuantique and Quside, respectively.

While compactness is often desirable in many applications,
it can hinder direct access to the entropy source. This
limitation can be advantageous in scenarios where security
is of utmost importance, as it prevents unauthorized access
to the circuit’s core elements. However, in applications
operating within a secure environment where the physical
presence of a malicious third party can be excluded, direct
access to the entropy source becomes valuable as it enables
auditing, i.e., allowing an investigator to examine the source
to verify its reliability. In contrast to phase jitter and quantum
optical effects, electronic noise sources are implemented by
discreet components that can be directly monitored with
voltage-measuring tools. As the TRNG design presented
herein aims to prioritize transparency, the scope of this paper
is directed to electronic noise sources, particularly the noise
found in reverse-biased Zener diodes.

A Zener diode is a semiconductor device composed of
a p-n junction with a unique characteristic known as the
Zener voltage, denoted as VZ. When subjected to a reverse
voltage that exceeds VZ, it conducts current reliably while
maintaining a VZ voltage across its terminals. This property
makes Zener diodes widely employed as voltage regulators
in various electronic circuits.

The noise observed in reverse-biased Zener diodes has two
possible mechanisms, Zener and avalanche breakdown [10].
Zener breakdown is a dominating effect in lower voltage
Zener diodes (VZ < 6 V). It is caused by electrons tunneling
from the valence band on the p side to the conduction band on
the n side. Avalanche noise is found in higher voltage Zener
diodes and is caused by a cascade effect involving electric
fields and free electrons, as detailed in [11]. When the current
flowing through the diode remains relatively low (<100µA),
the tunneling/cascade is set in a state of intermittent on-and-
off switching, causing the noise.

Both breakdown mechanisms are seen in an oscilloscope
as sudden voltage jumps across the diode. The inherent
time unpredictability of the voltage jumps constitutes the
source of entropy in reverse-biased Zener diodes. However,
those processes have some memory effect, meaning that an
instantaneous voltage across the component depends on the
system’s recent history. Consequently, voltage measurements
must be conducted over sufficiently large time intervals to
achieve bit independence, a matter which will be thoroughly
investigated in the following sections.

Various TRNG designs based on tunneling and avalanche
noise have been explored in the literature, as evidenced by
[12], [13], [14], [15], and [16]. The device introduced in
this paper, the RAVA circuit [17], stands out as a unique
design that combines what the author considers to be the
most favorable features found in the aforementioned designs:
the noise source differential design [13], [16], the use of
pulse counters for improving the bias [12], [13], the use of
operational amplifiers to buffer the noise and raise it to a

common DC level [14], the auditable design with monitoring
headers [16], and the open-source design [15]. RAVA is an
acronym derived from the words Random and Avalanche,
symbolizing the device’s foundation in utilizing avalanche
noise as an entropy source.

While entropy sources based on avalanche noise have been
extensively explored in recent decades, the contribution of
the RAVA design resides in its singular design summarized
as an open-source, fully auditable TRNG featuring two
independent randomness cores operating within a differential
framework. Currently, there’s a shortage of open-source
designs matching the trustworthiness level of the commercial
TRNGs employed by government agencies and corporations.
The RAVA device aims to bridge this gap by offering
a solution where reliability is achieved through inherent
quality, absolute transparency, and consensus within the
users’ community. The open-source aspect, as illustrated by
the Arduino example, has the potential to extend the reach
of technologies. In the case of RAVA, it may expand the
access of auditable and high-quality entropy for a wider
audience.

The RAVA device can find application in various domains,
including:

• Personal privacy: The RAVA circuit can enhance privacy
in cryptography and blockchain applications. The exis-
tence of a high-quality open-source device benefits such
niche where budget restrictions may apply.

• Scientific research: There are a considerable number
of studies relying on pseudo-random generators that
could benefit from true randomness. The RAVA circuit
can be applied in Monte Carlo simulations, random
weighting for neural networks, random timing in
cognitive research, random assignment of groups and
conditions in double-blind studies and blind analysis,
among other uses. Transparency is crucial in scientific
applications, allowing researchers to fully understand,
test, and monitor the used randomness source.

• Maker community: The RAVA circuit can be used to
create unpredictable behavior for artificial intelligence
in robotics and games. Customizability is a critical
aspect in these domains. The circuit allows integration
with sensors and other devices through exposed interface
headers. Additionally, firmware upgrades enable users
to tailor the circuit’s behavior and implement new func-
tionalities. In a system comprisingmultiple components,
the RAVA’s microcontroller can serve as the central
processing unit, orchestrating its operation.

• Arts projects: The RAVA circuit can be utilized to
create immersive experiences within installation art-
works. By integrating the circuit, artists can generate
unpredictable variations of images, colors, patterns,
sounds, and music in real time. This capability adds
an element of surprise, captivating the audience and
fostering a sense of discovery within the artistic
experience. In digital arts, randomness is applied in
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diffusion models, i.e., neural networks that generate
visually compelling images from textual inputs.

• Educational projects: The RAVA circuit can be
employed as an educational tool as its usage incites users
to delve into electronics and software programming.
Additionally, toy experiments producing random bits
can teach concepts related to statistics and the scientific
method. The users can learn more about all the
mentioned fields as they investigate the circuit, possibly
guided by didactic material and online tutorials.

When evaluated alongside high-end or commercially
available solutions, a limitation of the RAVA circuit lies
in its throughput, rated at 136.0 Kbit/s in the current
implementation. However, in contrast to the example of a web
server providing cryptography services to numerous users
concurrently, the mentioned applications are compatible with
such throughput.

Considering the potential actions of malicious entities,
the proposed applications can be categorized into two
scenarios. The first encompasses environments that can be
deemed safe, such as the user’s home or laboratory. The
second scenario involves non-critical applications, where no
sensitive information is indirectly exposed in the event of an
induced fault.

The general design of the RAVA device is presented
in the next section, followed by the details of a specific
hardware implementation, an empirical study of the noise
characteristics, and the statistical analysis of the generated
random bytes.

II. GENERAL DESIGN
This section highlights the key characteristics that an RAVA
circuit implementation should adhere to. The RAVA device’s
main features are:

1) High-quality entropy: Producing unbiased and inde-
pendent random bits without a post-processing
algorithm.

