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ABSTRACT One of the aspects that mainly characterize wireless networks is their apparent unpredictability.
Although several attempts were made in the past years to define for them deterministic medium access
techniques, for instance by having data exchanges scheduled by an access point, as a matter of fact
they remain a partial solution and are unable to ensure the same behavior as wired infrastructures, since
interference may also come from devices outside the network, which obey different rules.
A possible way to cope with disturbance on air, both internal and external to the network, is to obtain some
knowledge about it by analyzing what happened in the recent past. This information, usually expressed
in terms of suitable metrics, is then employed to optimize network operation, for example by prioritizing
time-sensitive traffic when needed. In the simplest approaches such metrics coincide with statistical indices
evaluated on transmission outcomes, like the failure rate.
In this paper we analyze a more sophisticated solution that relies on machine learning, and in particular on
artificial neural networks, to predict the behavior of a Wi-Fi link in terms of its frame delivery ratio. Results
confirm that more accurate predictions than simpler methods (e.g., moving average) are possible, even when
training is partially independent from the specific conditions experienced on the different channels.

INDEX TERMS Channel quality prediction, wireless networks, dependable wireless communication, IEEE
802.11, artificial neural networks, machine learning.

I. INTRODUCTION
Wireless networks are progressively replacing cables in a
variety of contexts. In application fields like, e.g., home and
car entertainment [1], [2], home automation [3], building
automation [4], and sensing [5], their adoption to support
wire-free communication (and hence, interaction) among
humans and machines, in any combination (H2H, M2M,
and H2M), is a popular ongoing trend and one of the main
enablers of the so-called Internet of Things (IoT) [6].

Besides throughput, also the requirements about latency
and dependability may sometimes be quite demanding.
This is particularly true in contexts like modern industrial
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environments (both factory and process automation), which
are being re-shaped by recent paradigms like Industry 4.0
[7], Industry 5.0 [8], and the Industrial Internet of Things
(IIoT) [9]. In particular, upper bounds on response times are
customarily defined in soft/firm real-time systems, which in
wireless networks are often specified in probabilistic terms.
For example, a given fraction of time-sensitive messages
(e.g., 99.99%) is required to not exceed the intended
deadlines, otherwise the controlled system is not ensured to
operate correctly.

To tackle such a wide range of requirements, wireless
networking is currently characterized by a noticeable het-
erogeneity of protocols [10]. Among the most relevant
technologies, which suit different scenarios, we find: 5G/6G
[11] and IEEE 802.11 (Wi-Fi) [12] that apply to contexts
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where high throughput is demanded on geographic and
local areas, respectively, LoRaWAN for long-range low-
rate data exchanges [13], IEEE 802.15.4 (e.g., ZigBee,
WirelessHART, WIA-PA, 6TiSCH, ISA 100.11) for ultra
low-power mesh networks [14], and Bluetooth Low Energy
(BLE) to connect both personal and industrial devices [15].

In the past years, a fair amount of research activities
were spent for improving the quality of communication on
wireless networks by exploiting techniques like seamless
redundancy [16], transmission scheduling [17], software-
defined networking [18], automatic network configuration
[19], and so on. Some solutions rely on enhanced medium
access control (MAC) mechanisms that enable deterministic
behavior. Besides legacy solutions, like the Point Coordina-
tion Function (PCF) and the Hybrid Coordination Function
(HCF) Controlled Channel Access (HCCA) in IEEE 802.11
(which knew limited usage), the use of trigger frames inWi-Fi
6 and multi-link operation (MLO) in Wi-Fi 7 [20] achieve
tangible improvements. The same holds for Time Slotted
Channel Hopping (TSCH) [21], [22] and the Deterministic
and Synchronous Multi-channel Extension (DSME), which
exploit mixed time-frequency diversity in IEEE 802.15.4.

It is important to point out that, although effective,
deterministic MACs are unable to ensure for wireless
networks the same dependability as the wired ones. In fact,
besides intra-network interference, transmission on air may
also suffer from extra-network disturbance, caused by nearby
wireless networks (possibly based on different transmission
technologies) and electromagnetic noise (generated by indus-
trial/power equipment). In the latter cases, there are simply no
means to prevent interference.

