
Received 11 October 2023, accepted 22 October 2023, date of publication 25 October 2023, date of current version 1 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3327553

A Severity Assessment of Python Code Smells
AAKANSHI GUPTA 1, RASHMI GANDHI 1, NISHTHA JATANA 2, DIVYA JATAIN 2,
SANDEEP KUMAR PANDA 3, AND JANJHYAM VENKATA NAGA RAMESH 4
1Department of Computer Science and Engineering, ASET, AUUP, Noida 201303, India
2Maharaja Surajmal Institute of Technology, Delhi 110058, India
3Department of Artificial Intelligence and Data Science, Faculty of Science and Technology (IcfaiTech), The ICFAI Foundation for Higher Education, Hyderabad,
Telangana 501203, India
4Koneru Lakshmaiah Education Foundation, Vijayawada, Andhra Pradesh 522502, India

Corresponding author: Sandeep Kumar Panda (sandeeppanda@ifheindia.org)

This work was supported in part by the Faculty of Science and Technology (IcfaiTech), The ICFAI Foundation for Higher Education,
Hyderabad, Telangana, India.

ABSTRACT Presence of code smells complicate the source code and can obstruct the development and
functionality of the software project. As they represent improper behavior that might have an adverse effect
on software maintenance, code smells are behavioral in nature. Python is widely used for various software
engineering activities and tends tool to contain code smells that affect its quality. This study investigates
five code smells diffused in 20 Python software comprising 10550 classes and analyses its severity index
using metric distribution at the class level. Subsequently, a behavioral analysis has been conducted over the
consideredmodification period (phases) for the code smell undergoing class change proneness. Furthermore,
it helps to investigate the accuratemultinomial classifier formining the severity index. It witnesses the change
in severity at the class level over themodification period bymapping its characteristics over various statistical
functions and hypotheses. Our findings reveal that the Cognitive Complexity of code smell is the most severe
one. The remaining four smells are centered around the moderate range, having an average severity index
value. The results suggest that the J48 algorithm was the accurate multinomial classifier for classifying the
severity of code smells with 92.98% accuracy in combination with the AdaBoost method. The findings of
our empirical evaluation can be beneficial for the software developers to prioritize the code smells in the
pre-refactoring phase and can help manage the code smells in forthcoming releases, subsequently saving
ample time and resources spent in the development and maintenance of software projects.

INDEX TERMS Software maintenance, code smell severity, cognitive complexity code smell, class change
proneness, open-source software, Python, sustainable software.

I. INTRODUCTION
The code quality of the software is a significant factor that
majorly contributes to software maintenance. Beck et al. [1],
[2] introduced the concept of code smells, which are blips
in software code due to its improper software design and
development by the application programmer. These mainly
emerge from developer actions taken at times of emergencies,
careless implementation or by using subpar coding solutions.
It is believed that code smells, being design flaws, harm
the quality of the code [1], [2]. Conceptually, they classify
the violations in software that follow object-oriented design
approaches such as data abstraction, encapsulation, mod-
ularity, and hierarchy [3]. Moreover, code smells are also

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

considered Technical Debt (TD). The refactoring process
boosts the performance of the software code [4]. Since refac-
toring some smells can be an expensive and time-consuming
affair [5], therefore, the priority of smells needs to be realized
in the early stages only. The prioritization of code smell
can also be represented as a severity index, as proposed by
Fontana et al. [6].

Apart from the severity of code smells, during the software
releases, the changes in the software modules or classes
also need to be dealt with. Experts frequently look at mul-
tiple updates to get historical information regarding soft-
ware project development. Early recognition of modules that
inculcate smells can be valuable for the team handling soft-
ware maintenance and assigning substantial testing resources
with a higher probability of alteration in software mod-
ules. Software-changing impact analysis has been previously

119146

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0003-0835-8413
https://orcid.org/0000-0001-5227-8213
https://orcid.org/0000-0002-6863-6756
https://orcid.org/0000-0002-4339-1828
https://orcid.org/0000-0002-0752-4267
https://orcid.org/0000-0002-2084-8864
https://orcid.org/0000-0003-3264-185X

A. Gupta et al.: Severity Assessment of Python Code Smells

performed by some researchers by association rule min-
ing [7]. Change-prone module prediction is an active research
area attracting many researchers and is a crucial software
maintenance activity helping to prioritize code smells for
refactoring [8].

Hence, the motivation of this study drills deep into the
design issues of the Python software, particularly the code
smells, for better maintainability and reusability of the code.
This research has been studied to investigate the severity of
the code smells diffused in the Python language. Alongside
this, a behavioral analysis has been performed by evaluating
the class change proneness over the severity of the smells esti-
mated. This behavior analysis is evaluated over three phases
collectively considered in this study under the term modi-
fication period: Phase 1: initial development version, Phase
2: mid-modification version, and Phase 3: latest released
version.

Moreover, statistical analysis has also been performed for
the above-analyzed behavior of the code smells over the con-
sidered phases to obtain better insights into the Python code
at the class level. Consequently, this research work benefits
in evaluating the diffusion of code smell over the modifi-
cation period and evaluating it statically, which a developer
can exercise for an efficient development environment and
progressive maintenance life cycle.

Research Contributions of this work are as follows:
• Assessing the diffusion of Python code smells.
• Behavioral study of Python code smell severity based on
the class change proneness over the metric distribution
of the relevant code smell.

• Performance comparison of various multinomial clas-
sifiers on the estimated code smells of the severity of
the latest released Python software using the AdaBoost
(Adaptive Boost) Boosting method.

• Investigating the class change proneness for code smell
severity in different phases of modification period using
statistical analysis -Kruskal Wallis Hypothesis Test and
Wilcoxon Signed Rank Test.

The rest of the paper is organized as follows:
Section II presents a detailed background study and moti-

vation of the work; Section III presents the Experimental
Setup with code smell severity analysis and research ques-
tions discussion, and Section IV briefs about the threats to
validity. Finally, Section V reviews the conclusions of the
work and presents the prospects of working in the area.

II. BACKGROUND
This section provides detailed background and related work.
The existence of code smells is associated with code quality
issues such as code modifiability & understandability, which
can further lead to maintenance issues in the software. Code
smells are signs of poor code design choices or the use of
shortcuts while coding, which can lead to a higher defect
rate and lower software quality [4], [6]. Accurately evaluating
maintainability based on code smells requires understand-
ing their criticality and ability to reflect software aspects

important for maintainability and their limitations. While
detection & removal of smells have been extensively
researched in the past decade, the impact on software perfor-
mance and maintainability still needs to be fully understood.
This forms themotivation for thework presented in this paper.