2) Differential design: Aiming towards immunity to
environmental conditions by comparing two similar
and independent noise sources.

3) Dual entropy core: Incorporating two parallel and
independent entropy channels that simultaneously
produce random bytes. The dual design provides
redundancy, a double output rate, or a unique feature
for experiments employing a condition/control design.

4) Full transparency: As an open-source project providing
complete access to the circuit design, firmware, and
user-side software, including drivers, libraries, and
utilities. At the hardware level, monitoring headers
allow real-time inspection of voltages and noise
sources during operation.

5) Customizability: Offering interface headers for integra-
tion with other circuits, sensors, and integrated circuit
(IC) components. Users have full control over the
device’s operation by sending commands through a

FIGURE 1. Block diagram illustrating the essential modules of the RAVA
circuit. The arrows depict the direction of information flow.

FIGURE 2. The naming convention employed for the random bytes’
generation.

communication interface. Moreover, as an open-source
project, the firmware can be updated to modify the
circuit’s behavior and implement new functionalities.

6) Accessibility: As a discrete circuit employing low-cost
IC components and SMD resistors and capacitors of
size 0805. Ensuring that the device remains affordable
and can be assembled by users through manual
soldering of the components to the printed circuit
board.

As shown in Fig. (1), the RAVA device consists of the
following essential modules: microcontroller unit (MCU),
boost converter, noise sources, and monitoring and interface
headers.

The MCU serves as the central processing unit of
the circuit. It encompasses a microprocessor, memory,
input/output peripherals, and a communication interface. The
MCU governs the circuit’s operation by listening to user
commands, conducting measurements and calculations, and
returning data as requested. Its main task is to generate and
send a certain number of random bytes once or repeatedly
in a regular time interval. Optionally, it can engage in post-
processing the random bytes output. The MCU executes
health tests during circuit startup and over the generated
byte sequences to identify errors and ensure the randomness
quality. Additionally, the MCU generates a pulse width
modulation (PWM) signal fed to the Boost converter – the
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FIGURE 3. A photo of the RAVA circuit’s implementation. The circuit measures 6 cm x 3,7 cm.

module responsible for increasing the USB 5V input into a
higher voltage applied to the noise sources.

To describe the randomness components, the National
Institute of Standards and Technology (NIST) convention
is adapted, following the naming shown in Fig. (2). The
NIST is a North American standards agency that provides,
among other topics, recommendations on entropy sources and
randomness tests for RNGs [18], [19].
The noise sources contain the fundamentally unpredictable

physical processes responsible for entropy. Their output
consists of digital signals characterized by rising edge
pulses occurring at times that cannot be estimated using
theoretical or empirical methods. The digitization follows by
counting pulses in a specific interval and creating random bits
associated with the counts’ parity. The noise channel consists
of raw bytes produced by the digitization step continuously
monitored by health tests. If the raw bytes are biased, they can
be post-processed into random bytes with enhanced entropy
contents. When post-processing is not necessary, raw and
random bytes are equivalent. It is labeled an entropy channel,
combining the noise channel with the health tests and the
optional post-processing.

The monitoring headers are strategically positioned ports
within the circuit that grant access to crucial voltage levels.
They serve multiple purposes, including diagnosing potential
faults and analyzing/auditing the behavior of noise sources
during circuit operation. The interface headers are ports
that enable interaction with external devices, components,

and sensors. They expand the circuit’s functionality and the
application range.

III. IMPLEMENTATION
This section describes one particular implementation of the
general design previously discussed, resulting in the circuit
shown in Fig. (3).

By inspecting the circuit’s photo, one can identify the
available headers. The voltagemonitoring headers are labeled
GND, 2.5V, 5V, PWM, and BV for the boost converter
output. The noise source monitoring headers are labeled
Ai for the four avalanche noise channels and CMPi for
the two comparator outputs. The interface headers provide
access to the following communication interfaces: ICSP
(In-Circuit Serial Programming), TWI (Two-Wire serial
Interface), SPI (Serial Peripheral Interface), and USART
(Universal Synchronous and Asynchronous serial Receiver
and Transmitter). Furthermore, the interface headers expose
digital ports labeled as Di, which offer several peripheral
features.

The upcoming subsections provide comprehensive details
of the implementation. The circuit schematics are presented,
showcasing the values of resistors and capacitors utilized.
Details about the remaining components can be found
in Table (1).

A. MICROCONTROLLER
The circuit’s MCU choice is the ATmega32U4 [20] operating
in a clock frequency of 16MHz. The ATmega32U4 is
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TABLE 1. Components used in the RAVA circuit implementation.

employed in various electronic projects, including Arduino
boards. Its popularity provides several advantages, such as
access to open-source libraries, extensive online documenta-
tion, and a supportive maker community.

The ATmega32U4 is an 8-bit MCU that provides: an
arithmetic logic unit with 28 unique instructions, 32Kbytes of
flash memory for storing the firmware, 2.5Kbytes of SRAM
memory, a USB v2.0 controller that is used as the primary
communication interface, four internal timer/counters with
pulse width modulation (PWM), analog to digital conversion,
and several communication interfaces.

The MCU wiring schematic is shown in Fig. (4) with the
interface headers omitted – for more details, see [17].

FIGURE 4. RAVA’s MCU schematics including the USB connection. The
communication interfaces connections are omitted.

B. POWER
The circuit primarily relies on V5, the 5V power provided
by the USB interface. To ensure a reliable power supply,
decoupling capacitors are connected in proximity to the main
IC components. They suppress high-frequency noise and
provide local energy storage to mitigate voltage variations.

The boost converter module, illustrated in Fig. (5a),
generates the VB voltage necessary for producing the
avalanche noise. It utilizes the VPWM signal generated by the
MCU to step up the V5 input into the higher voltage level VB.
The boost circuitry follows a conventional design with an
inductor, a MOSFET switching transistor, a Schottky diode,
and a capacitor. Subsequently, it includes a resistor, two Zener
diodes (one in forward and the other in reverse mode), and a
capacitor. The resistor and Zener diodes function as a voltage
regulator, ensuring that VB remains within the desired range
for generating the avalanche noise. The additional capacitor
contributes to a cleaner and more stable voltage output.

The circuit includes a power divider component,
as depicted in Fig. (5b), which generates V2.5, a reference
voltage of 2.5V.

