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ABSTRACT This paper presents a modified Kalman filter for estimating quaternion using inertial and
magnetic sensors. When the initial estimation error is large, the convergence rate of the multiplicative
extended Kalman filter tends to be slow due to the assumption of small estimation errors. In this paper,
a new measurement equation is proposed, in which a quaternion is directly estimated instead of estimating
multiplicative estimation errors. Through simulation and experiment data, we demonstrate that the proposed
algorithm is robust to large initial estimation errors.

INDEX TERMS Attitude estimation, inertial and magnetic sensors, quaternion estimation, Kalman filter.

I. INTRODUCTION
As inertial and magnetic sensor technologies advance,
primarily due to MEMS technology [1], they become more
affordable and compact. These sensors find extensive use in
various applications, including the estimation of vibration,
attitude, and position. In this paper, attitude estimation
using inertial and magnetic sensors is considered. Attitude
estimation plays a crucial role in applications such as drone
control [2], manipulator joint angle estimation [3], and human
joint angle estimation [4].

Attitude is usually represented by Euler angles, rotation
matrix, and quaternion. Among these representations, quater-
nion is the most widely used due to its ease of computation
and the straightforward maintenance of orthonormal proper-
ties through simple quaternion normalization. There aremany
different attitude estimation methods, which can be classified
into complementary filter, nonlinear observer, and Kalman
filter.

In complementary filters [5], [6], [7], high pass filtered
accelerometer and magnetic sensor outputs are fused with
low pass filtered gyroscope integrated output. This approach
is widely adopted in practice because of its straightforward
structure and relatively simple tuning. Additionally, it offers
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the primary advantage of light computational load compared
to other filtering methods.

Nonlinear observers [8], [9] guarantee global estimation
error convergence, making them particularly valuable when
dealing with large initial errors or significant sensor errors.
However, for small estimation errors, the use of nonlinear
observers may not provide substantial benefits.

Kalman filters are widely used in attitude estimation
because they not only provide attitude estimates but also
offer attitude estimation error covariances. Furthermore,
they naturally accommodate sensor bias estimation. In the
standard Kalman filters [10], attitude is represented by
using quaternion, and quaternion errors are estimated in the
extended Kalman filter employing first-order approximation.

Various variations of the standard Kalman filter exist,
which use higher-order approximation or non-Gaussian noise
assumptions, including the unscented Kalman filter [11], the
geometric extended Kalman filter [12], the cubature filter
[13] and maximum correntropy filter [14]. There also exists
a multiple-model adaptive filter [15] for systems with model
uncertainty.

Among these methods, probably most widely used algo-
rithms are Kalman filters based on multiplicative error rep-
resentation [16]. The current estimate of quaternion is used
as ‘‘global’’ attitude representation and a three-component
vector is used as ‘‘local’’ representation of attitude errors (see
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Chapter 6.1 in [17]). The main advantage of multiplicative
error representation is its covariance is a well-conditioned
3 × 3 matrix, which has a clear physical interpretation.

The primary drawbacks of multiplicative error Kalman
filters are their high computational load (compared with
complementary filters) and slow convergence in the presence
of large initial estimation errors [18]. Efforts have been made
to partially reduce the computational load [19], but this paper
primarily addresses the issue of slow convergence. In [20],
a nonlinear observer is combined with a Kalman filter to
address this problem.

The main reason of slow convergence is that atti-
tude is computed near the current estimation using a
three-component error vector. In the process, the mea-
surement update is derived based on the assumption that
the error vector is small. When there is large error in
current estimation, this small error vector assumption is
violated and measurement update could not provide optimal
estimation. In this paper, we propose a new estimation
algorithm modifying the measurement update algorithm.
In the new measurement update equation, quaternion is
directly estimated by solving global optimization problem
instead of estimating three-dimensional error vector. The
other parts of the proposed filter are the same with those of
the standard Kalman filter. This optimization approach draws
inspiration from an optimization problem used in quaternion
averaging [21].

II. ATTITUDE ESTIMATION ALGORITHM
In this paper, two coordinate systems are used: the world
coordinate system and the body coordinate system. In the
world coordinate system, the x and z axes align with the
north and (upward) local gravitational direction, respectively.
Meanwhile, the x, y, and z axes of the body coordinate system
correspond to the x, y, and z axes of the inertial sensors.

Let q ∈ R4 be a quaternion that describes the rotation
transformation from the world coordinate system to the
body coordinate system, and let C(q) ∈ SO(3) be the
corresponding rotation matrix.