Smells do not always harm the code immediately, but
they are a threat and can cause software development issues.
Tofani et al. [9] stated that the code smell is one of the symp-
toms of poor design in technical debt and practical implemen-
tation alternatives. Over the years, many projects concluded
that the evaluation code smells are introduced. Moreover,
specifying the requirement may be code smells degrading the
software quality and efficient outcome for both evaluation
and maintenance. There are many existing techniques of
code anomalies ranking in the evolution era. Development
does not remove the code smells but emphasizes severe code
smells. Hence, to lessen the duplication, smoothly running
the application will leverage past programming efforts.

Code smells can be rectified by using appropriate refac-
toring techniques [1], [2]. The refactoring techniques work
by exposing the design flaws that are affecting the code
maintainability. Code smells of static languages such as C++

and Java have already been explored widely. Beck et al. [1],
[2] proposed 22 generic code smells that are language-
independent. Some researchers manifest the manual detec-
tion of code smells, while others have proposed differ-
ent detection tools such as infusion, JDeodorant, iPlasma,
PMD and JSNose [10]. JSNose is the earliest detection tool
regarding dynamic languages for code smells. It can iden-
tify both additional and generic in JavaScript code [11].
The rapid usage of Python language for the development
of large projects across various domains has brought new
performance requirements to be dealt with. The testabil-
ity, maintainability and understandability issues need to be
carefully monitored. Vatanapakorn et al. [12] proposed a
machine learning-basedmodel for code smell detection. They
trained their model on 115 open-source Python software, 22-
functions- and 39-class-level project metrics. Their model
could achieve 99.27% accuracy and could outperform the
tuning machine method.

Holkner and Harland [13] investigated the dynamic nature
of Python programs to study whether dynamic activities
are prompted when a Python program starts executing.
Chen et al. followed a constraint-based approach to iden-
tify type-related bugs in Python programs. A Python smell
detection tool, Pysmell, was introduced by Chen et al. [14] to
produce smell reports for Python programs.

Some approaches have been proposed by researchers who
studied machine learning algorithms, such as classification
or associative mining for detecting smells. Khomh et al. [15]
specify smells on the basis of Bayesian belief networks
that consider the detection process’s inherent unpredictabil-
ity. Polamba et al. [16] developed a textual-based method
to identify bad code smells by calculating the likelihood
that a specific smell will impact a component. Addition-
ally, they proposed a method for detecting smells using

VOLUME 11, 2023 119147

A. Gupta et al.: Severity Assessment of Python Code Smells

TABLE 1. Some relevant studies with the considered python code smells.

119148 VOLUME 11, 2023

A. Gupta et al.: Severity Assessment of Python Code Smells

TABLE 1. (Continued.) Some relevant studies with the considered python code smells.

VOLUME 11, 2023 119149

A. Gupta et al.: Severity Assessment of Python Code Smells

TABLE 1. (Continued.) Some relevant studies with the considered python code smells.

co-changes obtained from the version to detect five
smells [17]. Kessentini et al. [18] introduced a cooperative
parallel search-based approach where different approaches
to code smell detection were integrated. The hybridization
of distinct strategies in a parallel optimized way generates
detection rules for structural metrics code smell. Table 1
represents some recent works most relevant in Python code
smells.

There are significant secondary studies published in the
area that aim to comprehensively analyze the existing
literature on code smells [23], [24].

A. CODE SMELL SEVERITY
Software design quality metrics only administer a hint about
software design quality. However, metrics need to be suf-
ficiently semantically rich to enable users (e.g., developers
and code maintainers) to understand what is going wrong
and what can be a possible solution. On the other hand,
code smells identify more complex and semantically rich
structures in source code and help detect design issues using
softwaremetrics.Moreover, the degree to which a smell in the
code can impact software maintainability is pensive. Uncov-
ering many code quality issues due to smells in the code,
parallelly influences the criticality of smells in the software
world from the refactoring phase. Realizing the severity of

smell, among others, gives the developer community an edge
for optimization at the earliest.

A tool designed for ranking code smells was suggested
in 2015 by Vidal et al. [25]. The tool uses a blend of
three factors: historical changes to components (for stability
assessment), critical system modifiability scenarios, and the
significance of the code smell. Its value is subjective as the
developer can indicate how harmful the smell is. The thresh-
old for identifying a code smell may differ across developers
and systems. The researchers propose a tool called SPIRIT,
that ranks the severity of code smells in a system, considering
its criticality. They evaluated the approach in two case studies
and found the results helpful to developers. Another method
Fontana proposed involves applying strong and weak filters
to reduce the number of code smell detection outcomes.
However, this method is limited to code smells of only five
types [26].

Ratiu et al. used historical data of suspected flaw-related
structures as a metric-based detection strategy to express
code smells regarding thresholds [27]. Other studies have
also explored the use of system history to predict classes that
are likely to change in the future based on those that have
frequently changed in the past [28]. In a different approach,
Zhao et al. [29] proposed a hierarchical method for identify-
ing and prioritizing refactoring opportunities based on their

119150 VOLUME 11, 2023

A. Gupta et al.: Severity Assessment of Python Code Smells

predicted improvement to software maintainability. While
analyzing the two systems, they did not establish an Intensity
Index for code smells.

Fontana et al. [6] have previously presented a study similar
to the presented research, where they introduced the Code
Smelly Intensity Index as a criterion for prioritizing code
smells. Our study also incorporates this approach, although
Fontana’s method was limited to a specific set of code smells.
An approach has been followed in this study that addresses
exploring the Python code smells and analyzing their behav-
ior (change proneness) over a modification period, thereby
focusing on the criticality of the smell through severity inten-
sity values, which can help the developers realize the impor-
tance of particular smell in pre refactoring phase thus, saving
time and resources.

Code smells are researched in several languages, including
Java, C, C++, Kotlin, etc. To the best of our knowledge,
plenty of content doesn’t address Python code smells. Given
how frequently Python is used these days, the behavior of
code smells in Python software needs to be addressed. This
study aims to evaluate the severity of Python code smells so
they can be promptly fixed or removed.

III. METHODOLOGY/ WORKFLOW OF THE WORK
This research escalates the study of the diffusion of code
smells in Python software for severity assessments at the class
level. A glimpse of the workflow of the research has been
depicted in Figure 1. The deployment of the proposed strategy
is carried out on a suitable and valid dataset of 20 Python
software (open-source software) with 10,550 classes that are
taken from the GitHub repository. The most frequently occur-
ring code smells were then selected. After the software has
been extracted, an examination of static code metrics is car-
ried out to obtain statistical information about the software.
Further the code smell severity evaluation process has been
performed to prioritize the code smells on behalf of their
severity index.