A different approach to cope with above phenomena,
without necessarily changing the MAC mechanism, consists
in applying machine learning (ML) to wireless communi-
cations. In the recent years, a number of research activities
were started targeted at exploiting intelligence to improve
communication quality. Some proposals rely on suitable
algorithms to predict the future quality of a link in terms of
metrics like, e.g., the frame delivery ratio (FDR). The ability
to foresee variations of the communication quality can be
then exploited by end nodes and intermediate equipment to
proactively react to events that affect the wireless spectrum
(either worsening or improving it), in an attempt to provide
some probabilistic guarantees for, e.g., the typical key
performance indicators (KPIs) relevant to industrial commu-
nication networks, namely, end-to-end latency, dependability,
determinism, and even power consumption [23].
For example, if the prediction model foresees that channel

conditions are likely to deteriorate in a while, applications
could react in advance by reducing the amount of generated
best-effort traffic (e.g., by lowering the sampling rate at the
perception layer for non-critical information, like environ-
mental monitoring), so as to privilege higher-priority traffic
with soft/firm real-time requirements. As an alternative,
communication could be switched to a different channel
before the current one worsens too much. This solution may

bring tangible advantages also for hand-over procedures of
mobile nodes: ML predictions can be exploited to determine
the instant when a roaming Client Station (STA) needs to
reassociate to an different Access Point (AP) when it moves
away from the AP it is currently associated. In this case,
the quality of every available channel must be predicted,
and this requires that all of them are probed, e.g., using
reinforcement learning (RL) techniques based on exploration
and exploitation. This resembles the operation of theMinstrel
algorithm, customarily implemented in commercial Wi-Fi
equipment, and rate adaptation algorithms [24].

Similar approaches can be adopted when redundancy is
exploited to increase reliability and decrease communication
latency, by allowing frames to be sent on different channels
(MLO). In this case, ML can be exploited to drive channel
selection. They also apply to seamless redundancy, when
the same frame is sent on multiple channels at the same
time. In particular, deferral techniques [25] could use ML to
determine the primary channel on which the first copy of the
frame is sent. Transmission of the second copy is deferred
for a while to achieve the best trade-off between reliability
and resource consumption. The last, more complex example,
among many possible ones, concerns the combined adoption
of seamless redundancy andML to support node mobility, for
preserving communication quality during hand-over [26].

In this work, artificial neural networks (ANNs) are
exploited to predict the FDR in the near future starting from
the outcomes of transmission attempts logged by a wireless
node in the recent past. Our analysis is based on extensive
experimental campaigns that involved real Wi-Fi devices.
Results show that the quality of a wireless channel in the
near future (a few minutes) can be predicted with satisfactory
accuracy.

The structure of the paper is the following: Section II
summarizes the state-of-the-art about the use of artificial
intelligence (AI) to improve the behavior of wireless
networks; Section III presents a simple model for a wireless
link, while prediction models are introduced in Section IV;
Section V describes the experimental testbed we used to
acquire the databases that characterize the behavior of real
wireless links and the software implementations related
to this work; Section VI outlines the results obtained by
applying the different prediction models to real data; finally,
Section VIII draws relevant conclusions and outlines future
work.

II. LITERATURE REVIEW
The two surveys [27] and [28] identify many challenges
intrinsic to the use of ML and AI techniques to improve
key performance indicators related to wireless networks. In
[29] and [30] ML techniques are used for the selection of
the best AP, whereas in [31] and [32] they are exploited to
drive the handover decision between APs. Other works are
based on traffic prediction [33], [34]. This information can
be used to indirectly infer the quality of the wireless channel:
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for example, in [35] it is used to select channel allocation.
Although this is an interesting research direction, there is
not a linear dependency between traffic and FDR. Finally,
reinforcement learning was used to select the best channel
for transmission in [36], where the reduction of packet losses
was assessed through simulation.

Regarding the subset of works in the scientific literature
related explicitly to Wi-Fi and the prediction of the future
behavior of the channel, the use of ANNs was envisaged in
[37] but only on artificial data. In [38], ML techniques were
used for predicting the signal strength. Instead, in [39] and
[40]models based onANNs are described aimed at predicting
the channel gain in specific application contexts. All of the
above works refer to the prediction of aspects related to the
physical layer. Generally speaking, they cannot be directly
and easily employed to assess the KPIs that customarily
characterize communication at the application level, such as
the FDR.