Let ya ∈ R3, ym ∈ R3, and yg ∈ R3 be the accelerometer,
magnetic sensor, and gyroscope outputs, respectively:

ya = C(q)g̃+ ba + va
ym = C(q)m̃+ vm
yg = ω + bg + vg (1)

where va ∈ R3, vm ∈ R3 and vg ∈ R3 are the sensor noises.
These noises are assumed to be uncorrelated white Gaussian,
and their covariances are given by

E{vav′a} = raI3,E{vmv′m} = rmI3,E{vgv′g} = rgI3. (2)

Let g̃ ∈ R3 and m̃ ∈ R3 be the local gravity vector and the
earth magnetic field vector, respectively:

g̃ =

 0
0
g

 , m̃ =

 cos(µ)
0

sin(µ)

 (3)

where g is the gravitational acceleration, and µ is the
dip angle [22]. Additionally, let ba ∈ R3 represent the
accelerometer biases, and bg ∈ R3 represent the gyroscope
biases, satisfying

ḃa = wba , ḃg = wbg (4)

where wba and wbg are white Gaussian noises:

Qba = E{wbaw
′
ba}, Qbg = E{wbgw

′
bg}. (5)

The goal of this paper is to find attitude (i.e., the quaternion
q) from sensor outputs. A standard Kalman filter based on
multiplicative quaternion error [16] is first introduced. The
proposed algorithm is derived bymodifying the measurement
update part.

Let q̂ ∈ R4 be the estimated value of q and its multiplicative
error qe ∈ R4 is defined as

q = q̂⊗ qe (6)

where ⊗ represents the quaternion multiplication. There
are two different definitions of quaternion multiplication,
as defined in [23] and [17], where a⊗b in [23] corresponds to
b⊗a in [17]. In this paper, we adopt the definition from [23].
With this definition, the rotation relationship of (6) represents

C(q) = C(qe)C(q̂). (7)

In a standard Kalman filter, the error qe is assumed to be
small and approximated by

qe ≈

[
1
q̄e

]
∈

[
R
R3

]
. (8)

The small error assumption in (6) enables the repre-
sentation of quaternion error using a three-dimensional
vector, thereby avoiding the singularity of the corresponding
estimation error covariance [16].

Let b̂a ∈ R3 and b̂g ∈ R3 be the estimated value of ba
and bg, respectively. The bias estimation errors ba,e ∈ R3 and
bg,e ∈ R3 are defined by

ba,e = ba − b̂a

bg,e = bg − b̂g. (9)

Instead of directly estimating ba, bg, and q, the Kalman
filter commonly estimates b̄a,e, b̄g,e, and q̄ in attitude
estimation [10]. The state of a Kalman filter is defined by

x =

 q̄e
ba
bg

 ∈ R9. (10)

Let xk be a discrete-time signal of x, sampled with a
sampling period T . The dynamic equation of xk is given by

xk+1 = exp(AkT )xk + wk (11)
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where Ak ∈ R9×9 and wk ∈ R3 are given by

Ak =

 −

[
(yg,k−1 − b̂g)×

]
−0.5 I3 03×3

03×3 03×3 03×3
03×3 03×3 03×3


wk =

∫ T

0
exp(Akr)

 03×1
wba (r)
wbg (r)

 dr .

Let Q = E{wkw′
k} ∈ R9×9 be the covariance matrix of wk .

The measurement equation is given by

zk = Hxk + ṽk (12)

where

zk =

[
ya,k − C(q̂−

k )g̃− b̂a,k
ym,k − C(q̂−

k )m̃

]
∈ R6×1

Hk =

[
2[C(q̂k )g̃×] I3 03×3
2[C(q̂k )m̃×] 03×3 03×3

]
∈ R6×9

ṽk =

[
va,k
vm,k

]
.

The covariance of ṽk is given by

Rv = E{ṽk ṽ′k} =

[
raI3 03×3
03×3 rmI3

]
.

Now, the standard Kalman filter algorithm is provided in
Algorithm 1. Let x̂k ∈ R9 and Pk ∈ R9×9 be the estimated
value of xk and the estimation error covariance of x̂k . We also
use the standard notation for the Kalman filter [24], where
x̂−

k and P−

k denote the prior estimate and the prior estimation
error covariance.