In detail the 20 Python software has been studied and
extracted using the GitHub repository in the following
manner:

• Severity estimations and analyzing the best algorithm
for multinomial classification of the obtained sever-
ity ranges in Python software, considering the latest
released Python software (Phase 3 software)

• Behavioral analysis of the severity of diffused code
smells and statistical exploration in Python software
over the phases (Phase 1, Phase 2, Phase 3).

Formally, 20 Python software with 10,550 classes were
analyzed for detecting Python code smell according to their
occurrences at the class level. These classes were then
employed to estimate the severity of five considered code
smells rooted in the metric distribution of the analysed
software systems.

While speculating on the factors concerning the Python
code smells, the essence of the study is summarized in three

research questions. These research questions are mentioned
below, along with their brief motivation:

RQ1: Which classification techniques best estimate the
severity of the code smells affecting Python software?

In RQ1, the classification of the severity of Python
code smells is performed by the application of various
algorithms, studied under supervised machine learning tech-
niques, mainly multinomial classification [12], [31]. The
classification is supported by the severity computation
method, which yields the severity ranges in terms of the
severity index [32], [34].

RQ2: How does the severity of the Python code smell
behave over the modification period?

With this research question, an attempt has been made to
examine the severity of code smells over the modification
period by estimating the class change proneness over the met-
ric distribution of the relevant code smell [14], [31]. Further,
it will help to determine the percentage change of the severity
with respect to the initial software development, considered
the first version of the modification period in this study [22].

RQ3: Can the smells be prioritized based on the diffu-
sion of their severity in software code metrics?

This research question explores the mean rankings of the
severity of the code smell estimated in the above approach
[19], [20]. Subsequently, the versions are monitored to ascer-
tain the class-by-class behaviour of the severity of different
smells [14].

A. DATASET AND SMELL SELECTION AND COLLECTION
This research has been carried out using open-source Python
software. Among the substantial Python software available,
20 codes were evaluated, with approximately 6,817 Python
files and 10,550 Python classes.

The source codes implemented by these systems are freely
accessible and can be downloaded and copied from the
GitHub worldwide repository of open-source software. The
primary criterion for the selection of the systems is their rep-
utation & acceptance on the GitHub platform, which can be
demonstrated by MOST STARS or as STARGAZERS (The
Stargazers software are the software that is highly popular
among the users, widely used, and is most reliable, making
them a suitable choice for the research study). The relevant
material related to this research is uploaded on Github1.

This research studies code smells detected by SonarQube,
which violate the code’s design structure and hinder the
code’s maintainability and readability. Code smell assess-
ment and choice of criteria are based on specific factors.
The nature and impact of a specific code smell comes first,
followed by the frequency with which practitioners encounter
it while working.

Listed below are the smells that are considered in this work.
• Cognitive Complexity
• Collapsible ‘‘if’’ statements
• Many Parameters List

1https://github.com/Aaashi21/Python.git

VOLUME 11, 2023 119151

A. Gupta et al.: Severity Assessment of Python Code Smells

• Naming Conventions
• Unused Variable

FIGURE 1. Workflow of the study.

These smells can be detailed as follows:
1. Cognitive Complexity: Cognitive Complexity is a met-

ric designed specially to measure understanding and
comprehensibility. It can be described as the number
of independent dimensions concept worthy; the indi-
vidual brings to bear in mind describing a particu-
lar domain. It is accused based on an object-sorting
task. Its adequacy has been measured on five cri-
teria: Independence from verbal abilities, High-level
test-retest reliability, Association with other indices
of developed social cognition, and association with
measures of developed social cognition. Overall, it is
clear that it is a measure of understanding regarded as
unsatisfactory [34].

2. Collapsible ‘‘If’’ statements: This refers to a coding
practice where multiple if statements that are nested
together can be combined into a single if statement with
compound conditions. This is being done to improve
code readability and reduce redundancy. When nested
if statements perform similar checks or share com-
mon conditions, collapsing them into a single state-
ment can make the code more concise and easier to
understand [35].
Example: if condition1:
If condition2:
do_something()

#collapsed version
If condition1 and condition2
do_something()

3. Many Parameters List: Many parameters lists in a code
function, often referred to as ‘‘Long parameter lists’’
can lead to code smells. Their code smells make the
code harder to understand, maintain and test. They can
result in poor readability, increased complexity and
reduced flexibility. It is advisable to keep the number
of parameters in a function to a minimum, ideally no
more than 3-4. As they recognise this code smell, they

consider techniques like refactoring to simply the func-
tions interface, using a data structure to group related
parameters, or applying the builder pattern to improve
the code quality [35].

4. Naming Convention: Naming conventions in software
are important for writing readable, maintainable, and
understandable code. Otherwise, it raises potential
code quality issues, which are often related to nam-
ing. Common issues include meaningless/confusing
frames, inconsistent naming, overly long names, and
generic names. Common naming conventions used in
software development are Camel case, Pascal case,
Smoke case, and Kebab case. Using one (or more)
of these conventions may contribute to better collab-
oration, reduced confusion, and smoother code inte-
gration. Hence, it is important to standardize naming
conventions for proper efficacy [36].

5. Unused Variable: Unused variables are a common code
smell programming, indicating that variables have been
declared; it is not being used or referenced anywhere
else in the code. This can lead to confusion, misun-
derstanding, and inability to maintain code. Common
sources of unused variables are incomplete [1].

The Python classes for each software that are diffused with
code smells indicate the presence of respective smells and
are termed TRUE, whereas the rest of the classes (absence
of smell) are marked as FALSE. SonarQube tool is one of
the most popular industrial tools for source code technical
debt measurement and is preferred by various studies for code
quality inspection purposes. Figure 2 represents the diffusion
of code smells at the class level for the 10,550 Python classes
considered in this work.

B. CODE SMELL SEVERITY ANALYSIS
The process of analyzing the severity of code smells has
been carried out by evaluating a numeric severity value
using the metric distribution obtained from analyzing the
software through a static code analyzer, Understand tool.
The Python software was quantitatively analyzed to obtain
software metrics using UNDERSTAND software versioned
BUILD-978 (https://scitools.com/). While inspecting the
code, 37 attributes were obtained. The explained process
below for the Code smell severity analysis would yield a code
severity index value, like the one obtained in the study by
Fontana et al. [6]. Moreover, this computation is conducted
for class-level instances of the analyzed Python software,
which have diffused code smells.

For intensity computation, the following steps are
followed:

Step 1: First, analyze the software code quantitatively in the
form of custom metrics and procure the dominant attributes.
Depending upon the metric distribution of each attribute,
thresholds are evaluated. Further, different thresholds derived
for software design metrics are computed. The com-
puted threshold values acknowledge the metric’s statistical
properties.

119152 VOLUME 11, 2023

A. Gupta et al.: Severity Assessment of Python Code Smells

FIGURE 2. Diffusion of code smells at the class level.

