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ABSTRACT Multi-satellite imaging mission planning (MSIMP) research has advanced substantially in
recent years. However, contemporary MSIMP research in uncertain environments is still confronting
challenges such as loss of satellite resource allocation, inadequate anti-jamming ability of the mission
planning scheme, and low mission completion rate. Therefore, in this work, we propose a hybrid local
replanning strategy improved adaptive differential evolutionary (HLRS-MSFADE) algorithm based on the
multi-satellite imagingmission planning in uncertain environments (MSIMPUE). First, anMSIMPUEmodel
based on uncertainty assessment is constructed. This model solves the problem of assessing new tasks with
varied qualities to decide the observation order in an uncertain environment and decreases the loss caused
by inefficient satellite resource allocation. Second, to address the issue of difficulty in planning for changing
new task requirements in uncertain environments, an HLRS for uncertain environments is developed to
ensure efficient task insertion while avoiding conflict costs. Finally, an MSFADE algorithm is presented to
handle the problem of long MSIMPUE mission response time and low mission completion rate with good
quality in an acceptable computation time. The simulation results validated the effectiveness and stability
of the method in dealing with MSIMPUE. Moreover, the HLRS-MSFADE algorithm outperforms previous
methods in terms of mission response time, mission completion rate, and motion perturbation.

INDEX TERMS Uncertain environment, multi-satellite imaging mission planning, replanning strategy,
adaptive differential evolutionary algorithm.

I. INTRODUCTION
Multi-satellite imaging mission planning (MSIMP) refers to
the optimal allocation of limited satellite resources based on
a complex mission environment and varied user requirements
to optimize Earth observation operation efficiency and gather
remote sensing images [1], [2]. Multiple imaging satellites
can achieve long-term and multi-directional continuous mon-
itoring of the observation area through mutual cooperation,
and they play an important role in geographical mapping, land
resource survey, disaster monitoring, and other fields [3], [4].
However, during the implementation of satellite missions, the
environment dynamically changes, influencing a large range
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of uncertain factors, such as 1) interference of non-partner
spacecraft, change of imaging satellite observation demand,
and emergency adjustment of satellite resources leading to
satellite resource conflict. 2) In the space environment, the
orbiting satellite is influenced by solar storms and space
debris impact, among others, resulting in satellite attitude
loss caused by radiation from electronic components, leading
to partial failure of the original plan [5], [6]. As a result,
research on Multi-satellite Imaging Mission Planning in
uncertain environments (MSIMPUE) has received increased
interest. In particular, comprehensive consideration of imag-
ing requirements, such as task requirements, guarantee types,
and application fields is urgent to cope with emergencies in
uncertain environments and solve the MSIMPUE problem
[7], [8].
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In recent years, the integer programming model [9],
constraint fulfillment model [10], deterministic algorithm
[11], intelligent optimization algorithm [12], and heuristic
algorithm [13], [14] have been used in MSIMPUE research.
MSIMPUE approaches are currently classified into three
types: proactive planning, reactive planning, and proactive
reactive planning.

MSIMPUE based on proactive planning. Proactive plan-
ning (PP) is an offline mission planning method that develops
MSIMP schemes based on prior knowledge in uncertain
environments [15]. Li et al. [16] proposed a multi-objective
evolutionary algorithm based on the PP of Earth observa-
tion satellites to generate a multi-satellite mission planning
scheme with certain anti-interference capability. Chen et al.
[17] developed a PP strategy based on priority and conflict
avoidance to maximize overall mission planning within an
acceptable computing time under the competition of diverse
satellite resources. Ayana et al. [18] suggested a PP solution
that improves the mixed integer linear programming strategy
while considerably reducing computational complexity.

MSIMPUE based on reactive planning. Reactive planning
(RP) is a type of mission planning that occurs in real-time.
During the implementation of the first plan, local replanning
of the initial plan is triggered based on uncertain occurrences
to build a multi-satellite mission planning scheme [15]. Cui
et al. [19] introduced a multi-satellite dynamic RP model
based on task priority and solved it using a hybrid genetic
tabu search method, which increases the value of observation
tasks. Yang et al. [20] proposed a multi-autonomous satellite
system with onboard scheduling capabilities in an uncertain
environment, which can effectively reduce revenue loss and
the number of mission failures. Liang et al. [21] developed a
mathematical model based on predicate logic to investigate
reactive scheduling space-borne mission planning methods
with high scalability.

MSIMPUE based on proactive reactive planning. Proactive
Reactive Planning (PRP) is a method of mission planning that
consider offline and real-time planning. On the basis of exist-
ing knowledge, PRP develops an initial scheme, repairs and
adjusts the initial scheme in response to real-time changes,
and generates a multi-satellite mission planning scheme [22].
Han et al. [23] proposed a multi-satellite mission planning
based on proactive scheduling under an uncertain cloud cover
environment to maximize the overall observation benefits.
He et al. [24] developed a dynamic distributed organi-
zation structure for PRP in dynamic contexts to increase
the algorithm’s solving efficiency. Lu et al. [25] devised a
proactive schedulingmulti-satellite mission planning strategy
based on regional goals to achieve multi-satellite execution
sequences in regions of various sizes.

Although previous studies have produced good planning
results, the following issues remain for MSIMPUE:

• An uncertain environment is frequently confronted with
various issues, such as a lack of satellite resources
and imaging task conflict, due to the batch delivery of

new tasks. Based on existing knowledge, determining
the sequence for obtaining satellite resources for target
tasks involves a high degree of subjectivity, resulting in
satellite resource loss. As a result, MSIMPUE faces a
problem in properly considering the usage of satellite
resources in uncertain environments and developing a
mission planning model that reasonably defines the pri-
ority of target missions.

• Uncertain environments are influenced by various fac-
tors, including mission cancellation, mission attribute
changes, and changes in allocated satellite resources,
and the number of satellite observation missions, arrival
time, and mission type are all uncertain, increasing the
difficulty of solving MSIMPUE problems. As a result,
MSIMPUE is facing a new challenge: how to create an
efficient MSIMP approach for new missions dynami-
cally submitted in unknown circumstances.

• In the MSIMPUE-solving process, many conflicting
objectives, such as mission benefit and reaction time
must be addressed, which increases issue-solving com-
plexity exponentially, resulting in a long MSIMPUE
mission response time and poormission completion rate.
As a result, another issue forMSIMPUE is to fairly trade
off the space’s search and exploitation performance and
build an algorithm to swiftly solve the superior mission
planning scheme.

To solve these difficulties, this paper takes imaging satel-
lites as the research object and proposes a hybrid local replan-
ning strategy and multi-strategy fusion adaptive differential
evolution algorithm (HLRS- MSFADE) for MSIMPUE. The
main contributions of this paper are as follows.

• Aiming at the existence of factors such as changes
in imaging requirements and assignment conflicts that
affect the planning of multi-satellite imaging missions
in uncertain environments, an MSIMPUE model based
on uncertainty assessment is proposed. This model con-
verts new missions arriving in batches into a series
of new mission sets carrying priority information,
reduces losses due to the irrational allocation of satellite
resources, and provides a rational allocation of satellite
resources.

• Aiming at changing mission requirements in an uncer-
tain environment, a hybrid local replanning strategy
(HLRS) for an uncertain environment is proposed. The
MSIMPUE problem is transformed into a new mission
insertion problem that avoids the cost of conflict as
much as possible by adjusting the time window between
the new mission and the original satellite observation
sequence. It also minimizes the influence of the new task
insertion on the original satellite observation sequence to
the greatest extent.

• To address the issues of long mission response time
and low mission completion rate caused by a large
MSIMPUE solution space and numerous constraints,
a multi-strategy fusion adaptive differential evolution
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(MSFADE) algorithm is proposed. This algorithm aims
to solve high-quality MSIMPUE planning schemes
within a reasonable calculation time by integrating the
mutation strategy and the dynamic mutation rate. It also
aims to achieve an effective balance between improved
mission planning schemes, fast response times, and
reduced perturbations.

The remainder of the paper is structured as follows.
Section II discusses the uncertainties that affect MSIMPUE
and the basic execution process of MSIMPUE. Section III
builds the MSIMPUE model based on uncertainty assess-
ment, which includes the mathematical description, objective
function, and model restrictions. Section IV details the
HLRS-MSFADE method. Section V examines the effec-
tiveness and stability of the HLRS-MSFADE algorithm for
solving MSIMPUE and assesses its performance by com-
paring tests with several mutation strategies and algorithms.
Section VI concludes with a brief overview and recommen-
dations for future research.