FIGURE 5. RAVA’s power modules schematics.

C. ENTROPY
The noise source schematics shown in Fig. (6) generate
entropy through the following steps: First, the VB voltage
is applied to reverse-biased 24V Zener diodes, inducing
avalanche breakdown. A 24V Zener is specifically chosen
for the circuit due to its substantial noise amplitude of
several hundredmillivolts, which is not achievable with lower
Zener voltage diodes. Next, the noise voltages are buffered
using operational amplifiers (OA1, OA3). The purpose of
the buffering stage is to prevent distortions that could be
introduced in the subsequent steps. The noise voltages are
then DC decoupled and raised to a common level of 2.5V
using unity-gain operational amplifiers (OA2, OA4). These
operations result in the avalanche noise channels VA1 and
VA2 containing the original noise voltages, which have been
inverted and raised to the 2.5V DC level. Finally, the analog
channels VA1 and VA2 are connected to a comparator IC,
which produces a digital output VCMP representing which
Zener produces the largest avalanche noise at a given time.
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FIGURE 6. RAVA’s noise source schematics.

The differential design consists in comparing the two
independent avalanche noise channels, VA1 and VA2, instead
of comparing just one of them with its mean value of
2.5V. It mitigates predictable effects caused by environmental
influences.

The VCMP output, referred to as differential noise, consists
of a sequence of pulses with varying lengths and unknown
rising edge times at ti. The interval between successive pulses,
represented by 1ti = ti − ti−1, depends on the avalanche
breakdown occurring in the reverse-biased Zener diodes.
Consequently, the 1ti intervals are inherently unpredictable,
serving as an entropy source for the circuit.

An example of the avalanche noise produced by the cir-
cuit’s implementation is shown in Fig. (7), revealing the
considerably large noise amplitude. The bottom part of the
figure shows the mathematical simulation of the differential
noise for this example. While a dual-channel oscilloscope
could not simultaneously measure the actual signal, the
simulation is sufficient to provide insight into how the
comparator produces and sustains a digital pulse while
VA1 > VA2.

The noise source output VCMP is wired to a timer/counter
port in the MCU configured to count the measured rising
edge pulses. Every ith-random bit is generated by evaluating
the pulse count, labeled as ni, after a fixed sampling interval
denoted as ts. The i-th bit results in 0 if ni is even and 1 if
odd. The Fig. (7) example reveals nine pulses in the sampling
interval of 3µs that would result in a 1 bit.
Then, the steps for generating one random byte are:

a) counting digital pulses in the ts interval; b) detecting
an odd pulse count and enabling the corresponding bit
in the resulting byte; c) repeating a) and b) steps eight
times; d) applying the generated byte to a continuous health
monitoring algorithm described in the next section; e) sending
the generated byte over the serial/USB interface.

The circuit contains two copies of the noise source module
depicted in Fig. (6), establishing a dual entropy core architec-
ture with two independent random byte channels. Within the
dual architecture, two random bytes are generated in parallel.

FIGURE 7. An example of the avalanche noise channels measured in a
3µs window by a dual-channel oscilloscope and the comparator’s
simulated response.

The bit generation in both channels is synchronized as the
MCU timer/counters connected to VCMP1,2 are sequentially
zeroed and read after the same ts delay.

D. HEALTH TESTS
The RAVA firmware implements health monitoring tests
that adhere to the NIST requirements outlined in the
‘‘Recommendation for the Entropy Sources’’ [18] document.
Upon powering up the circuit, startup tests are executed to
assess the proper functioning of the noise sources. If the
initial tests are successful, the circuit becomes ready to
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receive commands and generate random bytes; otherwise,
it communicates the failure and rejects user commands.
The startup tests evaluate the probability distributions of the
2-valued bits, the 256-valued bytes, and the average pulse
count numbers.

In addition, continuous tests are conducted for every
generated byte while the noise source is operational. The
firmware implements two recommended tests: repetition
count and adaptive proportion. The first detects catastrophic
failures that may cause the noise source to become ‘‘stuck’’
on a single output value for a long period. The second detects
a loss of entropy that might occur due to some physical failure
or external factors affecting the noise source. Continuous
tests’ errors do not disable the randomness generation.
Instead, the user is informed of the errors, allowing them to
take appropriate action based on the failure rate.

IV. CHARACTERIZATION
This section discusses the implementation of a RAVA
circuit using the specific layout and components outlined in
section III. Once the circuit’s hardware has been established,
three free parameters must be defined to proceed with
the random byte generation: PWM frequency fPWM, PWM
duty cycle dPWM, and sampling interval ts. The following
subsections show the criteria to determine these values and
the resulting noise characteristics. Moreover, a stochastic
model is introduced to provide further insight into the
system’s behavior.

A. PWM CONFIGURATION
The MCU port providing the PWM capability allows
the selection of various frequencies. The value chosen is
fPWM = 46.9kHz as it enables the desired voltage outcome
while keeping a relatively low frequency that minimizes
interference with other circuit components.

In order to determine the duty cycle parameter, the
relationship between the pulse count and the circuit’s current
consumption is examined. The pulse count N is a random
variable with particular values {n1, n2, . . . , ni}, where a pulse
count average is defined as n̄ = 1/k

∑k
i ni. The n values

varies as a function of the sampling interval ts, satisfying the
following inequation

n∑
i

1ti ≤ ts <

n+1∑
i

1ti. (1)

Fig. (8) presents n̄ and the circuit’s current consumption c
for different dPWM values and an arbitrarily large sampling
interval chosen as ts = 20µs. The results reveal two
different regions of current consumption. In the first region,
the c increase leads to higher n̄, implying that the power
generated by the boost converter module is being converted
into avalanche noise. However, as dPWM exceeds 10%,
a second region is observed. In this region, n̄ reaches a plateau
while the current consumption increases at a higher rate,
implying the additional power being dissipated.

FIGURE 8. The relationship between PWM duty cycle, pulse count
average, and circuit’s current consumption at fPWM = 46.9kHz and a
sampling interval of 20µs. The vertical line depicts the chosen value of
dPWM = 9.8%.

After considering the relationship between pulse count and
current consumption, a specific duty cycle value of dPWM =

9.8% is chosen. This value balances achieving the maximum
pulse count while maintaining a low current consumption.