In [41] and [42], ANNs were applied in a preliminary form
to data acquired on a real Wi-Fi testbed, using the FDR as
a metric. Compared to the research activities presented in
[41] and [42], the analysis in this work was done: 1) with
a noticeably more complex software, suitable for efficiently
handling big data; 2) with much larger databases in terms of
their size, especially for what concern testing (93.5 days for
training and 53.8 days for test instead of 38 days for training
and 2.5 days for test), hence providing more reliable results;
3) analyzing four Wi-Fi channels (1, 5, 9, and 13) instead
of just channel 13, hence providing better significance;
4) including potentially interesting architectures like multi-
output ANNs, which will be presented in Subsection VI-D
and are aimed to lower training time and memory occupation
in the end-user device; and, 5) considering the effects on
FDR prediction accuracy achieved by extending the training
database with data acquired on different channels (to this
purpose, relevant experiments were carried out where training
relied on channels other than the one used for testing).

III. CHANNEL AND PROTOCOL MODEL
All the experimental campaigns reported in this work
specifically concernWi-Fi. Nevertheless, this kind of analysis
can be easily extended to any wireless communication
technologies that support confirmed transmission services.
The simple network model we consider includes two nodes
communicating over a wireless link. In particular, the sender
node repeatedly sends data frames to a recipient node at
a fixed rate. When a frame is correctly received, the latter
replies by returning an acknowledgment (ACK) frame to
the sender to notify that the transmission succeeded. How
this mechanism was actually implemented on commercial
Wi-Fi devices (e.g., by disabling retransmission, fixing the
transmission speed, etc.) is described in detail in Section V.
Data frame transmission is performed cyclically with

period Ts = 0.5 s, and the reception of every ACK frame
is logged. Possible outcomes are success (xi = 1) if the
ACK frame associated with the i-th data frame is correctly

FIGURE 1. Example of past and future sliding windows, on which the
prediction function f (·) is applied and the target tk is computed,
respectively.

received by the sender node; otherwise failure (xi = 0) in
those cases when either the data frame or the ACK frame
are corrupted and the transmission timeout expires. This
behavior is intentional, and mimics the point of view of
the application executing in the sender node, which only
indirectly has a way to know about transmission errors.
Generally speaking, this provides an ordered sequence of
outcomes D = (x1, . . . , xi, . . . , x|D|) as output, we call
database, whose size (in terms of the number of elements) is
denoted |D|. The database is depicted schematically in Fig. 1,
along with some quantities whose definition is provided
below.

The goal of this research work is to find a prediction
function f (·) that, at any time, estimates the value of the FDR
evaluated over a given future horizon (one to ten minutes)
given the previous Np transmission outcomes as input. Let
xk be the outcome of the most recent transmission attempt.
Then, the input of the prediction function is the sequence
Ik = (xk−Np+1, . . . , xk−1, xk ), and the predicted FDR can be
expressed as

t̃k = f (Ik ,w) = f (xk−Np+1, . . . , xk−1, xk ,w), (1)

where w (a vector, in the most general case) describes the
model parameters determined in the training phase (it was
explicitly added to the prediction function to stress the fact
that it directly affects the related output t̃k ).
During the training phase a specific database Dch

tr is
employed, where ch represents the channel on which it was
acquired (e.g., D5

tr represents the training database obtained
onWi-Fi channel 5). The training phase consists in estimating
the model parameters w∗ that minimize the average error
between the predicted FDR value t̃k and the target tk , which
characterizes the real failure rate in the future. The mean
squared error is typically used for this purpose, which is the
same as considering the sum J (w) of squared errors:

w∗
= argmin

w
J (w), (2)

where

J (w) =

|Dtr|−Nf∑
k=Np

[tk − f (Ik ,w)]2. (3)

The target coincides with the FDR observed in a future
interval whose width is Tf = Nf · Ts. At any time, it is
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computed as the simple moving average (SMA) of the
sequence (xk+1, xk+2, . . . , xk+Nf ), which includes Nf future
outcomes that belong to database D,

tk =
1
Nf

k+Nf∑
j=k+1

xj. (4)

The value tk given by (4) provides a statistical estimate of the
probability that a frame transmission attempt on the testbed
succeeds, which is what the prediction function should in
theory seek. It unavoidably suffers from a certain error, as it
is computed using a limited number Nf of outcomes. In the
case of quasi-stationary spectrum conditions, transmission
attempts can be approximately modeled as independent and
identically distributed (iid) random variables, and the mean
squared error affecting the estimate tk is equal to σ 2

x /Nf,
where σ 2

x represents the variance of samples (xk ) in the
database. This makes the problem considered here more
complex than usual time series analysis, where the true target
to be predicted is directly available.