II. RELATED WORD
This section initially analyzes the uncertainties affecting
MSIMPUE and then introduces the basic execution flow of
MSIMPUE.

A. MSIMPUE UNCERTAINTY FACTOR ANALYSIS
Currently, imaging satellites are frequently disturbed by a
number of uncertain factors during mission execution [26],
[27]. For example, 1) the number of in-orbit satellites in space
has increased significantly, which has led to an increase in the
satellite collision rate; 2) satellites serving in orbit in the space
environment are subject to interference from solar activity
and electromagnetic storms, and the satellite failure rate has
gradually increased; and 3) the demand for in-orbit satellite
reconnaissance missions has grown increasingly complex,
and the satellite’s mission requirements are susceptible to
change. To further clarify the uncertainties that a satellite may

be subjected to in the process of performing a mission in an
uncertain environment, and to better guide the Multi-Satellite
Imaging Mission Planning System in determining the order
in which satellites should perform the target mission, this
paper categorizes the uncertainties affecting the MSIMPUE
into the categories of internal uncertainty and external uncer-
tainty. In Figure 1(a), the black circle represents the target
observation task. The satellite observation in different colors
indicates that the satellite cannot continuously perform the
observation task due to the interference of internal uncer-
tainties, such as satellite load failure, satellite power supply
failure, and internal circuit anomaly during task execution,
and the original observation task is cancelled. As shown in
Figure 1(b), the red dashed line represents the replacement
task; the red circle represents task cancellation; and the blue,
gray, and purple areas indicate that the original observation
task loses its effectiveness when several imaging satellites
encounter external uncertainties of cloud cover, user demand
change, and mission cancellation during the implementa-
tion of the mission planning scheme, respectively. Mission
planning plans must be revised to account for changing
circumstances. Unidentified factors must be assessed, and
realistic mission planning must be performed in response to
changing environmental conditions and mission observation
requirements. Therefore, the influence of uncertain factors on
satellite mission planning must be analyzed, and an effective
multi-satellite imaging mission planning method should be
designed to cope with uncertain environments.

B. BASIC EXECUTION PROCESS OF MSIMPUE
Assuming that a group of satellites S = {Sj|j ∈ N ,N = {1,
. . . , n}} perform a group of observation tasks T = {ti|i ∈

NT ,NT = {1, . . . ,m}}, the optimal satellite observa-
tion sequence to generate the initial mission planning is
{m1,m2,m3,m4}. The initial mission planning is shown in
Figure 2(a), multiple satellites Sj operate in orbit Oribto,
and the satellites perform assigned target tasks ti in orbits

FIGURE 1. Satellite in an uncertain environment. (a) Internal environment uncertainty situation; (b) External environment
uncertainty situation.
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FIGURE 2. Illustration of multi-satellite mission planning. (a) initial mission planning process; (b) New task add to MSIMPUE.

within the time window. In an uncertain environment, when a
batch of new tasksNewTasks = {NewTasks_t1,NewTasks_t2}
arrives at time T , the new tasks must be synthesized into
the original satellite observation sequence on the basis of the
initial mission planning scheme to produce an executable new
mission planning scheme. As shown in Figure 2(b), the new
task NewTask_ti and task mi are synthesized. If the multi-
satellite imaging constraints are met, then the new task will
be successfully inserted into the original satellite observation
sequence as a composite task; otherwise, the original task will
be maintained, and the MSIMPUE scheme will be generated
by repeating this step. The new satellite observation sequence
is {m1, occupym2,m3,m4} [28], [29].

III. PROBLEM DESCRIPTION
This section initially introduces the MSIMPUE model based
on uncertainty assessment and then further describes the
objective function of the MSIMPUE model and its con-
straints.

A. MSIMPUE MODEL BASED ON UNCERTAINTY
ASSESSMENT
The MSIMPUE problem can be described as follows.
According to the information of the satellite resource set
Sat = {s1, s2, s3, . . . , sn} and task set InitialTasks =

{t1, t2, t3, . . . , tN } in the initial environment, the uncer-
tainty factors of the initial task are evaluated and ana-
lyzed to determine its priority Ptarget . On the basis of
the objective function and target constraints, the tasks{
m1,m2,m3, . . . ,mg

}
on the j orbit o of the satel-

lite that meet the synthesis constraints are combined,
and the composite task is expressed as occupy ={
j, o, st, et, θa, [m1,m2,m3, . . . ,mg]

}
. An improved adap-

tive differential evolution (DE) algorithm is used to generate
an initial multi-satellite mission planning scheme schedule =

{occupy1, . . . , occupyn}. Particularly, the specific methods of
the MSIMPUEmodel based on uncertainty assessment are as
follows.

A unifiedmathematical description of the uncertainty eval-
uation index is expressed as follows:

w = f (
n∏
i=1

Xi) =f (TU , IU ,DU ,RU ,NU ), (1)

where w is the task weight coefficient, TU is the type of the
uncertainty factor, IU is the intensity of the uncertainty factor,
DU is the urgency of the uncertainty factor, RU is the benefit
of the new task, and NU is the number of the uncertainty
factors contained in a single new task.
The judgment matrix of the evaluation model for uncer-

tainty factors is expressed as:

B =


1
/
B11 1

/
B12 . . . 1

/
B1n

1
/
B21 1

/
B22

... 1
/
B2n

...
...

...

1
/
Bn1 1

/
Bn2 · · · 1

/
Bnn

 (2)

where Bij is the relative importance between indicators i and
j, as follows:

Bij =


0, factor i is less important than j
0.5, as significant as factor i and j
1, factori is important than factor j

(3)

The calculation function of the task weight coefficient of
the uncertainty factor evaluation is as follows:

w(X1,X2,X3,X4,X5) =

n∑
i=1

n∑
j=1

BijXi (4)

where Xi represents the i-th evaluation index of the uncer-
tainty factors, as shown as follows:

Priority = 10 ·

w(Xi) · Bij · (1 −

n∏
j=1

(1 − Bij)

n∑
i=1

n∑
j=1

Bij

(5)
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TABLE 1. Evaluation index of uncertain factors affecting MSIMP in uncertain environments.

which defines the priority of the target task according to
the evaluation results of uncertain factors. The evaluation
indicators of the MSIMPUE uncertainties used in this study
are listed in Table 1.

The satellites are then executed according to the initial
multi-satellite mission planning system. If various new tasks
arrive in batch processing at time T, through the MSIMPUE
model based on the assessment of uncertainties, satellite
controllers can update the indicators of uncertainties based
on the needs of actual changes in the situation. As shown in
Table 1, Specifically contains the type of uncertainty factor
TU , intensity of uncertainty IU , degree of mission urgency
DU , task revenue RU , and uncertain numbers in a single task
NU . Generate priorities for satellite execution target missions
that can be dynamically updated based on uncertain environ-
mental changes and the new tasks are converted into a series
of new task sets NewTasks =

{
t1, t2, t3, . . . , tNntask

}
carrying

priority information. The initial mission planning scheme
is partially replanned using the HLRS. The MSIMPUE
scheme is obtained for new task insertion newschedule =

{noccupy1, . . . , noccupyn}.

B. ESTABLISHING MSIMPUE OBJECTIVE FUNCTIONS
AND CONSTRAINTS
1) OBJECTIVE FUNCTIONS
This work focuses on three components of objective function
construction: mission benefit, response time, and perturba-
tion cost. Mission benefit denotes the total priority of the
satellite to execute the target task in an uncertain environ-
ment, response time denotes the total response time of each
satellite to complete the target task, and perturbation cost
denotes the effect of new task insertion on the initial mission
plan throughout the entire MSIMPUE process. The MSIM-
PUE’s objective function is constructed as follows.

• Mission benefit objective function

max f1(xijk , nxijk ) =

Ntask∑
i=1

NS∑
j=1

(
No∑
k=1

xijk · prioritytask + . . .

. . . +

Nntask∑
i=1

nxijk · priorityntask ), (6)

where xijk represents the decision variable of each satellite
and the initial target mission, nxijk represents the deci-
sion variable of each satellite and the new target mission,
prioritytask represents the priority of the initial target task
taski, priorityntask represents the priority of the new task
ntaski, Ntask represents the number of the initial target mis-
sion, Nntask represents the number of the new target tasks,
NS represents the number of satellites to be executed, and No
represents the number of orbits.

• Response time objective function

min f2(xijk , nxijk )

=

Ntask∑
i=1

NS∑
j=1

(
No∑
k=1

xijk · Timeires +

No∑
k=1

nxijk · nTimeires)

Ntask + Ntask
(7)

where Timeires represents the response time of the initial target
task, and nTimeires represents the response time of the new
task.