Algorithm 1 Standard Kalman Filter
Initialization: compute q̂1 and P1
Time Update:

compute q̂−

k by integrating the gyroscope
error covariance time update

P−

k = exp(Ak−1T )Pk−1 exp(Ak−1T )′ + Q (13)

Measurement Update:
error covariance measurement update

Kk = P−

k H
′(HP−

k H
′
+ R)−1

Pk = (I − KkH )P−

k (I − KkH )′ + KkRK ′
k (14)

x̂k estimation

x̂k = Kkzk (15)

quaternion update using x̂k

q̂k = q̂−

k ⊗

[
1

ˆ̄qe,k

]
. (16)

bias b̂a and b̂g update using x̂k

In Algorithm 1, there is no x̂−

k term in the measurement
update equation (15) since x̂−

k is set to zero after the
quaternion update (16) and bias terms update.

One of the primary limitations of a standard Kalman filter
is its slow convergence when dealing with a large initial
estimation error. This sluggishness primarily results from the
assumption of small estimation errors in the multiplicative
error model (8). Due to this assumption, the measurement
equation is essentially a local optimization problem near the
current quaternion q̂−

k (see (16)): q̄e,k is estimated near q̂−

k ,
and then q̂k is updated. If q̂

−

k is not correct, the update process
could give wrong estimation q̄e,k .

III. GLOBAL ATTITUDE ESTIMATION
In this paper, the measurement equation is modified to tackle
a global optimization problem when a significant estimation
error is present. Conversely, the standardmeasurement update
(local optimization) is used when the estimation error is
small.

A. MAGNETIC MEASUREMENT MODIFICATION
As the true attitude is unknown, it is challenging to determine
the exact magnitude of the estimation error. In this paper,
we determine the magnitude using the measurement (12),
where a large zk implies a large estimation error. To compute
zk (see (12)), the dip angle µ is required. However,
in the proposed algorithm, we modify zk to eliminate the
requirement for the dip angle µ. It’s worth noting that a
similar approach is used in the complementary filter [5]. Let
ck be defined by

ck = C(q̂−

k )
′
ym,k

∥ym,k∥

When q̂−

k is correct, and there is no sensor noise, we have
ck = m̃. However, this is not the case due to incorrect
prior estimated attitude and the presence of sensor noise.
A magnetic field vector m̄(q̂−

k ) ∈ R3 is defined by

m̄(q̂−

k ) =

 cos µ̄

0
sin µ̄

 .

The dip angle µ̄ is estimated so that m̄(q̂−

k ) and ck have the
same inclination angle. Let θ be the angle between a vector
and the world coordinate z axis, then we have

cos θ = e′3m̄(q̂
−

k ) = e′3ck . (17)

where

e3 =

 0
0
1

 .

From (17), the modified magnetic field vector m̄(q̂−

k ) ∈

R3 is given by

m̄(q̂−

k ) =

 ∥ck (1:2)∥
0

ck (3)

 (18)
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where ck (1:2) ∈ R2 is the first and second element of ck , and
ck (3) is the third element of ck .

The modified measurement equation is given by

z̄k = H̄kxk + ṽk (19)

where

H̄k =

[
2[C(q̂k )g̃×] I3 03×3
2[C(q̂k )m̃×] 03×3 03×3

]
∈ R6×9

z̄k =

[
ya,k − C(q̂−

k )g̃− b̄a,k
ym,k − C(q̂−

k )m̄(q̂
−

k )

]
∈ R6×1.

Note that the dip angle is not required to compute m̄k .
On the other hand, m̄k should be computed at each time step.

B. GLOBAL OPTIMIZATION PROBLEM
Let fk be defined by

fk = z̄′kR
−1
v z̄′k

=
1
rg

∥ya,k − C(q̂−

k )g̃∥
2
2

+
1
rg

∥ym,k − C(q̂−

k )m̄(q̂
−

k )∥
2
2 (20)

When the current attitude estimate q̂−

k is accurate, the value
of fk tends to be small. In the proposed algorithm, a global
attitude estimation is used in the measurement update if
fk > fthreshold (fthreshold is the threshold value). This approach
allows for more rapid compensation of large estimation
errors. Conversely, if fk ≤ fthreshold , a standard measurement
update is done using (19), as a local optimization algorithm
is good enough for small errors. In the global attitude
estimation, q is directly estimated instead of estimating q̄e,k
and updating q̂k as in (16).