To evaluate the accuracy of the prediction function f (Ik ,w)
a test database Dch

te is employed. The same procedure
described above is applied to Dch

te to obtain the target values
tk . Then, the prediction function is applied to every input
interval Ik for evaluating its ability to estimate the target.
Two kinds of prediction errors were defined in this work:
the absolute error |ek | = |tk − t̃k |, where | · | is the
modulus operator, and the squared error e2k = (tk − t̃k )2.
Starting from them, the mean absolute error (MAE) µ|e|
and the mean squared error (MSE) µe2 can be computed as

1
|Dte|−Nf−Np+1

∑|Dte|−Nf
k=Np

ek , where ek stands for |ek | and e2k ,
respectively. Besides averages, other statistical indices can
be also evaluated for prediction errors, like percentiles. For
example, |e|p90 represents the 90-percentile of the absolute
error.

IV. PREDICTION MODELS
The predictionmodels we took into account for estimating the
FDR on a wireless link in the immediate future are the simple
moving average (SMA), which is used as a reference for
the other proposed techniques, and artificial neural networks
(ANNs).

A. SIMPLE MOVING AVERAGE (SMA)
Themain assumption behind SMAprediction is that, the FDR
in the immediate future remains (almost) the same as in the
immediate past. The prediction function mostly resembles
(4), but applies to the past samples

f SMA(Ik ,Np) =
1
Np

k∑
j=k−Np+1

xj, (5)

where Np is the number of outcomes exploited for prediction.
The Np value is explicitly included in the prediction function
to remark that model accuracy heavily depends on it.

FIGURE 2. Front-end module operations and structure of the ANN.

Accuracy of SMA prediction can be optimized by exploit-
ing the training database Dtr. In particular, the optimal value
N ∗
p can be found as

N ∗
p = argmin

Np

|Dtr|−Nf∑
k=Np

(
tk − f SMA(Ik ,Np)

)2
. (6)

Practically, Np is varied over a range of values wide enough
to find the minimum of the error function. The N ∗

p value
determined in the training phase is then used to parameterize
the prediction function (5) when the test databaseDte is used.

B. ARTIFICIAL NEURAL NETWORK (ANN)
The ANN model of this work is the multi layer perceptron
(MLP). A secondmodel was also briefly investigated, namely
long short-term memory (LSTM), which is customarily
employed for time series forecasting. Results about LSTM
were not reported because, for the specific task of predicting
channel quality, a conventional MLP fed with a sufficiently
large number of past samples, as the one presented in this
work, provides a better prediction accuracy.

A front-end module was implemented to carry out some
preliminary elaboration on the input features. Many types of
transformation were analyzed and tested, and the one that
provided the best results consists of a front-end function g(·)
that, given the past samples Ik , produces a sequence

g(Ik ) =

(
ai =

1
i · Ns

k∑
j=k−i·Ns+1

xj
)
i∈1,...,

Np
Ns

, (7)

where i · Ns is the number of outcomes used for computing
ANN input ai and Np/Ns represents the number of such
inputs. This sequence is then fed to the ANN.
As highlighted in the lower part of Fig. 2, every ANN

feature corresponds to the arithmetic mean of the most
recent outcomes of Ik , evaluated on sequences (intervals) of
increasing width. In particular, each such interval includes a
number of samples that is a multiple of the constant Ns. As a
consequence, the function f ANN(Ik ,w) can be split into two
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components

f ANN(Ik ,w) = hANN (g(Ik ),w) , (8)

where g(Ik ) is the front-end module given by (7) and
hANN(·,w) is a function that implements only the operations
related to ANN (upper part of Fig. 2).

To determine the optimal values for the parameters of the
ANN prediction model, the following optimization process is
used

w∗
= argmin

w

|Dtr|−Nf∑
k=Np

(
tk − f ANN(Ik ,w)

)2
, (9)

where w is the sets of weights and other quantities that
characterize the model (e.g., biases). Again, model parameter
estimation is assessed on the training database Dtr.
Using an ANN rather than existing statistical approaches

like SMA has the potential to improve prediction accuracy,
since it tries to infer a trend from the past and not just a single
value. Linear and polynomial interpolation techniques were
also preliminarily analyzed, but their performance was found
to be quite poor, often worse than SMA.