• Perturbation cost objective function

min f3(perxi,α) =

Nntask∑
i=1

perxi,α · α, (8)

where perxi,α represents the disturbance decision variable,
and α represents the disturbance degree. The disturbance
level is mainly considered in four cases, namely, unchanged
number of synthetic tasks, increased number of synthetic
tasks, and replacement or deletion of synthetic tasks com-
pared with the original satellite observation sequence, which
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can be described as follows:

α =


ω1,wtijk remain the same, con_t/θa change
ω2,wtijk incresed numbers
ω3,wtijkhaved changed
ω4,Task replacement/Delete

 (9)

wherewtijk is the time window corresponding to the execution
of target mission i by satellite Sj in orbit Orbito. The distur-
bance degree range is 0 ≤ ω1 ≤ ω2 ≤ ω3 ≤ ω4 ≤ 1.

The global optimization objective function is generated
using the above objective function and the constraint violation
cost, as shown as follows:

max f = µ · f1 − λf2 − τ f3 − β

I∑
i=1

ci (10)

where µ, λ, τ , and β are the scale scaling factors of mission
benefit, response time, perturbation cost, and constraint vio-
lation cost, respectively, and all remain of the same order.
ci is the penalty function corresponding to the violation of
the constraint, and I is the constraint condition. Solving the
optimal mission planning scheme for MSIMPUE is a class of
multi-objective decision problems, in which the constructed
global optimal objective function is dynamically adapted to
different multi-satellite imaging mission planning scenarios
by setting the weights of µ, λ, τ , and β to be adjusted
according to the actual environment and the user’s demand
preference.

2) CONSTRAINT FUNCTIONS
This section defines and explains the MSIMPUE model’s
constraints.

• Uniqueness constraints

Ntask∑
i=1

NS∑
j=1

NO∑
k=1

tijk ≤ 1, ∀ti ∈InitialTasks ∪ NewTasks (11)

Task ti has a visible time window on multiple satellite
resources, but it can only be executed by one of them.

• Frequency of satellite side swing imaging in a single
orbit constraint

∀orbiti ∈ Orbit,Orbit = {orbit1, . . . , orbito} ,Ni ≤ NOi
(12)

The number of satellite yaw imaging in any orbit cycle Ni
is less than the maximum number of satellite yaw imaging in
a single orbit cycle NOi.

• Maximum side swing angle constraint

|θa| ≤ Aj, θa ∈ occupy ∪ tempoccupy (13)

The absolute magnitude of the yaw angle of any synthetic
mission θa must not exceed the maximum yaw angle of the
satellite Aj due to limited satellite resources.

• Time constraint of satellite attitude conversion

∣∣∣θ j,o,k+1
a − θ j,o,ka

∣∣∣ /ωj < st j,ok+1 − st j,ok ,

j ∈ S, o ∈ O, k ∈ InitialTasks ∪ NewTasks (14)

The attitude conversion between two adjacent synthesis
activities in the same orbit must occur within the conversion
time.

• Imaging duration constraints

et j,ok − st j,ok ≤ dj, j ∈ S, o ∈ O,

k ∈ InitialTasks ∪ NewTasks (15)

Any synthetic task until the end time et j,ok and start time
st j,ok should be less than or equal to the difference between
the satellite remote sensor’s longest single boot time dj.

• Resolution constraints

∀wtijk ∪ nwtijk , r
S
j ≤ rmin (16)

Any time window of satellite observation ∀wtijk ∪ nwtijk
needs to meet the resolution rSj of satellite remote sensor,
which is less than or equal to the minimum resolution rmin
required by satellite imaging users.

• Field angle constraints

∀mi ∈ (occupyjok ∪ noccupyjok ), |mi_θa − mi−1_θa| ≤ θj

(17)

Any single task mi must be within the single field angle θj
of the satellite remote sensor at the same time due to limited
satellite resources.

IV. DESIGN OF HLRS-MSFADE ALGORITHM
This section proposes a hybrid local replanning strategy
improved adaptive differential evolutionary (HLRS-MSFADE)
algorithm based on MSIMPUE. The HLRS-MSFADE is
divided into two pieces using the layer-by-layer breakdown
concept. The first part evaluates and analyzes the uncer-
tainty aspects of the initial mission to establish its priority,
and an MSFADE algorithm is utilized to solve the initial
multi-satellite mission planning scheme of the MSIMPUE
output. In the second part, an HLRS inserts a new task
containing priority information into the initial multi-satellite
mission planning scheme. The optimalMSIMPUE solution is
generated using an MSFADE algorithm. Algorithm 1 depicts
the HLRS-MSFADE algorithm framework.

A. HYBRID LOCAL REPLANNING STRATEGY
To meet the changing mission requirements in an uncertain
environment, it is difficult to adapt the global replan-
ning approach to MSIMPUE, resulting in the failure of
multi-satellite observation missions. To reduce the disruption
to mission planning, an HLRS for uncertain environments
is developed, which modifies the initial mission planning
scheme while retaining the original satellite observation
sequence. It consists of four sequential task insertion meth-
ods: synthetic insertion with no conflicting costs method
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Algorithm 1 Framework of HLRS-MSFADE
Input: obj (Parameters of the satellites Sn, Parameters of the new
tasks Nn, Parameters of the basic tasksoccupyn, Population size
Pn, Random sequence population Rs
Output: MSIMPUE optimal scheme under an uncertain environ-
ment
1 Construct the MSIMPUE model based on uncertainty assessment
to generate a new task set
NewTasks =

{
t1, . . . , tNntask

}
;

2 Build the MSIMPUE fitness function using Equations (6)–(10)
and the constraints using Equations (11)–(17);

3 max f = µ · f1 − λf2 − τ f3 − β
I∑
i=1

ci;

4 /∗ Use the HLRS-MSFADE to obtain the MSIMPUE optimal
initial scheme under the uncertain environment ∗/
Solu = HLRS −MSFADE_operate(occupy,Rs);

for gen=1:n
Mu = MutationOperator(Rs); /∗ Mutation Operator∗/
Cr = CrossoverOperator(Mu); /∗ Crossover Operator∗/
MSFADE_f = SelectionOperator(Cr)/∗Selection Operator∗/
end
schedule = {occupy1, . . . , occupyn}% initial scheme
5 /∗ Hybrid local replanning strategy ∗/
if NewTasks ̸= ∅

newpop = HLRS {NewTask(i :), schedule(j :)} ;

newSchedule = Phase1_MutationOperator(newpop);
else output MSIMPUE optimal scheme;
end

7 end

(SINCCM), independent insertion with no conflicting costs
method (IINCCM), iterative insertion to avoid conflicting
costs method (IIACCM), and alternative insertion to mini-
mize conflict costs method (AIMCCM).

1) INSERT METHOD 1: SINCCM
SINCCM is the simplest in the HLRS. It inserts new tasks
into the original satellite observation sequence as meta-tasks
of synthetic tasks. It can be used to avoid the conflict cost
between the HLRS and the original satellite observation
sequence meta-task without changing the task execution
time window. Assume that the observable time window of
the new task {t1, t2, t3} in the new task set NewTasks ={
t1, t2, t3, . . . , tNntask

}
is in satellite Sj1 in orbit Oo1, and

the scheduled observation task of the original observa-
tion sequence of the satellite on satellite Sj in orbitOo is{
occupyj1,o1k−1 , occupyj1,o1k , occupyj1,o1k+1

}
. A quintuple pos =

[j, o, 1, k, n] is used to mark the insertion location with spe-
cific information (satellite number, orbit number, presence
of a composite task, insertion location number, and task
number).

Figure 3 shows the schematic of the SINCCM in the HLRS
for uncertain environments. First, the viewable time windows
of the original satellite observation sequence in satellite Sj1
in orbit Oo1 are visited. The starting position of the new task
and each meta-task is then appraised one by one according
to the priority of the new work, and the location satisfying
theMSIMPUE constraint is placed as the composite insertion
point. It contains three type of insert position: Synthetic

insertion position 1, in which the new task is inserted before
the first meta-task of the synthetic task occupyj1,o1k−1 ; Synthetic
insertion position 2, in which the new task is inserted into
a meta-task between m3 and m4 for the synthesis of task
occupyj1,o1k ; and Synthetic insertion position 3, in which the
new task is inserted after the synthesis task of meta-task
m5 after task occupy

j1,o1
k+1 . Finally, a new satellite observation

sequence is formed by inserting a new task into the original
satellite observation sequence.