At fPWM = 46.9kHz and dPWM = 9.8% (values utilized
throughout subsequent analysis), the circuit consumes 58mA,
while the boost converter module yields an output voltage of
VB = 25.5V, accompanied by a current of 1.5mA flowing
through its resistor.

B. FREQUENCY SPECTRUM
A 150MHz oscilloscope with Fast Fourier Transform (FFT)
capability is used to measure the frequency spectrum of the
avalanche and differential noise channels. The measurements
were performed multiple times, and the average result
is shown in Fig. (9). The frequency spectrum analysis
reveals a white noise band in both channels up to 3.3MHz.
Beyond this frequency, VCMP exhibits a 1/f 2 red noise. The
spikes ranging from 20 to 100MHz in VA are attributed to
Radio frequencies. The results demonstrate the remarkable
effectiveness of the differential design in minimizing the
impact of electromagnetic interferences on theVCMP channel,
where the same disturbances are suppressed.

C. DIFFERENTIAL NOISE CHARACTERISTICS
Although individual 1ti intervals vary unpredictably, it is
possible to establish an average interval defined as

1t = lim
n→∞

1
n

n∑
i

1ti, (2)

along with a mean frequency, calculated as f̄ = 1/1t .
An oscilloscope is utilized for measuring those quantities in
the RAVA’s implementation by probing the VCMP channel,
leading to an average frequency of f̄ = 3.2MHz and average
interval of 1̄t = 313ns.
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FIGURE 9. Frequency spectrum of the avalanche and differential noise
channels.

Considering the differential channel, it is important to
recognize a measurement limitation when connected to the
timer/counter peripheral of the RAVA MCU. According to
the datasheet [20], the peripheral does not accurately compute
counts when the frequency between consecutive pulses is
higher than the MCU clock frequency divided by 2.5.
In other words, the timer/counter fails to register counts when
1t < 156ns. As a result, the RAVA circuit is anticipated to
yield a lower count average than the oscilloscope. However,
this discrepancy does not affect the output’s entropy. Its sole
impact is a reduction in the device’s throughput.

Now, let us explore a different scenario where random
bit generation would be achieved by periodically measuring
the VCMP port and assigning the bit value based on the
port’s digital state. In an ideal system, the avalanche channels
would display similar voltage distributions, resulting in
the VCMP channel spending, on average, an equal amount
of time in the 5V and 0V states. However, deviations
in circuit component properties are natural and expected
in practical implementations. These variations introduce
unavoidable asymmetries, leading to an unreliable strategy
contaminated by bias. In order to maximize the device’s
entropy, an alternative approach is employed. Rather than
directly measuring the port’s state, the device exploits the
time uncertainty of when the state transitions occur. More
specifically, counting the number of transitions in fixed
sampling intervals, as previously discussed.

D. STOCHASTIC MODEL AND BIAS
As highlighted in [12], the pulse counting methodology’s
advantage is based on its intrinsic connection with the Central
limit theorem (CLT) in Statistics, elucidated and deepened as
follows.

The CLT states that, given certain conditions, the distri-
bution of the sum of independent and identically distributed
random variables will tend towards a normal distribution. The
normal approximation holds regardless of the shape of the

original distribution, provided the sum quantity is sufficiently
large.

In our case, the fundamental distribution is the time asso-
ciated with a single pulse count. This is represented by the
random variable 11T with specific values {1ti} = {t1 − t0,
t2 − t1, . . .}, where ti, as usual, denotes the time of the
ith-rising edge pulse measured in the differential noise chan-
nel. Obtaining amodel for the11T distribution is challenging
due to the reliance on the unique characteristics of the
noise sources and the efficiency curves of the measuring
components. These characteristics may vary across different
instances of the same design, further complicating the task of
establishing the distribution’s parameters.

Let us introduce another random variable, 12T , repre-
senting the time associated with two pulse counts. The
specific values of 12T are given by {t2 − t0, t4 − t2, . . .}.
These values can be further expressed as {1t1 + 1t2, 1t3 +

1t4, . . .}. Therefore, the values of 12T are obtained by
adding two values that follow the fundamental distribution.
The generalization for n pulse counts leads to the insight
that as n increases, 1Tn distribution’s tends to a normal
curve. This result is a direct consequence of the CLT,
providing a significant generalization for the1Tn probability
distribution.

Rather than time, the variable utilized in the circuit isN , the
number of pulse counts within the sampling interval ts. The
relationship between 1nT and N , as derived from Eq. (2),
follows a linear form mediated by the constant 1t . As a
result, both variables follow the same distribution, and the N
distribution also tends to a normal curve. This approximation
is valid when the sampling interval ts is sufficiently large,
allowing for a substantial number of pulse counts to be
accumulated.

Therefore, the RAVA’s stochastic model for a compliant ts
can be summarized as N ∼ N (n; n̄, σ ), indicating that N
follows a normal distribution with a mean of n̄ and a standard
deviation of σ . While the normal distribution is a continuous
curve, the independent variable n assumes integer values in
this case.

With knowledge on the probability distribution govern-
ing N , it is possible to estimate the theoretical bias in the
conversion from pulse counts to parity, which is the step
responsible for assigning the bit value. The bias, denoted as ϵ,
arises from comparing the probabilities of obtaining even and
odd n values. Mathematically, it is expressed as:

ϵ(n̄, σ ) =
1
2

[∑
n

N (2n; n̄, σ ) −

∑
n

N (2n+ 1; n̄, σ )

]
,

(3)

where n = 0, 1, 2, . . . . The function ϵ(n̄, σ ) represents
the minimum achievable bias by a circuit’s implementation
modeled as N ∼ N (n̄, σ ).
The numerical computation of |ϵ| is presented in Fig. (10).

The results demonstrate that when n̄ ≥ 15 and σ ≥ 1.8, the
minimum bias is below 10−7. Within the depicted range,

VOLUME 11, 2023 119575



G. Guerrer: RAVA: An Open Hardware True Random Number Generator Based on Avalanche Noise

FIGURE 10. Numerical estimation of the theoretical minimum bit bias.

it takes an average of 10 million generated bits (or more
for larger parameter values) to produce at least one biased
bit. Beyond this range, the theoretical maximum bit entropy
approaches the value of two, rendering additional post-
processing algorithms unnecessary.