Consider the following optimization problem:

min
q

{
(q̂−

k ⊗ q)′S ′(P−

k )
−1S(q̂−

k ⊗ q)

+
1
ra

∥ỹa,k − C(q)e3∥22

+
1
rm

∥ym,k − C(q)m̄(q̂−

k )∥
2
2

}
(21)

subject to ∥q∥ = 1 where

S =

 03×1 I3
03×1 03×3
03×1 03×3

 ∈ R9×4.

ỹa,k ∈ R3 is the normalized vector of ya,k :

ỹa,k =
ya,k

∥ya,k∥
.

The term S(q̂−

k ⊗ q) ∈ R3 represents the 3 × 1 vector part
of the quaternion estimation error qe = q̂−

k ⊗ q. This can be
expressed as follows:

S(q̂−

k ⊗ q) = 4(q̂−

k )q (22)

where

4(p) =

[
−p̄′

p0I + [p̄×]

]
∈ R4×3.

Also from [21], the second and third terms are given by

g
ra

∥ỹa,k − C(q)e3∥22 +
1
rm

∥ỹm,k − C(q)m̄(q̂−

k )∥
2
2

= λ0 − q′L(B)q (23)

where

λ0 =
g
ra

+
1
rm

L(B) =

[
Tr B z′

z B+ B′
− Tr BI3

]

z =

B23 − B32
B31 − B13
B12 − B21


B =

g
ra
ỹa,ke′3 +

1
rm
ỹm,k m̄(q̂

−

k )
′.

Using (22) and (23), we can represent (21) as follows:

min
q
q′Mq (24)

subject to ∥q∥ = 1 where

M = 4(q̂−

k )
′S ′(P−

k )
−1S4(q̂−

k ) + λ0I4 − L(B) ∈ R4×4.

(25)

Given the construction, M is a positive semi-definite
matrix. The optimal solution to (24) can be obtained by
computing the unit eigenvector corresponding to the smallest
eigenvalue of M .

We note that the measurement update equation in the
standard Kalman filter solves the following optimization
problem:

min
qe

{
q′
e(P

−

k )
−1qe

+
g
ra

∥ỹa,k − C(q̂−

k )e3 + 2[C(q̂−

k )e3×]qe∥22

+
1
rm

∥ỹm,k − C(q̂−

k )m̄+ 2[C(q̂−

k )m̄×]qe∥22

}
(26)

The optimization problem (26) is a local optimization
problem near q̂−

k . However, due to the small value assumption
in (8), the local optimization (26) may not provide an accurate
estimate when q̂−

k is inaccurate.

C. P−

K UPDATE
When (21) is used in the measurement update, only
the attitude estimation error component is updated. The
estimation error covariance update equation (14) is modified
as follows:

Kk = P−

k H
′(HP−

k H
′
+ R)−1

K̄ = S2Kk
Pk = (I − K̄kH )P−

k (I − K̄kH )′ + K̄kRK̄ ′
k (27)

VOLUME 11, 2023 118655



Y. S. Suh: Quaternion-Based Attitude Estimation Kalman Filter Using Global Optimization

where

S2 =

 I3 03×3 03×3
03×3 03×3 03×3
03×3 03×3 03×3

 ∈ R9×9.

Note that K̄k ∈ R9×6 has the following structure:

K̄k =

Kk (1:3,3:6)
03×6
03×6


where Kk (1:3,3:6) denotes the first three rows of Kk .
Consequently, only the covariance of the attitude estimation
error is updated, while the covariance of the bias estimation
error remains unchanged when the global update is applied.
The Kalman gain Kk is only used in the computation of
estimation error covariance and does not play a role in the
quaternion computation.

D. SUBOPTIMAL SOLUTION
A suboptimal solution is proposed to solve (24), which
offers computational simplicity compared to computing an
eigenvector. The second and third terms in (21) correspond
to a classic Wahba’s problem [17]. Let q̂k,triad be a solution
using a triad algorithm [25]. It is assumed that the optimal
solution lies on the linear interpolation between q̂−

k and
q̂k,triad :

q = t q̂−

k + (1 − t)q̂k,triad (28)

where 0 ≤ t ≤ 1. There is no guarantee that the optimal
solution can be represented by (28). Therefore, the proposed
simple solution is considered suboptimal.

Let d1, d2, d3 ∈ R be defined by

d1 = (q̂−

k )
′Mq̂−

k

d2 = (q̂k,triad )′Mq̂k,triad
d3 = (q̂−

k )
′Mq̂k,triad ,

then we have

g(t) = q′Mq = (d1 + d2 − 2 d3)t2 − 2(d2 − d3)t + d2.