2) INSERT METHOD 2: IINCCM
The IINCCM in the HLRS is relatively easy. This method
inserts the new task as a separate synthesis task into the origi-
nal satellite observation sequence and is appropriate when the
application of the aforementioned SINCCM conflicts with
the original satellite observation sequence and the meta-task.
Assuming that the visible time window of the new task set
{t4, t5, t6} is in satellite Sj2 in orbit Oo2, the insertion of
SINCCM has a conflict cost con1 with the synthesis task{
occupyj2,o2k−1 , occupyj2,o2k , occupyj2,o2k+1

}
in the original satel-

lite observation sequence. Figure 4 shows the IINCCM in the
HLRS for uncertain environments.

First, all the synthesis tasks in satellite Sj2 in orbit Oo2
are traversed to obtain the original observation sequence.
Then, the starting position of the new task and each synthe-
sis task occupyj2,o2 is determined in turn, and the position
satisfying the MSIMPUE constraint after insertion is defined
as the independent insertion position. It includes: Indepen-
dent insertion position 1, in which the first task is inserted
before the observation sequence synthesismission of the orig-
inal satellite occupyj2,o2k−1 ; Independent insertion position 2,
in which the new task is inserted between two adjacent
synthetic tasks occupyj2,o2k−1 and occupyj2,o2k ; and Independent
insertion position 3, in which the new task is inserted after the
last synthetic task of the observation sequence of the original
satellite occupyj2,o2k+1 . Finally, the new task is inserted into the
original observation sequence as an independent composite
task to generate a new satellite observation sequence.

3) INSERT METHOD 3: IIACCM
The IIACCM is complex in the way new tasks are inserted
in the HLRS. This method iteratively inserts new tasks by
constructing a virtual task pool that is applicable to cases in
which the new task adopts SINCCM and IINCCM. SINCCM
and IINCCM have conflicting costs with the original satellite
observation sequences, and the conflicting costs generated by
the insertion of new tasks are eliminated as far as possible.
New tasks are iterated in the simulated task pool, conflicting
tasks are stored in the virtual task queue in order of priority,
and the task t8 is one of the conflicting tasks t8 ∈ Si_conflict .
Figure 5 shows the IIACCM in the HLRS for uncertain
environments.

First, the new task t8 is traversed to obtain imaging resource
information for all visible time window. Second, the conflict
relationship between the new task t8 and the original satellite
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FIGURE 3. Schematic of SINCCM.

FIGURE 4. Schematic of IINCCM.

FIGURE 5. Schematic of IIACCM.

observation sequence is examined one by one to calculate
the exit cost of the new task’s insertion, which results in the
withdrawal of the scheduled mission. Third, the time window
with the least costly exit is selected to insert the new task t8,

and the exit task is m5,m6. Finally, the exit task m5,m6 is
sequentially inserted into the virtual task queue in order of
priority from high to low, and a protection stack is set up
to store the newly inserted task to avoid its deletion during
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the iteration process. The iteration is then repeated until the
virtual task queue is empty, and the output of the new task is
inserted into the observation sequence.

The exit cost is defined as the total benefit of existing the
tasks, which can be expressed as follows:

Exitcost(i) = e +

e∑
i=1

ptargetci
Vtempoccupy_twi

(18)

where Si_conflict = {c1, . . . , ce} is the set of conflicting tasks,
ptargetci denotes the priority of the conflicting tasks, and
Vtempoccupy_twi is the visible time window of the conflict-
ing tasks. The introduction of an exit cost allows for the exit
of scheduled synthetic meta-tasks with smaller task priorities
and larger execution time windows. The iterative optimiza-
tion procedure for minimizing the conflict cost lowers the
possibility of exiting the task rescheduling progressively, and
the maximum iteration depth is set to 10. As a result, the new
high-priority work is always replaced out of the low-priority
activity that has a conflict in the original satellite observation
sequence during the IIACCM.

4) INSERT METHOD 4: AIMCCM
The AIMCCM is applicable to new task insertion when
conflict cannot be avoided by changing the task execution
window, that is, the insertion of a new task is bound to create
conflict costs. By calculating the conflict cost of the new task
in each time window and selecting the time window with the
smallest conflict loss for task replacement to minimize the
conflict cost, the conflicting task is replaced with the new task
if the conflict cost generated by the new task insertion is less
than the sum of the gains of the conflicting tasks; otherwise,
the new task insertion is cancelled.

Conflict cost is an important impact factor of MSIMPUE.
If the insertion of a new mission causes a conflict with the
original satellite observation sequence mission and the con-
flict cannot be avoided by moving the time window, then the
insertion of the new mission reduces the total mission benefit
of the MSIMPUE scheme. The reduction in the mission
benefit is defined as the conflict cost, as shown as follows:

Conflictcost = xinsertδ priorityntask

+ (1 − xinsert )
e∑
i=1

prioritytask (19)

where xinsert is the decision factor for new task insertion,
xinsert = 0 indicates the success of new task insertion,
xinsert = 1 denotes the failure of new task insertion, δ is the
high-priority task reward factor, priorityntask is the new task
priority, and prioritytask is the task priority. The details of
hybrid local replanning strategy are described in Algorithm 2.

B. MULTI-STRATEGY FUSION ADAPTIVE DIFFERENTIAL
EVOLUTION ALGORITHM
Differential evolution (DE) is a robust and efficient heuristic
evolutionary technique that is highly competitive for solving

Algorithm 2 Hybrid Local Replanning Strategy
Input: Synthesis task of original satellite observation
sequences occupy =

{
occupyj1,o1, . . . , occupyjn,on

}
,

Meta-task sequences for synthetic tasks occupyji,oik ={
occupyji,oik,1 , . . . , occupyji,oik,g

}
, New task sequences

NewTask =
{
t1, t2, . . . , tNntask

}
Output:MSIMPUE scheme
/∗ Synthetic insertion with no conflicting costs ∗/
1 for i = 1: Nntask% Traversing new tasks
2 for n =1: length nw_t(i)
3 for k =1: length occupyjok,g
4 Determine the new task’s location with occupyjok .
Insert a new task that meets the MSIMPUE constraints.

noccupyjok = SInoconflict
{
occupyjok (g), t(i)

}
;

5 else Si_conflict = {c1, . . . , ce}; % Conflict task sets
6 end
7 end
/∗ Independent insertion with no conflicting costs ∗/
8 if Si_conflict ̸= ∅

9 for k = 1: length occupyjok
10 Determine the new task’s location with occupyj,o.

noccupyjok = IInoconflict
{
occupyjo(k), nt(i)

}
11 else Si_conflict = {c1, . . . , ce};
12 end
13 end
/∗ Iterative insertion to avoid conflicting costs∗/
14 if Si_conflict ̸= ∅

15 Building virtual simulation task pools Vtempoccupy1
16 for k =1: length Si_conflict

17 Exitcost(i)=e+
e∑
i=1

ptargetci
Vtempoccupy_twi

18 Vtask_queue {i, 1} =

sort[occupyjok,1, . . . occupy
jo
k,e];

19 repeat Steps 15–18
20 output current virtual scheme
noccupyjok = IInoconflict (Vtempoccupy

{
occupyjo(k), nt(i)

}
);

21 end
22 end
/∗ substitutive insertion with conflicting costs ∗/
23 if Si_conflict ̸= ∅

24 for n = 1: length nw(i)
25 calculate the conflict cost for new task insertion
Conflictcost = xinsertδ priorityntask + (1 −

xinsert )
e∑
i=1

prioritytask ;

26 choose the task with minimum conflict cost
Min(Conflictcost,

e∑
i=1

ci);

27 noccupyjok = SuIconflict
{
occupyjo(k), nt(i)

}
28 else noccupyjok = occupyjo;
29 end
30 end
31 end
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difficult constrained multi-objective optimization problems
[9], [30]. EnhancedDEs forMSIMPUE are preference-based,
concentrating on either optimization exploration (obtaining
more satellite mission planning schemes) or convergence
(shorter response time).

Furthermore, determining the CR value in DE requires
mature a priori knowledge. In addition, the current MSIM-
PUE using improved DE only investigates the mutation
and selection operators, and has not considered the effect
of the CR value on the mutation strategy. However, the
CR for MSIMPUE needs to be adjusted according to the
algorithm’s evolution, and a fixed-value CR will result in
the algorithm not being able to approach the optimal solu-
tion or falling into a local optimum. Therefore, this section
proposes a multi-strategy fusion adaptive differential evolu-
tionary algorithm (MSFADE), which adjusts the balance of
the algorithmic search by introducing the fusion mutation
strategy and dynamic mutation rate to effectively improve the
efficiency of the algorithmic search.