The severity, as stated earlier, is examined for the smell-
causing instances. Based upon the starting threshold point of
the smelly instances and the extreme threshold point, four
intervals are observed and treated over themetric distribution.
These thresholds are called relative threshold points related to
the metric values corresponding to smelly instances.

The relative threshold percentile, mapped to their respec-
tive values, also rests on the Comparator (>, <), referred
to as the Absolute Comparator, for determining the side of
the metric distribution where the probability of occurrence of
smell is high. These comparators were obtained by applying a
rule-based classification algorithm, particularly JRIP, on the
essential software metrics extracted using feature selection
methods.

Step 2: The metric values are then compared with their
threshold values obtained for the defined percentile. The
intensity levels are defined as follows:

[1-3.25): INFORMATIONAL
[3.25-5.5): LOW
[5.5-7.75): MODERATE
[7.75-10): MAJOR
[11]: CRITICAL
∗INFORMATIONAL and CRITICAL are considered

extreme thresholds.
Step 3: The last step heads towards aggregating the inten-

sity values obtained for each metric to obtain a single value
at the class level by employing the Absolute Comparator
obtained in step 1(e).

These steps would retrieve relative threshold values of
every metric for the considered percentiles. This threshold-
driven approach assists in assigning ranges to the obtained
values, which in turn describes the criticality of the metric
values.

IV. RESULTS
The extent to which the code smell can severely affect the
Python software has been further segmented into a set of

research questions. These research questions are explained in
detail with all the processes applied and the results obtained
as follows:

RQ1: Which of the classification techniques performs
best for estimating the severity of the code smells affecting
Python software?

RQ1 inspects the best multinomial classifier, accurately
classifying the severity of code smells diffused in Python
software. This severity has been obtained as a code smell
severity index using the method described in the Code smell
Severity Analysis section. The dataset prepared for analysis
comprises a set of 10,550 classes, and the latest versions of
Python software are considered (Phase 3).

TABLE 2. Code smell severity index.

A. CLASSIFICATION BASED MODEL SELECTION
For classifying the severity intensities obtained above, the
severity index obtained for each smell has been categorized
into a range and taken as a labelled category for further
multinomial classification modelling. Using the mentioned
intensity levels in the Code Smell Severity Analysis section,
it was observed that out of five code smells, one of the smells
happened to lie in the Major range with an intensity value
of 8.01. The remaining four are centered around theModerate
range, averaging 7.

Furthermore, the acquired dataset has been tested against
various multinomial supervised machine learning algorithms

VOLUME 11, 2023 119153

A. Gupta et al.: Severity Assessment of Python Code Smells

TABLE 3. Software metrics considered along with absolute comparator.

TABLE 4. Performance of multinomial classifier based on accuracy.

TABLE 5. Performance measure of J48 algorithm.

for each smell individually. Multinomial classification is per-
formed by consideration of the nominal variable. The avail-
able implementations of classifiers allow both multinomial
and binary classification. These classifiers are combined with
the ‘ADA Boost’ ensemble technique.

The Ada boost is an adaptive boosting strategy applied in
machine learning as an ensemble method. It initializes the

weights by reallocating each instance with higher weights to
handle uncategorized data. Boosting is a supervised approach
that reduces biases and variance. It behaves iteratively in
combination with weak classifiers to achieve stable solutions
that provide a robust output. Boosting is a general ensemble
method that is used to create a robust classifier from a few
weak classifiers. The multinomial categories for which the

119154 VOLUME 11, 2023

A. Gupta et al.: Severity Assessment of Python Code Smells

severity data has been classified have been labelled from the
intensity scale division per the severity computation analysis.

For further severity analysis, feature selection techniques
were used to find the essential software metrics and lower the
dimensionality of data using different methods. The dataset
of individual code smell was evaluated for the following
combinations of feature selection approaches: Feature Selec-
tor: Information Gain; Searching Approach: Ranker. Table 2
depicts the Code smell severity index estimated at the class
level. The software metrics listed in Table 3 were obtained
using the above feature selection combination, and their com-
parator was evaluated using the JRIP algorithm. Addition-
ally, the metrics are chosen on behalf of code complexity,
cohesion, coupling, and size [30]. In this regard, Tree-based
classifiers like J48, Random Tree, JRIP, Naïve Bayes, and
K-Nearest Neighbor (KNN) are the classification algorithms
considered over which the severity computation for each code
smell has been efficiently trained, tested, and validated. J48
is a decision tree algorithm used in machine learning and
data mining. Trees are formed by recursively partitioning the
data into subsets based on the values of different attributes,
aiming to create a tree structure used for classification tasks
and known for its simplicity and effectiveness. It can also deal
with the characteristics, missing attributes data estimations
and varying attribute costs. All the similar code smells are
placed at one position if the instances belong to similar cases.
It computes the info gained at each node in the data and will
be considered from the tested attribute list. Finally, the best
attribute is selected by computing the selection parameters.
There are some limitations, as the computed info gain value
may make the tree wider and more complicated, generating
different subsets, which may lead to overfitting. The per-
formance evaluation has been executed using the 10-fold
cross-validation.

After evaluating different classifiers, J48 (Decision
Tree classifier), combined with ADABOOST, is the best-
performing classifier, with an average accuracy of 92.98%,
as described in Table 4. Other performance measures of
the obtained classifier, in combination with ADABOOST
learning, with their respective values, are shown in Table 5.
To select subsets of code smell rather than focusing on
complete sets, feature selection is being performed. To select
the code smells, J48 and Adaboost are used as they are ver-
satile and can be integrated for outlier detection, regression,
and classifier. This integration handles the title data and is
being trained to support weak classifier results. Although
Adaboost may not perform well with noisy data and is slow
to train, hybridization with J48 makes it easier to make the
subset, while classifiers are not able to decide fast as the tree
size is wider individually. As the literature states, J48 faces
difficulty handling empty subsets, avoidable code smells, and
overfitting the data being Adaboost.

The RQ1 acknowledges the severity of Python code smells
and the best-suited multinomial classification algorithm
for inspecting the criticality of code smells using the

ensemble technique (ADA Boost) through supervised learn-
ing approaches.

RQ2: How does the severity of the smell behave over
the modification period?

The analysis of the Python software concerning code
smells and their severity compelled the researchers of this
work to inspect the behavior of code smells for the prior
versions of the software by analyzing its behavior over the
period. The following criterion was devised for the selection
of different versions of software in the form of ‘‘Phases’’
under the name of modification period considered in this
study:
Phase 1: The software’s initial version is considered the

development version with no modifications.
Phase 2: The mid version of the software during its main-

tenance phase is considered an in-modification version.
Phase 3: The latest software release version is considered

the recently modified version.
Once the data has been prepared for all the phases, the

changes have been evaluated for Phase 2 and Phase 3 with
respect to Phase 1. Moreover, for analyzing the behavior of
severity of code smells, Phase 1 is kept constant for further
estimations as it reflects the initial development cycle that
might further be improved in later phases through immediate
refactoring. This assumption helps to observe the changes
over the modification period.