E. SAMPLING INTERVAL AND THROUGHPUT
The criteria for selecting ts is finding a value that yields
sufficiently large pulse count average n̄, satisfying the CLT
requirements and enabling N ∼ N (n; n̄, σ ).
This study is implemented by varying ts, measuring 10K

pulse counts, and fitting their distribution to a normal curve.
The fitting procedure aims to determine the optimal param-
eters, n̄ and σ , that describe the observed N distribution.
A least squares procedure is employed, resulting in a χ2 value
and an associated probability, denoted as p, which indicates
the likelihood of the observed N distribution being derived
from a normal curve. The fitting procedure is repeated a
thousand times for each ts, generating distributions for the
normal parameters withmean values ¯̄n and σ̄ . The distribution
of the 1K p values is then analyzed, characterized by the
mean p̄ and the standard deviation σp. When the normality
condition forN is met, the p distribution is expected to follow
a uniform distribution with p̄ = 0.5 and σp = 1/

√
12.

The study findings are presented in Fig. (11). The upper
part depicts the obtained p̄ along with their associated σp
bars. The results demonstrate that as ts increases, the p̄ values
converge towards 50%, while the standard deviation bars tend
to align with the horizontal dashed lines indicating 1/

√
12.

In conclusion, as ts increases, theN distribution tends towards
normality, providing empirical evidence supporting the CLT
connection discussed earlier. The lower part of Fig. (11)
displays the resulting ¯̄n and σ̄ values obtained for each ts.
The sampling interval ts is chosen as 10µs, ensuring

that the N variable follows a normal distribution. While an
interval of 5µs seems sufficient, selecting a larger value
provides a lower bias and a safety margin for all circuit
implementations to use the same value consistently. With the

FIGURE 11. A study investigating the compatibility of the pulse count
variable with a normal distribution for increasing sampling intervals.

ts = 10µs selection, the resulting distribution is given by
N ∼ N (n; 28.9, 2.6). Based on this distribution, the
theoretical minimum bias ϵ is estimated to be on the order of
10−15, implying an extremely low bias and further validating
the suitability of the chosen sampling interval.

For ts = 10µ, the five steps outlined in Section III-C to
produce a single byte require an average time of 117.7µs to
complete. This corresponds to a single channel throughput of
68.0 Kbit/s. Considering the two entropy channels combined,
the overall throughput achieved by the RAVA circuit is
136.0 Kbit/s.

V. RESULTS
This section considers a RAVA circuit implemented within
the layout and values described in Section III and with
the parameters fPWM = 46.9kHz, dPWM = 9.8%, and
ts = 10µ. In the following subsections, statistical analyses
are performed to assess the randomness of the generated
bytes. For comparison, a commercial device from ID
Quantique is selected as a control, and the same tests are
executed on this device.

The Quantis USB device utilizes an optical quantum
process as its randomness source, enabling a throughput of
4Mbits/s while consuming 73.7 mA. As described in [21],
its noise source comprises a light-emitting diode, a semi-
transparent mirror, and two single-photon detectors to record
the which-path outcomes. As the raw bytes can exhibit a bias
of up to 5%, a post-processing algorithm is employed within
the device’s processing unit to enhance their entropy.
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The data for the first three subsections comprises a total of
six files, each containing 125M random bytes – each device
producing one file for each subsection. In those tests, the file’s
data are spit into 1K samples of 1Mbits.

A. BIAS AND SERIAL CORRELATION
The first test evaluates the bias in the bit and byte levels,
as well as the serial correlation between adjacent bits. The test
outcomes are presented in Fig. (12), showing the distribution
of the 1K test results performed with n = 1Mbits each. The
bit bias and the serial correlation distributions are normal,
as informed by the Shapiro-Wilk test. The byte bias follows
a χ2-distribution with 255 degrees of freedom.

FIGURE 12. Bias and serial correlation distributions for the RAVA and
Quantis circuits.

The bias at the bit level is given by

δ =
n1
n

−
1
2
, (4)

where n1 represents the count of 1s obtained in n = 1M
random draws with a probability of 50% each. The variable
n1 follows a binomial distribution. For large values of n,
the binomial distribution can be approximated by a normal
distribution. With the relationship z = 2δ

√
n between the

z-score and the bias, the δ distribution of 1M unbiased

samples is described by a normal curveN (0, 0.05%) centered
at δ̄ = 0 and with σ = 1/(2

√
n).

Black circles in the upper part of Fig. (12) represent
the unbiased normal distribution expected in 1K tests,
including the 95% confidence intervals. The solid and dashed
lines depict how the devices’ distributions align with the
expected values. A least squares procedure is used to find
the parameters that best describe the δ distributions. This
approach determines the most suitable mean and standard
deviation values, characterizing the normal distributions that
match the data. The fit results, considering 95% confidence
intervals, are as follows:

• RAVA circuit: δ̄ = −0.0005% ± 0.0032%, σ =

0.0499% ± 0.0025%, p = 32%.
• Quantis circuit: δ̄ = 0.0019% ± 0.0029%, σ =

0.0502% ± 0.0020%, p = 62%.
The p-values resulting from the least square procedure inform
the likelihood of the observed distributions being derived
from a normal curve. The results indicate that both devices
generate unbiased bits, as the distributions exhibit a normal
shape, with mean bias values compatible with zero and
standard deviations compatible with 0.05%.

A byte consists of 8 bits, allowing for 28 = 256 unique
values. The bias at the byte level is evaluated by analyzing ni,
the number of bytes from the 125K-byte sample representing
each unique category i = 1, . . . , 256. The byte bias is
assessed using the χ2 test between the measured ni and the
expected ne = 125K/256 values, calculated as

χ2
=

256∑
i=1

(ni − ne)2

ne
, (5)

where the test assumes an equiprobable state for each
category, as expected in truly random data. The χ2 values
of unbiased samples are expected to follow a χ2-distribution
with d = 255 degrees of freedom.