First, the mutation strategy used for the fusion mutation
strategy is as follows:

• ‘‘DE/current-to-rand/1’’

vi,g(t) = xi,g + F · (xr1,g − xi,g) + F · (xr2,g − xr3,g) (20)

• ‘‘DE/current-to-pbest/1’’

vi,g(t) = xi,g + F · (xpbest,g − xi,g) + F · (xr1,g − xr2,g)

(21)

Figure 6 depicts the schematic of the mutation strate-
gies DE/current-to-pbest/1 and DE/current-to-rand/1 in two
dimensions. The Figure 6 indicates that explosiveness and
exploration constrain each other in the evolution process
due to the varying DE parameters applied to different prob-
lems. Excessive exploration leads to the algorithm failing to
approach the ideal solution, and excessive explosibility may
cause the algorithm to fall into local optimum. Moreover,

the mutation approach chosen has a significant effect on
algorithm convergence.
Second, to explore and develop the balance algorithmwell,

the dynamic mutation rate of the algorithm’s search balance
should be adjusted. The CR value is determined as follows:

CR(x) = (log(x)
/
log(n))α, x = 1, . . . , n, α = 1, 2, . . . ,m

(22)

where x represents the current number of iterations, n epre-
sents the total number of iterations, and α is the curvature
change index.

The curve of the dynamic crossover rate changing with
different curvature change indices is shown in Figure 7.
As shown in Figure 7, an extremely small value causes
the dynamic crossover rate to rapidly decline in the early
stages of evolution. Then, the proportion of exploration with
random search rapidly approaches that of development with
fine search, resulting in poor population development and an
easy fall into local optimality. An extremely high number
causes the dynamic crossover rate to be more exploratory
than exploitable early in evolution. Then, the percentage of
exploitation with refined search rapidly approaches that of
exploration with random search, making convergence prob-
lematic.

The crossover operator promotes the exploratory tech-
nique for global optimization in the early stages of evolution
because the CR value is large. As the number of iterations
increases, the CR value approaches zero, and the crossover
operator focuses on the exploitative technique for local opti-
mization. Consequently, new individuals are created using the
dynamic crossover rate and fusion mutation strategy.

vi,g(t)=

{
DE/current-to-rand/1, CR(t) ≥ rand[0, 1]
DE/current − to − pbest/1, CR(t) < rand[0, 1]

(23)

FIGURE 6. Illustration of mutation strategy. (a) DE/current-to-pbest/1; (b) DE/current-to-rand/1.
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FIGURE 7. Change curve of dynamic crossover rate.

Furthermore, given the size of the scaling factor F value
directly influences the algorithm’s global optimization capa-
bilities, the dynamic scaling factor is set in the evolution
process as follows:

F(t) =

{
2CR(t), CR(t) ≥ rand[0, 1]
(2 − CR(t))/2, CR(t) < rand[0, 1]

(24)

At the early stage of evolution, the mutation strategy
DE/current-to-rand/1 with stronger global search capability
is chosen to quickly identify the optimal solution region in
the space and obtain optimal MSIMPUE solution sets. Then,
after the evolution iteration has reached a certain degree,
the mutation strategy DE/current-to-pbest/1 with better con-
vergence capability is chosen to ensure that the fine search
tends to dominate in the final stage of search. After a spe-
cific amount of evolutionary iteration, the mutation strategy
DE/current-to-pbest/1 with strong convergence ability is cho-
sen to ensure that the fine search tends to dominate in the last
stage of the search, and the optimal MSIMPUE solutions are
obtained in a reduced reaction time.

V. COMPUTATIONAL EXPERIMENTS
Four sets of simulation tests are conducted to verify the
effectiveness and stability of the HLRS-MSFADE algorithm
in MSIMPUE processing. Experiment 1 determines the
effectiveness of the MSIMPUE model based on uncertainty
assessment, Experiment 2 determines the effectiveness and
stability of MSIMPUE with small-scale new task insertions,
Experiment 3 establishes the effectiveness and stability of
MSIMPUE with large-scale of new task insertions, and
Experiment 4 analyzes the performance of the HLRS-
MSFADE algorithm.

A. EXPERIMENT SETTINGS
The simulation scenario is constructed to generate eight
imaging satellites on May 8, 2023 based on the needs of
the multi-satellite imaging mission and the parameters of the
launched commercial optical remote sensing satellites. The

simulation time is from 00:00:00 to 24:00:00 (UTCG). The
satellite orbital and payload parameters are listed in Table 2.
Furthermore, the experimental parameters set the population
individual size to 50, the maximum number of iterations to
1000 generations.

B. EXPERIMENT 1: EFFECTIVENESS OF THE MSIMPUE
MODEL BASED ON UNCERTAINTY ASSESSMENT
To verify the effectiveness of the MSIMPUE model based on
uncertainty assessment, 30 imaging target are randomly pro-
duced to imitate the tasks required by users. The MSIMPUE
model based on uncertainty assessment (MSIMPUE-UA) and
the Fixed priority setting method (FPSM) are used to par-
ticipate in the solution of the MSIMPUE. We refer to the
literature [31] for a fixed priority setting approach assuming
an uncertain environment with a task priority order of: Major
mission requirements (Priority = 10) > emergency contin-
gency (Priority = 9) > Satellite payload failure (Priority =

8) > Satellite power failure (Priority = 7) > Internal circuit
abnormality (Priority = 6) > cloud cover (Priority = 5) >

User demand change (Priority = 4) > Routine mission
observations (Priority = 3) > scientific experimental obser-
vation (Priority = 2) > Mission cancelled (Priority = 1).
Among them, satellite load failure, satellite power supply
failure, and internal circuit anomalies necessitate the rapid
deployment of satellites to replace problematic satellites for
observation, and hence have a high priority.
At the initial moment, the 30 target tasks employ the set

of tasks containing target priority information NewTasks ={
t1, t2, t3, . . . , tNntask

}
generated by MSIMPUE-UA and

APSM, respectively. The priority order of the target tasks is
shown in table 3, where ‘‘Target’’ denotes the target task num-
ber, ‘‘PFPSM ’’ denotes the priority of the target task generated
using the FPSM, ‘‘PMSIMPUE−UA’’ denotes the priority of the
target task generated using MSIMPUE-UA.
Figure 8 shows the initial priority analysis of the target

tasks using both the MSIMPUE-UA and FPSM methods,
where ‘-∗-’ denotes the target priority corresponding to each
target task and is connected by target task ‘∗’ with straight
lines of different colors. Fig. 8(a) shows the target priority
results of 30 target tasks at the initial moment under the two
methods, from which it can be seen that there is a difference
in the value of the priority obtained by the same target task in
MSIMPUE-UA and FPSM.

Then, we sort the target tasks in ascending order of priority
and analyze the impact of MSIMPUE-UA and FPSM on the
MSIMPUE observation order. Figure 8(b) shows the corre-
sponding priority of each target task. In order to compare the
priority order under the two methods more intuitively, FPSM
only uses ‘-∗-’ to indicate the target priority corresponding
to each target task. As shown in Fig. 8(b), the results of the
FPSM target task priority show that multiple target tasks are
piled up at the same priority within the priority range [2, 7],
making it difficult to further judge the observation order of
the satellite for executing the target tasks; The target tasks
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TABLE 2. Satellite orbital and payload parameters.

TABLE 3. The results of local area pre-priority setting method and MSIMPUE model based on uncertainty assessment.

FIGURE 8. The task priority of fixed priority setting method and MSIMPUE model based on uncertainty assessment. (a) The task priority results
(b) Target task and the corresponding priority.

using MSIMPUE-UA are uniformly distributed in the range
of priority [1, 10], and satellites can be assigned to perform
observations of the target tasks in the order of target priority.

At T moment, the Satellite Control Centre monitored the
arrival of 10 new missions in the uncertain environment and
the change of the target mission at the initial moment: Tar-
get task T5, Satellite failure urgently requires new satellites
to take over the task of observing major disasters; Target
task T7, Reduced cloud cover; Target task T30, Changes in
user observation tasks. To cope with the impact of newly
arrived missions in an uncertain environment, satellite con-

trollers update the MSIMPUE-UA with indicators such as
the urgency of uncertainties and the number of uncertainties
contained in a single mission based on actual environmental
changes. Figure 9 shows the target task priority information
generated by the MSIMPUE-UA and FPSM methods.