(29)

The derivative of g(t) with respect to t is given by

ġ(t) = 2(d1 + d2 − 2 d3)t − 2(d2 − d3).

The optimal t value minimizing (29) can be obtained from
ġ = 0:

toptimal =
d2 − d3

d1 + d2 − 2d3
. (30)

By substituting (30) into (28) and subsequently normalizing
q, we can derive a suboptimal solution.

E. PROPOSED ALGORITHM SUMMARY
The proposed algorithm is summarized in Algorithm 2.

Algorithm 2 Global Optimal Filter
Initialization: compute q̂1 and P1
Time Update:

compute q̂−

k by integrating the gyroscope
error covariance time update

P−

k = exp(Ak−1T )Pk−1 exp(Ak−1T )′ + Q (31)

Measurement Update:
if fk < fthreshold then

measurement update using (14), (15) and (16)
bias update

else
compute qk by solving (21)

(computing an eigenvector or solving (28))
estimation error covariance update using (27)

end if

IV. SIMULATION AND EXPERIMENTS
A. SIMULATION
In the first simulation, the estimation error convergence
rate is investigated. It is assumed that the attitude does
not change, with the true attitude given by qtrue =[
1 0 0 0

]′. To intentionally introduce an incorrect initial
attitude, we choose it as follows:

q̂initial =

[
cos δ

2
sin δ

2u

]
∈

[
R
R3

]
(32)

where u ∈ R3 is a random unit vector. Since δ represents the
rotation angle between the initial estimated attitude and the
true attitude, a large δ implies a significant initial estimation
error.

The following sensor noise parameters are used:

rg = 0.012, ra = 0.052, rm = 0.052. (33)

Using the sampling period T = 0.01 seconds, a one-
second simulation is conducted. Given two quaternions qa,k
and qb,k (1 ≤ k ≤ N ), the following measure [26] is used to
compute attitude error between qa,k and qb,k :

J (qa, qb) = ∥C(qa,k ) − C(qb,k )∥F (34)

where ∥A∥F denotes the Frobenius norm of a matrix A.
In Fig. 1, estimation errors of 4 simulations are plotted

for the proposed filter and standard Kalman filter when δ =

10 deg: different random vector u is used for 4 simulations.
In the graph, the estimation error is measured with the error
equation in (34). It can be seen that both filters show similar
convergence rate, which shows that the standardKalman filter
can handle small initial error.

In Fig. 2 and Fig. 3, attitude estimation errors are shown
for δ = 40 deg and δ = 100 deg, respectively. It can be seen
that convergence rate began to slow in Fig. 2 and Fig. 3.

An extreme case (δ = 180) is also given in Fig. 4. It can be
seen that the estimation error of the proposed filter converges
quickly with very large initial estimation error. Also it can be
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FIGURE 1. Attitude estimation error convergence (δ = 10 deg).

FIGURE 2. Attitude estimation error convergence (δ = 40 deg).

FIGURE 3. Attitude estimation error convergence (δ = 100 deg).

observed that the convergence rate of the standard Kalman
filter becomes very slow when there are large initial errors.

FIGURE 4. Attitude estimation error convergence (δ = 180 deg).

TABLE 1. Mean and worst estimation errors with respect to different
initial errors (δ) out of 1000 simulation results.

To check convergence of the proposed algorithm, esti-
mation errors with respect to different initial errors (δ) are
investigated in Table 1. For each δ value, 1000 simulations
are done. Worst (i.e., maximum) estimation errors at 2.5 and
5 seconds are given in Table 1. Also mean estimation errors
at 2.5 seconds are given. In all simulations, it can be seen
that estimation errors of both proposed and standard Kalman
filters converge: see the worst case errors in 5 seconds. This
is not suprising since estimation errors are bound to decrease
during the measurement update while the standard Kalman
filter requires more time for large initial estimation errors:
see the last row (δ = 180 case) in Table 1.

We note that the proposed algorithm requires more
computation time than the standard Kalman filter. Recall that
the main difference between the proposed algorithm and the
standard Kalman filter is the measurement update: (21) for
the proposed algorithm and (15) for the standard Kalman
filter.

To solve (21), the eigenvector of a 4 × 4 in (25) needs
to be computed. A suboptimal algorithm to solve (21) is
also proposed in (28). In the standard Kalman filter, the
measurement update is just a matrix multiplicationKz in (25).