While the bit bias δ metric quantifies the balance of 0s and
1s in a sequence of draws, the byte bias χ2 metric goes further
by incorporating the bit ordering as relevant information.
To illustrate, let’s consider the bit sequences 00001111 and
01010101; they yield the same δ value despite representing
two different byte categories. The 256-byte categories are
only equiprobable when the chance of measuring a 1 bit is
the same as obtaining a 0 bit, i.e. when δ → 0. Therefore, the
byte bias is a complementary test that encompasses the bit
bias while also assessing the bit pattern variations over time.

In the middle part of Fig. (12), the unbiased χ2 distribution
is represented by black circles, while the solid and dashed
lines depict the devices’ distributions. A least squares
procedure is employed to determine the actual degrees of
freedom from the data, resulting as follows:

• RAVA circuit: d = 254.9 ± 1.5, p = 23%.
• Quantis circuit: d = 254.6 ± 1.7, p = 11%.

These values demonstrate that both devices generate unbiased
bytes, as the distributions follow a χ2-distribution aligning
with the expected d value of 255.
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The serial correlation measures the degree to which a bit in
a sequence depends on the previous bit. It is computed as

c =
N

∑N
i=1 bibi+1 − (

∑N
i=1 bi)

2

N
∑N

i=1 b
2
i − (

∑N
i=1 bi)2

, (6)

where i ranges from 1 to N , representing the index of the bit
in the sequence, and bi denotes the bit value (0 or 1) of the
ith-bit. The serial correlation ranges from -1 to 1 and tends to
zero when applied to truly random and independent samples.

In Fig. (12), the lower part show the devices’ c distribu-
tions. A least squares procedure is employed to determine the
normal parameters, resulting as follows:

• RAVA circuit: c̄ = 0.0023% ± 0.0047%, σ =

0.0971% ± 0.0034%, p = 88%.
• Quantis circuit: c̄ = −0.0017% ± 0.0045%, σ =

0.0958% ± 0.0032%, p = 91%.
The results indicate that both devices generate independent
bits, as the extracted serial correlation values are compatible
with zero.

The correlation test based on Eq. (6) is also applied
to analyze the correlation between the bits simultaneously
generated by the two entropy channels within the RAVA
circuit. An additional file of 125Mbytes parallelly produced
by the second channel is utilized for this analysis. The normal
parameters resulting from the least squares procedure are

• RAVAcores: c̄ = 0.0031%±0.0053%, σ = 0.1036%±

0.0038%, p = 80%.
These values demonstrate that the RAVA’s entropy channels
produce parallel bits that are independent.

B. ENTROPY ESTIMATION
This test evaluates the devices’ entropy based on the guide-
lines outlined in the NIST document ‘‘Recommendation for
Random Number Generation Using Deterministic Random
Bit Generators’’ [18]. The chosen metric is the min-entropy,
which represents the uncertainty in predicting a byte value
and is calculated as

h = − log2(max pi), (7)

where max pi represents the most probable category among
the 256 unique byte values. If a device generates random
bytes with h, it implies that the probability of observing
any particular byte value is no greater than 2−h. It’s worth
highlighting that max pi arises from the interplay between the
theoretically minimum bias discussed in Section IV-D and
inherent statistical variations linked to the evaluated sample
size, 125 KBytes in this test.

The NIST entropy estimation involves two distinct pro-
cedures, one considering the input as an independent and
identically distributed (IID) sample and a more conservative
approach considering the input as generated by a non-IID
source. In the IID procedure, an estimate is obtained by
finding max pi, constructing a 99% confidence interval for
this value, and applying the upper p value into Eq. (7) to
calculate the min-entropy. In addition, the IID procedure also

FIGURE 13. NIST min-entropy distributions. The distributions reflect the
1K min-entropy values obtained for each 1Mbits sample.

includes permutation and chi-square tests to evaluate the IID
assumption of the input data. The non-IID procedure applies
ten different estimators to the input dataset, and the minimum
of all the estimates is taken as the entropy assessment of the
entropy source.

The results presented in Fig. (13) are obtained using the
NIST-provided software. The min-entropy distributions are
obtained from 1K tests with 125 KBytes each. The mean and
standard deviation of the distributions resulting from the IID
tests are as follows:

• RAVA circuit: h̄ = 7.673, σ = 0.023.
• Quantis circuit: h̄ = 7.673, σ = 0.021.

For the non-IID tests, the corresponding statistics are:

• RAVA circuit: h̄ = 6.80, σ = 0.25.
• Quantis circuit: h̄ = 6.79, σ = 0.23.

The IID assumption fail rate is 3.4% in the RAVA circuit
and 4.7% in the Quantis circuit. While the distributions are
not normal, both devices follow the same IID and non-IID
distributions, as confirmed by the nonparametric Mann-
Whitney U-test. The results indicate that both devices exhibit
similar distributions of min-entropy according to the NIST
methodology.

For completeness, min-entropy is also calculated using the
standard definition of Eq. (7), which does not incorporate
the upper bound of the pi confidence interval as in the NIST
IID metric. The mean and standard deviation of the resulting
entropy distribution are as follows:

• RAVA circuit: h̄ = 7.823, σ = 0.024.
• Quantis circuit: h̄ = 7.823, σ = 0.022.
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FIGURE 14. Results of the NIST randomness test suite. Some tests are repeated with several variations shown as the parenthesis
number after the test name. The dotted lines represent the confidence intervals. The last two tests have additional criteria that lead
to a reduction in the total number of tests performed and a consequent adjustment in the confidence interval for theOp proportion.

C. RANDOMNESS TESTS
To assess randomness, NIST developed a comprehensive test
suite consisting of 15 statistical tests, as described in [19].
Each test takes a sample of nb bits as input and produces
a p-value that evaluates the null hypothesis of randomness.
In this context, if the p-value exceeds the significance level
of α = 1%, it indicates that the sample is considered random
with a 99% confidence level. The tests are repeated nt times,
resulting in sequences of p-values which are evaluated based
on two metrics: proportion and uniformity. The proportion
metric measures the percentage of p-values that surpass the
significance threshold, while the uniformity metric evaluates
the distribution of the p-values across the test suite.
The proportion metric for a given test is calculated as

follows: it starts by computing the number of tests yielding
a p−value above α = 1%, a quantity denoted as nr ; the
proportion of tests that conform to the randomness hypothesis
is then obtained as p̂ = nr/nt ; a 99.73% confidence interval

for the proportion is computed as p̂ ± 3
√

α(1 − α)/nt . The
proportion results are depicted in the upper part of Fig. (14).
It can be observed that the majority of test proportions for
both devices fall within the confidence interval, indicating
compliance with the randomness hypothesis.