By applying a linear transformation (similar to the one
carried out by the ANN input layer) to the input features
computed by the front-end module as per (7), evenly spaced
FDR estimates can be easily obtained that are evaluated on
adjacent intervals whose width is Ns · Ts (one minute in
our case). These values accurately describe the trend of the
channel quality in the recent past. Therefore, the ANN can be
seen as sort of a nonlinear finite input response (FIR) filter
applied to the FDR, which is potentially able to cope with
dynamically changing spectrum conditions.

For the above reasons, an ANN suitably trained on real
data could capture some properties ofWi-Fi transmission that
known theoretical models fail to describe properly. This is
exactly what our work is meant to determine.

V. TESTBED
The first part of our work, which lasted many months,
consisted in the experimental characterization of the wireless
spectrum as seen by real Wi-Fi equipment. Starting from the
outcomes of this part, several prediction models were then
created and their accuracy tested.

Investigation relied on several components. In the follow-
ing subsection, the hardware and software we developed for
the acquisition of the relevant databases are described. Then,
the architecture of the ANN and all details about its training
are discussed in Subsection V-B, while Subsection V-C
illustrates the software we implemented to support training
starting from the huge amount of experimental data.

A. DATABASE ACQUISITION
The acquisition of databases relied on an experimental setup
made up of two Linux PCs, each one equippedwith twoWi-Fi
adapters of type TP-Link TL-WDN4800 that comply with
IEEE 802.11n. Overall, there were four Wi-Fi STAs, each of

TABLE 1. Length of training (Dtr) and test (Dte) databases (days).

which associated with a distinct AP located about 3÷4meters
apart. In this experimental analysis we focused on the four
‘‘canonical’’ channels 1, 5, 9, and 13 in the 2.4GHz band.
They are spaced wide enough to prevent any adjacent channel
interference (ACI) [43] effects, and every pair STA/AP was
configured to operate on one of these channels.

Frame transmissions (frame size was set to 50B) were per-
formed almost simultaneously by the four STAs, and were
triggered by the two Linux operating systems, which were
time-synchronized through the network time protocol (NTP)
and installed with the RT-Preempt Linux patch [44], [45] to
improve soft real-time capabilities.

The main goal of the testbed is to sample the channels’
conditions periodically, causing a negligible perturbation of
the related spectrum. To this purpose the device driver of
the STAs was modified in order to: 1) set transmissions
to a fixed bit rate of 54Mb/s (consequently disabling the
operations of the Minstrel algorithm, which automatically
optimizes the transmission speed); 2) disable automatic frame
retransmissions (every frame is sent only once); 3) disable
the backoff procedure (frames are sent immediately when the
channel is idle); 4) disable the request to send/clear to send
(RTS/CTS) mechanism; 5) disable some specific features
of the IEEE 802.11n version of the standard like frame
aggregation, by downgrading adapters’ operation to IEEE
802.11g.

Enforcing this behavior is possible thanks to the use of
the ath9k device driver along with the SDMAC framework
[18], [46], which allows transferring some relevant infor-
mation related to the transmission of a frame from kernel
space, where the driver executes, to the application devoted to
database acquisition, which runs in user space. Every time the
ACK frame associated with a data frame arrives at the sender
or the relevant timeout expires, the outcome xi is conveyed by
the driver to the application, which logs it.

The testbed was employed to characterize the wireless
spectrum in the 2.4GHz band in our lab, which is shared by
a few tens of Wi-Fi networks (also including some wireless
sensor networks) and the related nodes. The substantial
number of active nearby mobiles and notebooks exchanging
data over the air, which varies over time as researchers and
students keep entering and leaving facilities during the day,
makes the spectrum conditions not stationary at all.

From the overall logs, the training and test databases were
extracted with no specific criteria (we are seeking for results
of general validity). Fig. 3 includes 8 timing diagrams that
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FIGURE 3. Timing diagrams about the measured FDR for the training (on the left) and test (on the right) databases on channels 1, 5, 9, and 13 (top to
bottom).

report the FDR (that is, the target evaluated on 30 minutes)
for these databases. In particular, the column on the left
shows training databases, while the column on the right
refers to test databases. Rows identify channels 1, 5, 9,
and 13, respectively. As can be seen, the overall amount of
interference differs tangibly among the considered channels,
and the same holds for the related interference patterns.