Figure 9(a) shows the target priority results for the
MSIMPUE-UA and FPSM methods at T time; the red pen-
tagrams and red boxes represent the T5, T17, and T30 target
tasks and their related MSIMPUE-UA priorities at the initial
and T time, respectively. Figure 9(a) shows that the priority
comparison between T5, T17, T30 and the initial moment
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FIGURE 9. T moment, the task priority of fixed priority setting method and MSIMPUE model based on uncertainty assessment. (a) The task
priority results (b) Target task and the corresponding priority.

changes, which shows that MSIMPUE-UA is capable of gen-
erating a priority for the satellite to perform the target mission
that can be dynamically updated according to changes in the
uncertain environment.

The corresponding priority of each target task is shown in
Figure 9(b), which shows that the FPSM is adopted at the T
time, the target tasks appear to be stacked up more obviously,
and the new task using MSIMPUE-UA is combined with the
target task information of the initial time, and the priority
order of the target tasks is fine-tuned compared with that of
the initial time, which indicates that the priority of the target
tasks generated by MSIMPUE-UA can be updated dynami-
cally according to the change of the uncertain environment.

The simulation results of Experiment 1 show that the
MSIMPUE model proposed in this work takes into account
the uncertainties in the environment, and dynamically updates
the priority order of the target tasks under the uncertain envi-
ronment, which affects the observation order of the satellite
performing the target tasks, and allows the satellite to have
more chances to select more important tasks for observation
in the process of observation the environment.

C. EXPERIMENT 2: EFFECTIVENESS AND STABILITY OF
MSIMPUE WITH SMALL-SCALE NEW TASK INSERTIONS
In this experiment, 30 imaging target locations are randomly
produced within the local range of longitude [0, 65] and lati-
tude [0, 150] to imitate the tasks required by users. Figure 10
shows the spatial distribution of the 30 target points observed
within the local area.

To validate the effectiveness of the HLRS-MSFADE
algorithm in implementing MSIMPUE with small-scale new
task insertion, experiments are initially performed to evaluate
whether the HLRS-MSFADE algorithm can solve theMSIM-
PUE’s initial task planning scheme.

Table 4 displays the initial mission planning results of
the optimal allocation of 30 target tasks using the HLRS-

FIGURE 10. Schematic of the distribution of imaging targets in a local
area.

MSFADE algorithm. ‘‘T’’ represents the number of target
tasks, ‘‘S’’ denotes the satellite number executing the task,
‘‘P’’ represents the target priority, ‘‘St’’ is the observation
start time(hour: minute:second), ‘‘Et’’ is the observation end
time (hour: minute:second), and ‘‘θa ’’ is the satellite yaw
angle. As shown in the Table 4, all 30 target tasks in this
scenario are effectively assigned, and the HLRS-MSFADE
algorithm achieves an acceptable mission planning effect.

When implementing the MSIMPUE’s initial mission plan-
ning scheme, the satellite’s mission needs change in an
unpredictable environment. On May 8, at 3:00:00, five new
tasks arrived, which are analyzed using theMSIMPUEmodel
based on the assessment of uncertain elements. The HLRS is
then utilized to perform local replanning of the initial mission
planning scheme in an attempt to insert the new mission
within the satellite’s original observation schedule. Table 5
depicts the MSIMPUE scheme of new task insertion, where
new task insertion is represented as T31–T35 in the MSIM-
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TABLE 4. Simulated experimental results of local area.

TABLE 5. Simulated experimental results of MSIMPUE for newly arrived task insertion.

PUE scheme, and ‘‘Perturbation’’ indicates the perturbation
induced by the insertion of a new task into the initial mission
planning scheme.

As shown in Table 5, the new tasks are effectively inserted
by using the HLRS, with SINCCM independently inserting
two new tasks without conflict cost, and the number of
time windows of the original satellite observation sequence
is expanded. The two new missions use the IINCCM
conflict-free synthetic insertion approach, the number of time
windows of the observation sequence of the original satellite
remains unchanged, and the imaging time changes. To pre-
vent conflict costs, one new task uses the IIACCM iteration
insertion approach, whereas the time frame of the observation
sequence syn-thesis task of the original satellite changes.

According to the optimal assignment results of the MSIM-
PUE scheme shown in Tables 4 and 5, the HLRS-MSFADE
algorithm is used to visualize the MSIMPUE simulation
results for solving the new task insertion of small-scale tasks
to directly represent the assignment relationship between the
satellite and the target task, as shown in Figure 11.
Figure 11 demonstrates the efficacy of theHLRS-MSFADE

method for solving small-scale mission and inserting new
tasks into the MSIMPUE. Figure 11 (a) depicts the results
of the HLRS-MSFADE algorithm’s initial multi-satellite
mission planning scheme, where ‘‘∗’’ represents the target
task, and the connection of lines ‘‘∗’’ with different colors
reflects the target task assigned by different satellites. Thirty
target tasks are effectively assigned. Figure 11 (b) shows that
the task assignment results are connected by arrows fromNT1

to NT5 in the order of execution time in three-dimensional
space. In addition, five new tasks are successfully inserted,
and the initial task planning scheme is effectively allotted.

To further validate the HLRS-MSFADE algorithm’s per-
formance in implementing small-scale new task insertion
into the MSIMPUE, a simulation experiment is established,
in which 10, 15, 20, and 25 new tasks arrive at 3:00 a.m.
on May 8, correspondingly, in the same scenario.

Table 6 lists the optimal simulated experimental results of
the HLRS-MSFADE algorithm for solving MSIMPUE under
different new task scales in Experiment 2.Ntask represents the
number of initial target tasks, Nntask represents the number of
new target tasks, Ninsert represents the number of successful
inserts of new tasks, and Time is the task response time of
MSIMPUE. In this experiment, the experimental results are
analyzed with the evaluation indexes.

(1) The successful insertion rate of the new mission is cal-
culated as Rinsert = (Ninsert

/
Nntask ) ∗ 100%, which indicates

the percentage of successfully inserted new tasks in relation to
the total number of new tasks, where Ninitial is the number of
successfully inserted new tasks, andNntask is the total number
of new tasks.

(2) The execution rate of MSIMPUE scheme is calculated
as Rexecute =

Ninitial+Ninsert
Nntask+Ntask

∗ 100%, which represents the
proportion of tasks completed in theMSIMPUE scheme com-
pared with the total number of tasks, where Ninitial represents
the number of tasks completed in the initial mission planning
scheme, and Ntask denotes the total number of tasks in the
original task planning scheme.
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FIGURE 11. MSIMPUE simulation results for small-scale new task insertion. (a) The result of initial multi-satellite mission assignment;
(b) The result of newly arrived task insertion assignment.

TABLE 6. Simulated experimental results of MSIMPUE for newly arrived task insertion.

FIGURE 12. Global location distribution of 100 target tasks.

(3) The ideal benefit is calculated as I_benefit =
Ntask∑
i=1

prioritytask+
Nntask∑
i=1

priorityntask , which represents the sum

of the priorities of the target task, assuming that the initial
target task and the new task are executed.

(4) The mission benefit is calculated as M_benefit =
Ntask∑
i=1

xijk · prioritytask +

Nntask∑
i=1

nxijk ·priorityntask , which repre-

sents the sum of task priorities of all target tasks executed by
the MSIMPUE scheme.

(5) pertotal =

Nntask∑
i=1

perxi,α · α denotes the motion

perturbation, which indicates the changes in the satellite

observation mission sequence during the entire MSIMPUE
process.

The data in Table 6 show that the HLRS-MSFADE
algorithm can complete the MSIMPUE inserted by diverse
small-scale new tasks with less perturbation while solving
theMSIMPUEmission planning scheme with higher mission
benefit in response time.

The simulation results of Experiment 2 show that the
proposed HLRS-MSFADE algorithm can effectively solve
the MSIMPUE model in the small-scale new task inser-
tion scenario, and realize the generation of initial mis-
sion planning scheme and the MSIMPUE scheme of
new task insertion under uncertain environment. There-
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FIGURE 13. Using the HLRS-MSFADE algorithm to solve the initial mission planning scenario, where (a)-(e) is respectively the optimal
allocation of the number of new arrivals is 30%, 45%, 60%, and 75% of the initial number of multi-satellite missions.

fore, MSIMPUE-based HLRS-MSFADE algorithm has good
feasibility.