The uniformity metric evaluates if the p-values distribution
in a given test is uniform as expected in a random scenario.
The uniformity is determined by partitioning the p-values
in 10 intervals and obtaining a χ2 value that compares
the partitions’ occupation with the expected nt/10 value.
A p̂-value is obtained by applying the χ2 value to the
cumulative distribution function with 9 degrees of freedom.
The samples are considered uniformly distributed if p̂ ≥

0.01%, as stated in the NIST documentation. The uniformity
results are pictured in the lower part of Fig. (14). It can be
observed that the majority of tests for both devices surpass
the threshold, indicating conformity to the randomness
hypothesis.

VOLUME 11, 2023 119579



G. Guerrer: RAVA: An Open Hardware True Random Number Generator Based on Avalanche Noise

D. ENVIRONMENTAL INFLUENCES
This subsection is dedicated to the impact of environmental
factors on the RAVA circuit’s operation and the role of the
differential design.

The frequency spectrum analysis presented in Section IV-B
provided insights into the effects of electromagnetic
radiation. It revealed that the circuit captures Radio fre-
quencies ranging from 20-100 MHz, causing low amplitude
interference in the avalanche noise channels. Remarkably,
the same perturbations do not affect the differential noise
channel.

This empirical finding can be understood as follows.
Let 1V (t) represent the time-varying voltage induced by
radiation. The operation within the comparator IC can then
be described as:

VA1(t) + 1V (t) >? VA2(t) + 1V (t). (8)

Since the 1V factor originates from a source distant enough
to equally impact both avalanche channels, it is subtracted
during the comparison step that produces the VCMP output.
Such an outcome arises as a direct consequence of the
differential design, showcasing its ability to isolate the
avalanche breakdown as the exclusive source of entropy in
the system. This property extends to various environmental
influences such as sound, vibration, luminosity, electric and
magnetic fields, and temperature.

Next, the effects of temperature are explored in greater
detail. Regarding the device’s operating range, a review of the
components specifications results in an overlap from −40◦C
to 85◦C, establishing the circuit’s operation within the so-
called industrial temperature range.

An empirical study is developed to investigate the impact
of temperature on pulse count and bias measurements.
Three basic measurements are repeated within an interval of
20 minutes, resulting in 76 data points containing:

• The temperature T measured by a DS18B20 digital
temperature sensor coupled to the RAVA circuit.

• The average pulse count n̄ resulting from 10K measure-
ments.

• An amount of 125K random bytes are generated,
resulting in a bit bias δ value, and a byte bias χ2 value
– respectively obtained by the use of equations (4))
and (5).

Over the experimental course, the circuit experiences tem-
perature variations as it transitions between environments,
moving from a freezer at −8◦C, to ambient temperature, and
an oven at 90◦C.

The first graph in Fig. (15) depicts the temperature
variations over the 20-minute duration. The circuit was
initially exposed to each environment for 3 minutes and then
alternated between the oven and the freezer to maximize
the temperature gradient. The device’s operation under those
conditions provides an indication of its compliance with the
industrial temperature range.

FIGURE 15. Temperature variation study including pulse count average,
bit bias, and byte bias measurements. The dashed lines represent the
95% confidence intervals.

The second graph unveils the influence of temperature
in the Zener diodes. It shows how higher temperatures
increase the avalanche breakdown events, resulting in a
higher average pulse count. The similarity with the tempera-
ture plot indicates a fast response and a linear behavior of the
diodes when exposed to temperature gradients.

The third and fourth graphs reveal the bias outcomes
following the temperature variations. The quantity of values
falling outside the 95% confidence intervals aligns with the
3.8 expected by chance. This result implies that the device
can operate in different temperatures without any discernible
impact on its entropy output. Moreover, Pearson’s correlation
tests were conducted between the bias and temperature,
as well as between the bias and temperature gradient,
revealing the variables’ independence in all tests.

The results indicate that although Zener diodes are
sensitive to temperature variations, no conditions such as
extreme temperatures or fast variations are able to bias the
devices’s outcomes.

VI. DISCUSSION AND CONCLUSION
This paper introduces RAVA, an open-source TNRG that
employs reverse-biased Zener diodes as its entropy source.
The manuscript presents the general architecture and a
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specific implementation that realizes the concept. The criteria
for determining the three essential parameters governing the
circuit’s operation are outlined. The noise source is thor-
oughly characterized, and a stochastic model is introduced to
describe the probability distribution of the main variable, the
pulse count. The paper concludes with the results of statistical
tests assessing the randomness quality.

The statistical tests applied to the RAVA’s random bytes
output are also applied to a Quantis device from ID
Quantique, which extracts its entropy from a quantum
optical process. The results show that both devices produce
unbiased and independent bit sequences that pass in the NIST
randomness test suite. The results reveal similar distributions
for the two devices in all the studied metrics (bias, serial
correlation, NIST’s min-entropy), showing that given two
random byte sequences produced by each circuit, no metric
was found that could distinguish the data sources.

The physical phenomenon associated with the RAVA
circuit’s entropy is the avalanche breakdown of reverse-
biased diodes and the time unpredictability of those events.
While those processes can be initially seen in a macro-
oriented view as the effect of electromagnetic fields applied
to many particles, at its most fundamental level, the physical
modeling of such process reaches the quantum nature of the
charge carriers, inheriting a fundamental indeterminacy of
when a particle will trigger an avalanche event.
While the textbook interpretation of quantum mechanics

assumes nature as intrinsically random, deterministic inter-
pretations are also viable, as seen in [22]. Independent of the
broader metaphysical discussion, it seems enough to assume
that the entropy source in the RAVA circuit is associated
with a fundamental unpredictability/uncomputability of its
underlying physical system, an empirical fact shared among
different quantum interpretations.

By employing high VZ Zener diodes rated at 24V,
the avalanche noise amplitude reaches several hundred
millivolts, as illustrated in Fig. (7). Such amplitude level is
achieved without any amplification methodology, rendering
the noise less susceptible to electromagnetic radiation and
signal injection attacks. As the avalanche noise dominates
other noise sources, it is possible to conclude that the
device’s entropy is predominantly derived from the avalanche
process.