These three phases were further analyzed for 20 Python
software at the class level, and common classes were eval-
uated between the versions. Out of the approximately 20K
classes, only 899 were found to be in sync with all three ver-
sions. Hence, this dataset of 899 classes was then analyzed for
predicting the class change proneness based on the severity of
considered code smell over the modification period.

Figure 3 discusses the distribution of considered code
smells among the considered versions over the common
classes. From the observations, the evolution of Python soft-
ware considered across the common classes observed over
the modification period approximates a 62.7% change from
Phase 1 to Phase 2 and a 69.3% change from Phase 1 to
Phase 3.

Before estimating the class change proneness based on
the severity of code smells, it was required to identify the
classes affected by the considered smells. The detection of
code smells has been implemented using the SonarQube
platform, based on a static code metric analyzer (Understand
Tool), likewise, RQ1, but this time, the detection was laid
for all three phases independently. The detection of code
smells inferred that around 8-9% of classes were diffused
by ‘‘Cognitive Complexity’’ smell, 2-4% by ‘‘Collapsible
IF’’ smell, 3-5% by ‘‘Long Parameter List’’ smell, 4-9% by
‘‘Naming Convention’’ smell and 2-3% by ‘‘Unused Vari-
able’’ smell when observed over the modification period
(Phase 1, Phase 2, Phase 3). After detection, it was necessary
to extract the vital software metrics and then labelling was
done for the presence and absence of respective code smells.

VOLUME 11, 2023 119155

A. Gupta et al.: Severity Assessment of Python Code Smells

Additionally, a feature selection approach was applied in this
investigation, like that in RQ1.
Feature Selector: Information Gain, Gain Ratio, CFS

Subset Evaluator;
Searching Approach: Ranker, Best First Greedy.
The rule-based classification technique was applied to the

acquired dataset of Version 1 to obtain the vital software
metrics along with their Absolute Comparator.

FIGURE 3. Distribution of considered code smells among the considered
versions.

The process of estimating the severity index was ulti-
mately practiced, similar to RQ1, on all three phases of the
considered code, smells. Thus, the evaluated severity index
has been described in Table 6 for each considered version
over the modification period. It can be articulated that the
severity index of Collapsible ‘IF’ smell, Naming Convention
smell and Unused Variable smell have progressive severity
observed over the modification period. On the contrary, Cog-
nitive Complexity smell and many parameters list smell show
a decline in severity over the phases.

TABLE 6. Code smell Severity index over the modification period.

The highest rise was computed for Collapsible ‘IF’ code
smell, accounting for 2.8%. In contrast, many Parameters
code smell indicates a drop of 8.5%. The smells Collapsible
‘‘IF’’ and Naming Convention show an incremental severity
over the modification period w.r.t severity of Phase 1. The
other smells, Many Parameters List and Cognitive Complex-
ity, show a decremental severity. However, the Unused Vari-
ables code smell, with a percentage change of 4.19%, is not

considered due to its consistent severity behavior observed
over the modification period, Phase 1– Phase 2.

Consequently, this analysis promotes an ideology among
the developers to reduce the severity of the Python code
in the later versions of the software exhibiting code smells.
Likewise, it would benefit the developers laying a foundation
in Python development.
The RQ2 analyses the behavior of Python code smells

concerning the severity of the code smells by estimating the
class change proneness across the versions analyzed over the
modification period.

RQ3: Can the smells be prioritized based on the
diffusion of their severity in Python software?

Yes, the smells can be prioritized based on the diffusion of
their severity in the Python software. While computing the
class change proneness based on the severity of code smells,
the result revealed that their severity intensity values are
approximately similar when evaluated over the modification
period. However, when it was evaluated for different code
smells, we still got approximately similar results, though all
code smells are contrasting. With this view, an attempt has
been made to rank the severity intensity of different code
smells for the class-by-class estimation of severity intensity
changes. In this study, two hypothesis tests were applied to
the data for statistically analyzing the behavior of severities
of code smells for all three phases:

• Kruskal Wallis H Test
• Wilcoxon Signed Rank-Test
Kruskal Wallis H test- The Kruskal-Wallis H test is a

rank-based nonparametric test that is used to determine a
significant statistical difference for two or more groups of
an independent variable (McKnight 2010). In this part of
the research, the independent group belongs to the different
code smells under observation, possessing severity in close
proximity. The code smells were prioritized using the severity
intensity discussed above, and each code smell was labelled
using a numeric value (0-4) corresponding to the intensity
ranges. The dataset used here refers to the severity index
obtained for Phase 1 Python software.
Hypothesis:
H0: The distribution of samples of the severity of each code

smell originates from an identical population.
H1: The distribution of samples of the severity of at least

one code smell comes from a different population than the
others.
Procedure:
1. The severity index of Version 1 for each code smell is

initially ranked from N groups. Version 1 is considered
due to its initial development nature. Also, it has been
utilized for calculating the changes in the further ver-
sions.

2. The test statistics followed on the data distribution of
intensity values of code smells are given by:

T =
(N − 1)(S2t − C)

S2r − C
(1)

119156 VOLUME 11, 2023

A. Gupta et al.: Severity Assessment of Python Code Smells

where,
ni = number of observations in group i
S2t = Average Rank of all observations in group i:

S2t =

∑k

i=1

R2i
ni

(2)

S2r = Rank of observations j from group i:

S2r =

∑N

i=1
r2ij (3)

C= Average of all the rij:

C =
N (N + 1)2

4
(4)

3. The decision to reject or accept the null hypothesis is
made by comparing it to a critical value obtained for a
given significance or alpha level.

In this investigation, the alpha level obtained is 0.00, which
is less than 0.05. Thus, the null hypothesis is rejected, con-
cluding that the distribution of all the severity values obtained
for the considered code smell is not identical. The severity
distribution of considered code smells evaluated at the class
level has been visualized as box plots in Figure 4., exhibiting
some outliers. The code smells are denoted by a numeric
value ranging from 0 to 4 forCognitive Complexity, Collapsi-
ble ‘IF’, Many Parameters, Naming Convention,and Unused
Variable, respectively.

A pair-by-pair comparison has been drafted from observ-
ing the mean ranks of Kruskal Wallis hypothesis testing.
Figure 5. illustrates the comparison between the mean rank-
ings of the considered code smells having a significance
value of less than 0.05. The blue line adjoining pair repre-
sents a strong significance pairwise rejection of the hypoth-
esis, whereas the red line represents a weak significance of
rejection of the hypothesis.