D. EXPERIMENT 3: EFFECTIVENESS AND STABILITY OF
MSIMPUE WITH LARGE-SCALE NEW TASK INSERTIONS
In Experiment 3, large-scale new tasks are selected and intro-
duced into MSIMPUE to investigate the HLRS-MSFADE
algorithm. To replicate the user’s imaging task requirements,
100 imaging target task scenarios are randomly produced in

the global range of longitude [−90, 90] and latitude [−180,
180]. Figure 12 depicts the global geo-graphical distribu-
tion of 100 target tasks. Assume that at 3:00:00 on May 8,
large-scale new tasks arrive in batch, with the amounts of
new tasks being 30%, 45%, 60%, and 75% of the initial
number of multi-satellite tasks. Instances A-B show the sim-
ulation example, where A represents the initial number of
multi-satellite tasks, and B indicates the number of new
tasks.
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FIGURE 14. HLRS-MSFADE simulation results for large-scale new task insertion under 100 imaging target task scenarios.
(a) convergence curves of MSIMPUE fitness values; (b) statistical graph of synthetic insertion method of various instance.

FIGURE 15. Global location distribution of 200 target tasks.

TheHLRS-MSFADE algorithm is used to solve large-scale
new tasks in MSIMPUE simulation results to directly depict
the assignment relationship between the satellite and target
tasks. Figure 13 depicts the optimal allocation results, where
the number of new tasks solved by the HLRS-MSFADE
algorithm for 100 imaging target task scenarios is 30%, 45%,
60%, and 75% of the initial number of multi-satellite tasks.
The result of the HLRS-MSFADE algorithm addressing the
initial multi-satellite mission planning scheme is shown in
Figure 13 (a). Figures 13 (b)–13 (e) depict the optimal alloca-
tion results of the HLRS-MSFADE algorithm while solving
simulated Instances 100-30, 100-45, 100-60, and 100-75,
respectively.

Figure 14 depicts the fitness value and task insertion
method performance analysis of large-scale new task inser-
tions in the HLRS-MSFADE algorithm under 100 imaging
target task scenarios. Figure 14 (a) depicts the conver-
gence curves of MSIMPUE fitness values for Instances
100-30, 100-45, 100-60, and 100-75 in 100 imaging tar-
get task scenarios. Figure 14 (b) shows the statistical graph
of synthetic insertion method of In-stances 100-30, 100-

45, 100-60, and 100-75 solved by the HLRS-MSFADE
algorithm.

The convergence curves of the fitness values of Instances
100-30, 100-45, 100-60, and 100-75 have a similar conver-
gence trend, as illustrated in Figure 14(a). The number of new
tasks is determined, and the fitness values rise significantly.
In the first 400 generations, all of them converge to the ideal
solution, demonstrating that the HLRS-MSFADE algorithm
has good convergence performance.

Figure 14(b) depicts the use of the four insertion options
in the HLRS, as well as the successful insertion rate of
new tasks and the MSIMPUE scheme implementation rate
in 100 imaging target task scenarios. The figure shows that
the four task insertion methods in the hybrid local replanning
approach achieve dynamic insertion of new tasks in four
instances, Instance100-30, Instance100-45, Instance100-60,
and Instance100-75, and the successful insertion rate of
new tasks exceeds 90%. Furthermore, the execution rate
of the MSIMPUE scheme in instances Instance100-60 and
Instance100-70 decreases significantly as the target task num-
bers increase.
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FIGURE 16. Using the HLRS-MSFADE algorithm to solve the initial mission planning scenario, where (a)-(e) is respectively the optimal
allocation of the number of new arrivals is 30%, 45%, 60%, and 75% of the initial number of multi-satellite missions.

This part randomly produces 200 imaging target tasks
within the same latitude and longitude range and simula-
tion time to imitate the user’s imaging task needs, further
validating the stability of the HLRS-MSFADE method by
using MSIMPUE to verify large-scale new tasks. Figure 15
depicts the global geographical distribution of 200 target
tasks.

The optimal assignment results of multiple newly inserted
tasks under the HLRS-MSFADE algorithm in 200 imaging
target task scenarios are shown in Figure 16.
Figure 17 depicts the performance study of repeated new

task insertions of the HLRS-MSFADE algorithm in two
aspects of fitness value and task insertion method under
200 imaging target task scenarios.
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FIGURE 17. MSIMPUE simulation results for large-scale new task insertion under 200 imaging target task scenarios. (a) convergence
curves of MSIMPUE fitness values; (b) statistical graph of synthetic insertion method of various instance.

As shown in Figure17 (a), as the number of new tasks
increases, the convergence speed of the HLRS-MSFADE
algorithm decreases, but it can still solve the best allocation
schemewithin the effective number of iterations. Figure17 (b)
demonstrates that the HLRS-MSFADE algorithm can realize
dynamic task insertion. Furthermore, in Instances 200-60 and
200-90, the task insertion mode is SINCCM > IINCCM >

IIACCM > AIMCCM. The reason is that the number of new
tasks is small when it accounts for 30%–45% of the initial
multi-satellite tasks, and most of the new tasks can insert
the satellite observation sequence using the insertion method
without conflict loss.When the number of new tasks accounts
for 60% of the initial multi-satellite tasks, the proportion of
new tasks is extremely high, and the time window resources
are limited, as are the tasks that may be arranged. The adop-
tion of AIMCCM and IIACCM has increased.

The MSIMPUE data from 100 and 200 imaging target task
scenarios in an uncertain environment are counted. Table 7
displays the total tasks of the initial mission planning scheme
Ntask , the number of new target tasks Nntask , the number
of successful task insertions Ninsert , ideal benefit I_benefit ,
mission benefit M_benefit , response time Time, motion per-
turbation pertotal , the successful insertion rate of new tasks
Rinsert , and the execution rate of the MSIMPUE scheme
Rexecute.
The results presented in Table 7 show that the response

time increases with the new task scale; however, MSIMPUE
issues with various new task scales can still be solved with
high mission benefit and low motion perturbation.

The simulation results of Experiment 3 show that the
proposed HLRS-MSFADE algorithm can effectively address
the assignment relationship between many new tasks inserted
into the MSIMPUE satellite and the target tasks. Therefore,
the MSIMPUE-based HLRS-MSFADE algorithm has good
stability.

E. EXPERIMENT 4: HLRS-MSFADE ALGORITHM
PERFORMANCE ANALYSIS
To verify the performance of the HLRS-MSFADE algorithm
in solving MSIMPUE further, its effectiveness is discussed in
this section. Subsequently, its performance is compared with
that of other similar algorithms. Finally, HLRS-MSFADE
algorithm performance is compared with other similar algo-
rithms.

1) COMPARISON EXPERIMENT OF DIFFERENT MUTATION
STRATEGIES IN HLRS-MSFADE ALGORITHM
Large-scale examples are more likely to reflect the per-
formance of the HLRS-MSFADE algorithm in solving
MSIMPUE. We compare the search capabilities of vari-
ous differential crossover strategies under new arrival task
Instances 200-60, 200-90, 200-120, and 200-150.

As shown in Figure 18, the performance of the
HLRS-MSFADE algorithm can be analyzed from three
aspects.

First, fusion mutation strategies converge to near-optimal
solutions faster than single mutation strategies, reducing the
scale of random search and greatly improving algorithm per-
formance. This finding indicates that the HLRS-MSFADE
algorithm quickly guides the search toward the global opti-
mal. Second, the optimal solution of the current population
found by the HLRS-MSFADE algorithm is of higher quality,
as the fusion mutation method improves population diversity.
Finally, the convergence curves of the four groups of new
task instances show that the algorithm still has a conver-
gence process in the middle and late stages of evolution.
Thus, the combined action of dynamic crossover rate and
fusion mutation strategy in the HLRS-MSFADE algorithm
can effectively balance the algorithm’s explosiveness and
exploration and prevent it from falling into the local optimal.
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TABLE 7. Assignment results of performance analysis in Scenarios 1 and 2.

FIGURE 18. Fitness convergence curves for various differential crossover strategies, where (a)-(d) is respectively the con convergence
curves of Instance200-60, Instance200-90, Instance200-120, Instance200-120 in differential crossover strategies.

2) PERFORMANCE COMPARISON EXPERIMENT BETWEEN
HLRS AND FIA
We carry out a performance comparison experiment between
the HLRS-MSFADE algorithm’s hybrid local replanning
strategy (HLRS) and the ISAH-FIA algorithm’s fast insertion
approach (FIA), where the experimental scenarios are ran-
domly set up with 100 target task scenarios and 200 target
task scenarios with insertion of 30%, 45%, 60%, and 75% of
the new arriving task instances, and the simulation instances
are denoted by Instance A-B, where A denotes the number
of target task instances. The experimental results of the per-

formance comparison between HLRS and FIA are shown in
Table 8 and Figure 19.