While the discovery of avalanche noise in reverse-biased
Zener diodes dates back to the 1970s, it is important to
emphasize that its choice as a noise source in the RAVA
device was deliberate and motivated by its qualities. Specifi-
cally, Zener diodes enable two fundamental characteristics of
the circuit: auditability and the implementation of an analog
differential design. The use of Zeners allows for isolating
the noise source within a discrete component, providing
physical access for direct monitoring and even replacement
in the event of fault detection. In contrast, the unpredictable
physical events on FPGA chips, light sensors, and most
modern designs occur deep within the intricate layers of

the electronic components comprising the system. In such
instances, the randomness machine operates as a black box
system, preventing users from scrutinizing the intermediate
processes and obstructing the establishment of a prior degree
of belief in the digital output’s quality. Furthermore, the
differential design implementedwith Zener diodes operates at
the analog level, affording it the advantages of swift response
times and more precise responses compared to what could be
achieved after digital conversion.

The random bit generation initiates by feeding two
independent avalanche noise channels into a comparator IC.
The comparator produces a digital output, referred to as
differential noise, which indicates the largest input at a given
time. This differential design has the capability of mitigating
environmental influences that equally affect both avalanche
channels as detailed in Section V-D.
The circuit implementation includes an ATmega32u4

microcontroller with timer/counter peripherals connected to
the differential noise channels. The random bit generation
proceeds by counting the rising edge pulses received during
a sampling interval and deriving the bit value based in the
pulse count parity. In Section IV-D, it is demonstrated that
for sufficiently large sampling intervals, the pulse count
distribution adheres to a normal curve. This result, which
underpins the noise source’s stochastic model, is theoretically
derived from the Central limit theorem in Statistics. To empir-
ically validate the stochastic model, Section IV-E obtains
pulse count distributions for increasing sampling intervals
while fitting a normal curve to the data. As anticipated,
with the increase in sampling interval, the pulse count
distributions become progressively more aligned with a
normal pattern, reinforcing the validity of the stochastic
model.

One application of the stochastic model is determining
the theoretical minimum bias. This involves subtracting
the probability of obtaining an even pulse count from the
probability of obtaining an odd pulse count. The numerical
result, which relies on the normal distribution parameters,
is visually represented in Fig. (10). Furthermore, by linking
the bias with the normal parameters obtained for increasing
sampling times, as depicted in Fig. (11), it is demonstrated
that the RAVA device can achieve a reliable entropy level
without the need for post-processing algorithms.

By providing the physical reasoning of the unpredictability
factor behind the entropy source, implementing startup
and continuous randomness health tests shown in section
III-D, and estimating the IID assumption fail rate and
min-entropy measures shown in section V-B, the RAVA
device fulfills the key NIST compliance requirements [18].
Moreover, by presenting a stochastic model that provides
entropy bounds, the RAVA circuit also conforms to more
stringent standards as the BSI’s AIS 31 [23], and ITU-
T’s X.1702 [24]. Meeting industry standards and possibly
attaining official certifications may further enhance RAVA’s
trustworthiness.
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The RAVA implementation here presented achieves a
throughput of 136.0 Kbit/s. While other devices employing
different noise sources can achieve throughputs in the
millions or even billions of bits per second, the RAVA device
remains well-suited for a variety of applications, as discussed
in the Introduction Section. Notably, it finds valuable use
in personal privacy, scientific research, and projects within
education, arts and the maker community.

If a given application requires a higher throughput, it can
be initially achieved by reducing the sampling interval. For
instance, with a sampling interval of ts = 5µs, it is
possible to attain 204.8 Kbit/s. Further improvements require
upgrading the circuit implementation. Two key approaches
for hardware-level improvement include using lower VZ
Zeners and employing a microcontroller with a higher clock
rate. Lower VZ Zeners can generate avalanche noise at higher
frequencies with the tradeoff of a smaller noise amplitude.
A microcontroller at a higher clock rate can detect more
pulse counts within its timer/counter peripheral. Additionally,
it enables faster processing and transmission of random
bytes, further improving the device’s output rate. With the
mentioned upgrades, it should be possible to achieve a
throughput in the order of 500 Kbit/s.

An application of the RAVA circuit must evaluate the
throughput compatibility and address security concerns.
As outlined in the Introduction Section, while exposing the
randomness source has the advantage of transparency and
auditing, it may facilitate malicious actors to compromise
the integrity of the circuit’s output. Consequently, users
must determine whether their application operates in a safe
environment where the physical presence of malicious third
parties can be excluded or if the application is non-critical,
implying that no sensitive information is indirectly exposed
in the event of an induced fault.

The RAVA device, accessible as an open-source project
at [17], emphasizes transparency and customizability. Trans-
parency is fostered by providing monitoring headers used
for auditing the noise sources during circuit operation.
Customizability is achieved by offering interface headers that
facilitate interaction with external devices. Furthermore, all
the relevant software can be downloaded and adapted as
needed.

Unlike the commercial scenario, where companies may
omit some details of their intellectual property, the RAVA
device provides users unrestricted access to explore the
device at any level they desire. The journey begins with open
circuit schematics and board designs, allowing users to delve
into the rationale of the noise source and investigate the
wiring connections between all components. For real-time
verification of the noise source’s random behavior, users can
plug an oscilloscope into themonitoring headers of a powered
circuit. On the software front, users can study the firmware to
understand how the microcontroller generates and sends the
random bytes. If desired, the users can upload the approved
firmware to their devices. The driver, which establishes

the link between the device and the user’s computer, can
also be examined. To ensure the entropy quality, users can
generate substantial amounts of random bytes and subject
them to comprehensive analysis using standard test suites.
Lastly, an internet forum may serve as a platform for users
to communicate their findings, fostering a community of
knowledge-sharing and validation.

The RAVA implementation showcased is not intended to
be a final version but a first step in a project with the
additional goal of answering the broader question: What is
the most reliable reverse-biased diode RNG design that can
be achieved and benefit from community-based development
under the open-source philosophy? By being tested and
improved by its users, the RAVA device has the potential
to become a standard device in scientific projects and other
use cases that require a transparent and trusted randomness
device compatible with the provided throughput and security
considerations.
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