Wilcoxon Signed Rank Test- The severity index obtained
for Phase 1 software has been tested and prioritized using
the Kruskal Wallis test among the different code smells,
as explained above. Further, it was required to compare the
results across the modification period (Phase 1, Phase 2,
Phase 3). For this, Wilcoxon signed rank test was preferred.
This test has been performed two times as there are two
different pairs to be compared. The pairs compared through
this test are Phase 1- Phase 2 and Phase 1- Phase 3.
Hypothesis:
H0: The distribution of performance of the two versions is

equal, i.e., the median of their difference is 0.
The distribution of performances of the pair of versions is

unequal, i.e., the media of their difference ̸= is 0.
Test Statistics:
Let N be the number of pairs. Thus, there are a total of 2N

data points for the considered versions of each code smell.
For pairs, i =1. . .N, let x1, i and x2, i denote the

measurements.
W = The sum of signed ranks.

W =

∑Nr

i=1
[sgn

(
x2,i − x1,i

)
.Ri (5)

FIGURE 4. Box plot of the distribution of severity of considered code
smells.

FIGURE 5. Pairwise comparison of code smells based on mean rankings
obtained through the Kruskal Wallis test.

where,
sgn= sign function
Nr= reduced sample size
Ri = Rank of the pair, starting with the smallest non-zero

absolute difference.
[Note: Ties receive a rank equal to the average of the ranks

they span.]
For Nr ≥ 20, The z- score can be computed as:

z =
W
σw

(6)

where,

σw =

√
Nr(Nr + 1)(2Nr + 1)

6
(7)

By performing the Wilcoxon test for the severity intensity
values at class-level, the code smells exhibiting an incre-
mental nature (Collapsible ‘‘IF’’and Naming Convention),
as described in RQ2, possess more positive classes than the
negative ones in terms of severity for the pair Phase 1 -
Phase 2 and Phase 1 - Phase 3. Moreover, through this
analysis, these smells prevail in an incremental nature of
severity intensities, as concluded in RQ2. On the contrary,
the code smells having a decremental nature was observed
to have more negative classes over the modification period.
This signifies an optimized performance of the software,

VOLUME 11, 2023 119157

A. Gupta et al.: Severity Assessment of Python Code Smells

which hasminimized the effect of code smells and renders the
users with optimal functionalities in various software systems
developed in Python.

These estimations have been described in Figure 6. for the
‘‘Naming Convention’’ smell and Figure 7. for the ‘‘Cogni-
tive Complexity’’ smell. The mean rankings for the positive
and the negative classes have been illustrated in Table 7
for ‘‘Many Parameter’’ (Phase 1-Phase 2) and Table 8 for
‘‘Collapsible IF’’’ (Phase 1- Phase 3).
This infers that most of the classes of these smells should

be refactored at the earliest in the subsequent versions of the
Python software to avoidmaintainability and software quality
issues. This concludes that some of the classes diffused with
these smells have been refactored in the subsequent software
versions, yielding good software quality.

FIGURE 6. Class-level study of naming convention smell.

FIGURE 7. Class-level study of cognitive complexity smell.

V. THREATS TO VALIDITY
In this section, the potential threats associated with the
progress of this study have been examined. The primary

TABLE 7. Mean ranking of many parameters among Phase 1 – Phase 2.

TABLE 8. Mean ranking of collapsible ‘If’ among Phase 1 – Phase 3.

concern of this study revolves around the identified code
smells. Only five specific smells from the Python software
have been considered in analyzing their severity across the
latest release and over the modification period. The inclu-
sion of other code smells could potentially affect the results.
Additionally, the effectiveness of the dataset utilized could
potentially impede the outcomes.

It should be noted that the severity assessment is based
solely on the distribution of metrics for the considered
Python software system and the establishment of thresholds.
As severity estimation is subjective, other factors may be con-
sidered to prioritise smells. The feature selection methodolo-
gies utilised may be further refined by assessing the weights
of different metrics. Using a single detection tool may impact
the identification of code smells across the classes of software
systems, and the evaluation has been conducted solely at the
class level without consideringmethod-level data. Also, some
code smell scenarios are very challenging to detect, thus there
is a potential that some code smells will go undetected.

VI. CONCLUSION & FUTURE WORK
This research implements multinomial machine-learning
classification algorithms for Python code smells. Out of

119158 VOLUME 11, 2023

A. Gupta et al.: Severity Assessment of Python Code Smells

five code smells, the Cognitive Complexity smell falls
under the major range with a severity index of 8.01. The
remaining four smells are centered around the moderate
range, averaging 7. The estimated class level severity inten-
sity for each code smell was then tested for performance
comparison of multinomial classifiers in combination with
AdaBoost and outcomes with 92.8% accuracy for the J48
algorithm.

The analysed three phases estimate the class change prone-
ness of the considered 20 Python software systems and
produce a total of 899 common classes among them. The
changes between the software metrics range from 2% to 9%
for the considered code smells among the versions. It has
been established that a comparison of the software versions
with respect to Phase 1 represents an incremental nature
of severity for three code smells, namely ‘‘Collapsible IF’’
and ‘‘Naming Convention’’. In contrast, the other smells,
‘‘Cognitive Complexity’’ and ‘‘Many Parameters,’’ have been
observed to have decreasing values of severity index over
the period. However, the ‘‘Unused Variable’’ smell shows an
abrupt nature.

Hypothesis testing using the Kruskal Wallis Test and
Wilcoxon Signed Rank test has been implemented for ana-
lyzing the differences in the distribution of the smells. The
obtained mean ranks through Kruskal Wallis hypothesis test-
ing reveal that each code smell differs from the other, express-
ing a non-identical population distribution among the code
smells.

The study of Wilcoxon signed Rank Test states that ‘‘Col-
lapsible ‘IF’ and Naming Convention code smell possess
more positive classes. However, the smells ‘‘Cognitive Com-
plexity’’ and ‘‘Many Parameter’’ have been observed to have
more negative classes, implicating a reduced severity value
observed during estimations over the modification period.
This concludes that some of the classes diffused with these
smells have been refactored in the subsequent versions of the
software, yielding good software quality. Despite the changes
observed in severity at the class level for the ‘‘Unused
Variable’’ smell, the examination revealed less significant
changes over the modification period.