The performance evaluation ofmulti-satellite imagingmis-
sion planning in uncertain environments using HLRS with
FIA is recorded in Table 8. In Table 8 displays the number
of successful task insertions Ninsert , ideal benefit I_benefit ,
mission benefit M_benefit , response time Time, motion per-
turbation pertotal , the successful insertion rate of new tasks
Rinsert , and the execution rate of the MSIMPUE scheme
Rexecute, In order to comprehensively evaluate the effective-
ness of HLRS and FIA on the MSIMPUE problem, Figure 19
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TABLE 8. MSIMPUE simulation results of different instances by using insertion method.

FIGURE 19. Results of experiments comparing the performance of the hybrid local replanning strategy and fast insertion algorithm.
(a) Task numbers of successful insertion; (b) Mission benefit of successful insertion;(c) Response time of successful insertion; (d) Motion
perturbation of successful insertion.

shows the visual analysis of the two types of methods in
terms of four aspects: the number of successful new task
insertions, the target task benefits, the response time and the
action perturbations.

According to the experimental results in Table 8 and
Figure 19, when the proportion of the new task size to the

total number of tasks is small, as in instances Ins100-30 and
Ins200-60, both HLRS and FIA can achieve higher target
task gains with smaller time responses and smaller action
perturbations. This is due to the fact that when the proportion
of new mission size to the total number of missions is small,
there are more spare resources in the satellite observation
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TABLE 9. MSIMPUE simulation results of various instances using different algorithms.

sequence, and the insertion method without conflict loss in
FIA and HLRS can be used for new mission insertion by
judging the position of mission neighbors.

The use of FIA for new task insertion by judging simply
the position of task adjacencies leads to the problem of long
response time and a sharp decline in the number of success-
fully inserted new tasks as the size of new tasks increases as a
proportion of the total number of tasks. Furthermore, as new
tasks are inserted one by one, there is a scarcity of spare
resources in the satellite observation sequence’s neighboring
position, and the advent of overlapping new missions is a
huge perturbation to the satellite observation sequence.

The use of HLRS can thoroughly consider the adjacent
positions where the tasks and contained meta-tasks are situ-
ated, make full use of the spare satellite resources, reasonably
select the insertion positions of new tasks, and achieve more
new task insertions in a shorter time. MSIMPUE with HLRS
has a considerable advantage over MSIMPUE with FIA in
terms of the number of task insertions, mission benefit,
response time, and action perturbations.

In conclusion, HLRS with larger new mission scale
instances has the advantage over FIA for most cases and can

adapt to themulti-satellite imagingmission planning problem
in uncertain environments.

3) PERFORMANCE COMPARISON BETWEEN HLRS-MSFADE
ALGORITHM AND OTHER ALGORITHMS
The HLRS-MSFADE method is compared with APPDE
algorithm (Differential Evolution algorithm based onAccom-
panying Population and Piecewise) are presented strategy)
[32], MMED algorithm (Modified Maximum Extension Dis-
tance) [33], TADE_DDS algorithm (Two-Stage Adaptive
Differential Evolution with a Dynamic Dual-populations
Strategy) [34], FIA Algorithm (Fast Insertion Algorithm)
[23], RARA algorithm (Rolling Horizon Based Replanning
Algorithm) [15].

The APPDE algorithm uses a concomitant population of
stored suboptimal solutions to increase population diversity
and is able to improve the diversity of multi-satellite mission
planning scenarios in uncertain environments. The MMED
algorithm uses the adjustment of the maximum extension
distance as a metric to improve the diversity of planning solu-
tions and the efficiency of the solution at different phases of
optimization. The TADE_DDS algorithm designs a dynamic
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FIGURE 20. Results of experiments comparing the performance of the HLRS-MSFADE algorithm to that of other algorithms. (a)Optimal fitness
value, average fitness value, worst fitness value in Instances 100-30, 100-45, 100-60, and 100-75; (b)Optimal fitness value, average fitness
value, worst fitness value in Instance200-60, 200-90, 200-120, 200-120.

population strategy that is capable of finding more globally
optimal task planning solutions. The FIA algorithm is able
to prioritize target tasks with high task gains by judging
two adjacent tasks in the satellite observation sequence for
new task insertion, which improves the task benefit. The
RARA algorithm performs multi-satellite imaging mission
replanning for each fixed time interval, fully accounting for
multi-satellite mission planning constraints in dynamic envi-
ronments, and moves back and forth along the time axis to
find suitable insertion positions, improving the accuracy of
the multi-satellite imaging mission planning scheme.

The experiment used the same number of iterations,
population size, and evolution parameters as the previous
experiments, and the experimental scenario is the same as
inserting 30%, 45%, 60%, and 75% new tasks instances in
the 100 and 200 target task scenarios. Table 9 and Figure 20
exhibit the experimental findings of a performance com-
parison between the HLRS-MSFADE method and other
algorithms.

To comprehensively evaluate the effect of HLRS-MSFADE
algorithm on the MSIMPUE problem, the optimal fitness
value fmax, average fitness value favg, worst fitness value fmin,
and standard deviation std . are used as evaluation indexes.
Table 9 and Figure 20 show that the experimental results
of the HLRS-MSFADE algorithm and the comparison algo-
rithms differ significantly. In the optimal fitness value fmax,
average fitness value favg, and worst fitness value fmin of eight
groups of instances in the 100 and 200 imaging target task
scenarios, the HLRS-MSFADE algorithm outperforms the
other algorithms, and the fitness value has obvious advan-
tages.

Furthermore, as the number of target tasks increases, the
APPDE, MMED, TADE_DDS, FIA and RARA algorithms
exhibit noticeable oscillations, whereas the standard devia-
tion of the HLRS-MSFADE algorithm is always lower than
those of the other three algorithms. The results show that even
as the number of target tasks increases, the HLRS-MSFADE
algorithm maintains acceptable stability. In addition, from
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Figure 20(a) and Figure 20(b), it can be seen that the FIA
algorithm and the RARA algorithm solving the instances with
a larger proportion of new task number to the total number
of tasks have a smaller difference in fitness values than the
instances ins100-45 and ins200-90, which suggests that the
FIA algorithm and the RARA algorithm may be trapped
in a local optimum. When combined with the experimental
analysis in Table 8, it is clear that merely analyzing the
neighboring missions of a satellite observation sequence the
effect is unsatisfactory for solving the MSIMPUE problem
when the size of the new mission is a large proportion of
the total number of missions. Generally, the HLRS-MSFADE
algorithm outperforms the other algorithms in terms of opti-
mization ability and stability over numerous iterations, and it
can adapt to large-scale MSIMPUE environments.

The simulation results of Experiment 4 show that the
proposed HLRS-MSFADE algorithm’s dynamic crossover
rate and fusion mutation strategy can improve population
diversity, effectively balance the algorithm’s development
and exploration, and prevent the algorithm from falling into
the local optimum. In terms of convergence speed and fitness
value, the HLRS-MSFADE method outperforms the other
five algorithms. As a result, employing the HLRS-MSFADE
algorithm to solve the MSIMPUE problem has some
advantages.

VI. CONCLUSION AND FUTURE WORK
In this work, an MSIMPUE model based on uncertainty
assessment is proposed to provide a reasonable basis for
MSIMPUE assignment. An HLRS for an uncertain environ-
ment is proposed for the first time to address the changing
mission requirements in an uncertain environment, which
achieves the transformation of the MSIMPUE problem
into a new mission insertion problem through the adjust-
ment of the time window between the new mission and
the original satellite observation sequence in an uncertain
environment. Furthermore, to address the problem of long
mission response time and low mission completion rate
caused by theMSIMPUE’s large solving space and numerous
constraints, an MSFADE algorithm is proposed to obtain
high-quality MSIM-PUE schemes in a reasonable computing
time. The simulation results indicate that the proposed solu-
tion can successfully solve the MSIMPUE problem and has
outstanding performance in terms of task reaction time and
completion rate.

Future research will focus on considering the problem
of Human-computer interaction based on MSIMPUE. The
algorithm proposed in this work can effectively deal with
the MSIMPUE; However, during the actual collaborative
mission execution process, the mission requirements present
preference, complexity, and conflict, and it has become
an intrinsic demand and development trend to introduce
Human-computer interaction into MSIMPUE, share MSIM-
PUEwith the system for solving the preference requirements,
receive feedback, and guide the multi-satellite imaging

mission planning system to generate the multi-satellite imag-
ing mission planning scheme.
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