Since it is not easy to derive analytic computation complex-
ity, the computation time is compared in Matlab simulations.
100 simulations (one second interval) are performed for
18 different initial errors δ = 10, 20, · · · , 180 in (32): total
1800 = 100 × 18 simulations are done in Windows PC with
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TABLE 2. Computation time comparison (one second 1800 simulation
summation).

FIGURE 5. Attitude estimation error with intentional large sensor noises.

Intel i9-12900K 3.20GHz CPU. The computation time is
given in Table 2.

The proposed filter requires 34.05% more computation
time than the standard Kalman filter. Thus fast convergence
is obtained at the sacrifice of more computation time in the
proposed filter.

In the second simulation, 4 seconds simulations are per-
formed under a similar assumption with the first simulation.
The difference is that there is no intentional initial estimation
error. Instead, large sensor noises are added to accelerometers
and magnetic sensors during time intervals [1.0, 1.1], [2.0,
2.1] and [3.0, 3.1] seconds. This simulation is to check
tracking ability of the proposed algorithms.

In Fig. 5, the estimation error of the standard Kalman
filter becomes large when there are sensor noises at 1,2
and 3 seconds. When large sensor noises are removed,
the estimation error slowly decreases. In can be seen that
estimation error increase of the proposed filter due to large
sensor noises is small compared with the standard Kalman
filter. Thus the proposed filter effectively rejects sensor noises
and tracks the true attitude.

In the third simulation, we employ simulation data from
[27] to evaluate the proposed algorithm. In this simulation,
we assume the following angular velocity:

ω(t) =


 τ1 sin ν1t

τ2 sin ν2t
τ3 sin ν3t

 , 0 < t < 10

03×1, 10 ≤ t ≤ 11

TABLE 3. Estimation error with no intentional initial attitude error.

TABLE 4. Estimation error with intentional initial attitude error.

We select the parameter τi from the set of values
{0.3, 0.4, 0.5}, and parameter νi from {0.4π, 0.8π, 1.6π}.
We test the proposed algorithm using 729 (= 36) possible

parameter combinations, incorporating noise covariance
parameters as defined in (33). For comparison, we also
evaluate the performance of a standard Kalman filter and
Madgwick’s filter [5].Madgwick’s filter includes a parameter
β ∈ R, which controls the mixing gain between the integrated
attitude (using yg) and the measurement values (using ya
and ym).

First, in Table 3, we present the estimation errors when the
initial attitude is correctly estimated.

In the first proposed filter, the quaternion is computed
using an eigenvector of M (see (25)), while simplified
interpolation (28) is used in the second proposed filter.
We also present results from the standard Kalman filter and
Madgwick’s filter with different β values. In Table 3, all
filter results are similar. Theoretically, all filters are solving
almost the same optimization problems. Therefore, it cannot
be asserted that one filter outperforms the others.

In the next simulation, we intentionally employ incorrect
initial estimations in the filtering process to assess how
quickly these incorrect initial estimations are removed.

In Table 4, it can be seen that the proposed filter
demonstrates robustness to incorrect initial estimations.

B. EXPERIMENTS
We evaluate the proposed algorithm using an experimental
dataset from [28], which provides 39 inertial and magnetic
sensor data along with ground truth. This dataset includes a
wide range of movement types and speeds, representing both
undisturbed and disturbed (due to acceleration and magnetic
field) environments.

In Table 5, we present estimation errors obtained from
various filters when there are no intentionally large initial
errors.

In Table 6, we provide estimation errors when intentional
large initial errors are introduced. It can be seen that the
proposed filter exhibits smaller estimation errors.
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TABLE 5. Estimation error with no intentional initial attitude error (39
data).

TABLE 6. Estimation error with intentional initial attitude errors (39 data).

V. CONCLUSION
In this paper, a new attitude estimation algorithm is proposed,
where a global attitude estimation problem is used in the
measurement update. Through simulation and experiment
data, it is shown that the estimation error converges quickly
even for very large initial estimation errors.

One disadvantage of the proposed algorithm is rather high
computational load: it requires 34% more computation time
compared with the standard Kalman filter. This additional
computation time primarily arises from the need to calculate
the eigenvector of a matrix associated with the smallest
eigenvalue. Our future research will focus on devising an
optimized algorithm for computing eigenvectors, capitalizing
on the inherent problem structure. The aim is to significantly
reduce the computation time required.
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