The novelty of this work is attributed to the severity anal-
ysis of the Python code smells using J48 and Adaboost
algorithm. The work includes severity analysis of Python
code smells, which has not been addressed in the available lit-
erature. The contribution of this workwould help the software
developers prioritize the code smells in the pre-refactoring
phase, thus saving ample time and resources spent in the
development of projects. Subsequently, examining the behav-
ior of the severity trend of code smell gives a glimpse to the
developers for managing the code smells in the forthcoming
releases for the primary software system. This work encour-
ages the researchers to further explore Python code smells
to explore the diffusion and criticalness among the smells.
In addition, co-occurrences of Python smells can be explored
by prioritising them and exploring the critical smells to be
refactored simultaneously.

REFERENCES
[1] K. Beck, M. Fowler, and G. Beck, ‘‘Bad smells in code,’’ in Refactoring:

Improving the Design of Existing Code, vol. 1, 1999, pp. 75–88.
[2] M. Fowler, Refactoring: Improving the Design of Existing Code. Reading,

MA, USA: Addison-Wesley, 2018.
[3] E. V. d. P. Sobrinho, A. De Lucia, and M. d. A. Maia, ‘‘A systematic

literature review on bad smells-5 W’s: Which, when, what, who, where,’’
IEEE Trans. Softw. Eng., vol. 47, no. 1, pp. 17–66, Jan. 2021.

[4] F. A. Fontana and M. Zanoni, ‘‘Code smell severity classification using
machine learning techniques,’’ Knowl.-Based Syst., vol. 128, pp. 43–58,
Jul. 2017.

[5] T. Sharma and D. Spinellis, ‘‘A survey on software smells,’’ J. Syst. Softw.,
vol. 138, pp. 158–173, Apr. 2018.

[6] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda, ‘‘Towards a prioriti-
zation of code debt: A code smell intensity index,’’ in Proc. IEEE 7th Int.
Workshop Manag. Tech. Debt (MTD), Oct. 2015, pp. 16–24.

[7] L.Moonen, T. Rolfsnes, D. Binkley, and S. Di Alesio, ‘‘What are the effects
of history length and age on mining software change impact?’’ Empirical
Softw. Eng., vol. 23, no. 4, pp. 2362–2397, Aug. 2018.

[8] V. Lenarduzzi, N. Saarimäki, and D. Taibi, ‘‘Some SonarQube issues have
a significant but small effect on faults and changes. A large-scale empirical
study,’’ J. Syst. Softw., vol. 170, Dec. 2020, Art. no. 110750.

[9] A. Tofani, A. Di Pietro, L. Lavalle, M. Pollino, and V. Rosato, ‘‘CIPRNet
decision support system: Modelling electrical distribution grid internal
dependencies,’’ J. Polish Saf. Rel. Assoc., vol. 6, no. 3, pp. 133–140,
2015.

[10] X. Liu and C. Zhang, ‘‘DT: A detection tool to automatically detect code
smell in software project,’’ in Proc. 4th Int. Conf. Machinery, Mater. Inf.
Technol. Appl., Jan. 2016, pp. 681–684.

[11] A. Gong, Y. Zhong, W. Zou, Y. Shi, and C. Fang, ‘‘Incorporating Android
code smells into Java static code metrics for security risk prediction of
Android applications,’’ in Proc. IEEE 20th Int. Conf. Softw. Quality, Rel.
Secur. (QRS), Dec. 2020, pp. 30–40.

[12] N. Vatanapakorn, C. Soomlek, and P. Seresangtakul, ‘‘Python code smell
detection using machine learning,’’ in Proc. 26th Int. Comput. Sci. Eng.
Conf. (ICSEC), Dec. 2022, pp. 128–133.

[13] A. Holkner and J. Harland, ‘‘Evaluating the dynamic behaviour of Python
applications,’’ in Proc. 32nd Australas. Conf. Comput. Sci., vol. 91, 2009,
pp. 19–28.

[14] Z. Chen, L. Chen, W. Ma, X. Zhou, Y. Zhou, and B. Xu, ‘‘Understanding
metric-based detectable smells in Python software: A comparative study,’’
Inf. Softw. Technol., vol. 94, pp. 14–29, Feb. 2018.

[15] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, ‘‘An exploratory study of
the impact of code smells on software change-proneness,’’ in Proc. 16th
Work. Conf. Reverse Eng., Oct. 2009, pp. 75–84.

[16] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, ‘‘A large-scale empirical study on the lifecycle of
code smell co-occurrences,’’ Inf. Softw. Technol., vol. 99, pp. 1–10,
Jul. 2018.

[17] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, ‘‘Mining version histories for detecting code smells,’’ IEEE
Trans. Softw. Eng., vol. 41, no. 5, pp. 462–489, May 2015.

[18] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
‘‘A cooperative parallel search-based software engineering approach
for code-smells detection,’’ IEEE Trans. Softw. Eng., vol. 40, no. 9,
pp. 841–861, Sep. 2014.

[19] S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, ‘‘A novel approach
for code smell detection: An empirical study,’’ IEEE Access, vol. 9,
pp. 162869–162883, 2021.

[20] Y. Cao, L. Chen, W. Ma, Y. Li, Y. Zhou, and L. Wang, ‘‘Towards
better dependency management: A first look at dependency smells in
Python projects,’’ IEEE Trans. Softw. Eng., vol. 49, no. 4, pp. 1741–1765,
Apr. 2023.

[21] Z. Chen, C. Jia, and L. Chen, ‘‘Evaluating test quality of Python libraries
for IoT applications at the network edge,’’ Wireless Netw., 2023, doi:
10.1007/s11276-023-03479-2.

[22] A. Gupta, D. Sharma, and K. Phulli, ‘‘Prioritizing Python code smells
for efficient refactoring using multi-criteria decision-making approach,’’
in Proc. Int. Conf. Innov. Comput. Commun., 2022, pp. 105–122.

[23] J. Prabhu, T. Guhan,M. A. Rahul, P. Gupta, andM. S. Kumar, ‘‘An analysis
on detection and visualization of code smells,’’ in Artificial Intelligence for
Sustainable Applications. Hoboken, NJ, USA: Wiley, 2023, pp. 163–176.

VOLUME 11, 2023 119159

http://dx.doi.org/10.1007/s11276-023-03479-2

A. Gupta et al.: Severity Assessment of Python Code Smells

[24] M. Jerzyk and L. Madeyski, ‘‘Code Smells: A comprehensive online cata-
log and taxonomy,’’ inDevelopments in Information and Knowledge Man-
agement Systems for Business Applications, vol. 7. Cham, Switzerland:
Springer, 2023, pp. 543–576.

[25] S. A. Vidal, C. Marcos, and J. A. Díaz-Pace, ‘‘An approach to prioritize
code smells for refactoring,’’ Automated Softw. Eng., vol. 23, pp. 501–532,
Dec. 2014.

[26] F. A. Fontana, V. Ferme, and M. Zanoni, ‘‘Poster: Filtering code smells
detection results,’’ in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng.,
vol. 2, May 2015, pp. 803–804.

[27] R. Marinescu and D. Ratiu, ‘‘Quantifying the quality of object-oriented
design: The factor-strategy model,’’ in Proc. 11th Work. Conf. Reverse
Eng., Nov. 2004, pp. 192–201.

[28] D. Silva, N. Tsantalis, and M. T. Valente, ‘‘Why we refactor? Confessions
of GitHub contributors,’’ in Proc. 24th ACM SIGSOFT Int. Symp. Found.
Softw. Eng., Nov. 2016, pp. 858–870.

[29] Z. Li, T.-H. Chen, J. Yang, and W. Shang, ‘‘DLFinder: Characterizing and
detecting duplicate logging code smells,’’ in Proc. IEEE/ACM 41st Int.
Conf. Softw. Eng. (ICSE), May 2019, pp. 152–163.

[30] Understand by SciTools. [Online]. Available: https://documentation.
scitools.com/pdf/metricsdoc.pdf

[31] A. Martins, C. Melo, J. Monteiro, and J. Machado, ‘‘Empirical study
about class change proneness prediction using software metrics and code
smells,’’ in Proc. 22nd Int. Conf. Enterprise Inf. Syst., 2020, pp. 140–147,
doi: 10.5220/0009410601400147.

[32] A. Gupta and N. K. Chauhan, ‘‘A severity-based classification assessment
of code smells in Kotlin and Java application,’’Arabian J. Sci. Eng., vol. 47,
no. 2, pp. 1831–1848, Feb. 2022, doi: 10.1007/s13369-021-06077-6.

[33] F. A. Fontana, V. Ferme, M. Zanoni, and A. Yamashita, ‘‘Automatic metric
thresholds derivation for code smell detection,’’ in Proc. IEEE/ACM 6th
Int. Workshop Emerg. Trends Softw. Metrics, May 2015, pp. 44–53, doi:
10.1109/WETSoM.2015.14.

[34] W. A. Scott, ‘‘Cognitive complexity and cognitive flexibility,’’ Sociometry,
vol. 25, no. 4, pp. 405–414, Dec. 1962, doi: 10.2307/2785779.

[35] R. Martin, Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice, NJ, USA: Prentice-Hall, Jan. 2008.

[36] A. Hunt and D. Thomas, The Pragmatic Programmer. Reading,MA, USA:
Addison-Wesley, 2000.

AAKANSHI GUPTA received the B.Tech. and
M.Tech. degrees in computer science and engi-
neering discipline, and the Ph.D. degree from
USICT, GGSIPU, Delhi. She is currently with
the Amity School of Engineering and Technol-
ogy, Noida, and affiliated with AUUP, Noida. She
has more than 13 years of teaching and research
experience. Her research interests include software
engineering, software designing, data mining, and
machine learning algorithms.

RASHMI GANDHI received the Ph.D. degree
from GGSIPU. She has been an Assistant Profes-
sor with CSE, ASET, AUUP, Noida, since 2008.
She is certified as an oracle certified professional
(OCP) in NVIDIA courses. She has many research
publications (more than 25) in renowned Scopus
conferences and journals. She is a passionate
and creative teacher committed to being a cata-
lyst in the discovery of one’s potential, calling
and passion, which ultimately impact, equip, and

empower the present and future generations.

NISHTHA JATANA received the B.Tech. degree
from the Computer Science and Engineering
Department, the M.Tech. degree in computer tech-
nology and applications, and the Ph.D. degree
in software testing from Guru Gobind Singh
Indraprastha University, in 2021. She is cur-
rently an Associate Professor with the Computer
Science and Engineering Department, Maharaja
Surajmal Institute of Technology. She has more
than 12 years of teaching and research experi-

ence. She has various research publications, including SCIE-indexed journal
articles, book, and conference papers published in various ESCI/Scopus
publications. Her research interests include software testing, meta-heuristic
approaches and network security, and assistive technologies.

DIVYA JATAIN is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Applications, CDLU. She is also with the
Maharaja Surajmal Institute of Technology, New
Delhi. She has a teaching experience of more
than 11 years. Her research interests include data
analysis and data analytics, social networks anal-
ysis, natural language processing, big data, and
emerging technologies.

SANDEEP KUMAR PANDA is currently working
as a Professor and the Head of the Department of
Artificial Intelligence andData Science, Faculty of
Science and Technology (IcfaiTech), ICFAI Foun-
dation for Higher Education (Deemed to be Uni-
versity), Hyderabad, Telangana, India. He has pub-
lished 50 papers in international journals and inter-
national conferences and book chapters in repute.
He has 17 Indian patents on his credit. He has six
Edited books named Bitcoin and Blockchain: His-

tory and Current Applications (CRC Press, USA), Blockchain Technology:
Applications and Challenges (Springer ISRL), AI and ML in Business Man-
agement: Concepts, Challenges, and Case Studies (CRC Press), The New
Advanced Society: Artificial Intelligence and Industrial Internet of Things
Paradigm (Wiley Press, USA), Recent Advances in Blockchain Technology:
Real-World Applications (Springer ISRL), and Metaverse and Immersive
Technologies: An Introduction to Industrial Business and Social Applications
(Wiley Press), in his credit. He has ten lakhs seed money projects from IFHE.
His research interests include blockchain technology, the Internet of Things,
AI, and cloud computing. He received the Research and Innovation of the
Year Award 2020 from MSME, Government of India and DST, Government
of India, New Delhi, in 2020, and the Research Excellence Award from
Brand Honchos, in 2022. He is a Reviewer of IEEE ACCESS. His professional
affiliations are MIEEE, MACM, and LMIAENG. He also received the ‘‘Best
Teacher Award’’, and Cash Prize of Rs. 1 Lakh from The ICFAI Foundation
for Higher Education, Hyderabad, Telangana, India, on 13th Convocation
2023.

JANJHYAM VENKATA NAGA RAMESH is cur-
rently an Assistant Professor with the Department
of CSE, Koneru Lakshmaiah Education Founda-
tion, Vaddeswaram, Andhra Pradesh, India. He is
having 20 years of experience in teaching for UG
and PG engineering students. He has published
more than 25 papers in IEEE/SCI/Scopus/WoS
journals and conferences. He has authored six text
books and ten book chapters. His research interests
include wireless sensor networks, computer net-

works, deep learning, machine learning, and artificial intelligence. He is a
reviewer of various leading journals.

119160 VOLUME 11, 2023

http://dx.doi.org/10.5220/0009410601400147
http://dx.doi.org/10.1007/s13369-021-06077-6
http://dx.doi.org/10.1109/WETSoM.2015.14
http://dx.doi.org/10.2307/2785779