Table 1 summarizes the length (in days) of databases. The
training database for any channel spanned over at least three
weeks, while test databases lasted ten days or more. The
total amount of data used for training and test embraced
93.5 and 53.8 days, respectively. Overall, all channels
included, databases covered 147.3 days, corresponding to
about 5 months.

B. ANN ARCHITECTURE
The topology of the ANN model is reported in Fig. 2.
Regarding the front-end module, we set Np = 14400 and
Ns = 120, and hence the input layer of the ANN consisted
of Np/Ns = 120 inputs. A number of additional experiments
were performed, like those for finding N ∗

p in SMA, using
larger Np values, but we did not observe any improvements
concerning accuracy. Conversely, using smaller values led to
a slight worsening. An important property of ANNs is that,
a specific optimization like (6) is not required, because the
ANN automatically trains the model parameters to weight
less those inputs that have a lower influence on the prediction.

The hidden layer of the neural networks is composed of
128 neurons of type ReLu, and there is a single linear output
neuron that provides the prediction t̃k . Training consists of
15 epochs, the momentum was set to 0, and the learning
rate was initialized to 0.01, halving at each epoch (i.e., 0.01,
0.005, 0.0025, . . . ). In every epoch the patterns used to train
the model are reordered randomly. The batch size was set
to 64, which means that model weights are updated every
64 input patterns.

The progress of the training procedure is sketched in Fig. 4,
where the loss (i.e., the MSE) was reported with respect to
the training epoch for channel 1 and with different values

FIGURE 4. Loss vs. training epochs for channel 1 and Tf equal to 1, 2, 5,
and 10 min.

of Tf. As can be seen, the most part of the loss decrease
takes place within the first 5 epochs; then, losses converge
asymptotically to fixed values. We decided to extend the
training up to 15 epochs because, although the improvements
are minimal, the obtained model is slightly better. Moreover,
by halving the learning rate at each epoch more stable
results are achieved, since in the final epoch very small
adjustments are brought toweights (and biases). The behavior
for the other three channels is quite similar. Finally, the loss
computed on the test database (by saving the ANN model at
the end of each epoch) showed a rather similar evolution,
except that it converges asymptotically to different loss
values.

To obtain more reliable values of the ANN prediction
accuracy, any given configuration in the experiments below
(corresponding, e.g., to single rows in Table 3) was evaluated
five times. Every time, the ANN was trained from scratch
and then tested, leaving databases unchanged. Reported
results have been obtained by evaluating the relevant statistics
on the concatenation of all the prediction errors obtained
from tests, for the five separate repetitions of every specific
configuration.
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C. TRAINING SOFTWARE
The training and test software was written in python
and makes use of the Keras module, which is included
in tensorflow. The ANN model weights are randomly
initialized at the beginning of the training with the Glorot
normal initializer, and the SGD optimizer was used for
weights update.

Due to the huge dimension of the training database,
a specific softwarewas developed tomanage such ‘‘big data’’.
The main problem stems from the fact that every outcome
in the input database involves the generation of a pattern
composed of Np/Ns = 120 inputs and one target. In addition,
at each epoch such patterns must be supplied randomly to the
ANN for training.

Loading all patterns in memory simultaneously is not
feasible due to memory limits, and randomly loading them
from the hard disk is too time-consuming. Therefore,
we specifically developed a suitable software that splits the
training database into groups that includeNm patterns at most.
At the beginning of every epoch, a randomnumber is assigned
to each group, which permits to identify the order in which
they are selected. Following this order, the program loads Ng
groups for a total of Ng · Nm patterns into memory, shuffles
them, and executes the training process. Then, the same
process is repeated using another set of Ng groups. When
all groups are trained the epoch finishes, and the process
restarts by assigning new random numbers to each group. The
size Nm is a compromise between speedup and randomness
of the patterns provided to the ANN (a higher value of Nm
makes operations faster). Instead,Ng depends on the available
memory of the PC used for training, and must be maximized.
Increasing the number Ng of groups loaded contextually into
memory increases the randomness of the patterns provided
to the ANN, because groups are randomly selected over the
entire training database. The values used in this paper are
Nm = 100000 and Ng = 10.

VI. RESULTS
Starting from the training and test databases (Dch

tr and Dch
te )

we obtained from the above experimental testbed on every
Wi-Fi channel ch ∈ {1, 5, 9, 13}, a number of campaigns
were carried out to analyze how much aspects like the
prediction model (plain SMA heuristic vs. ANN), the ANN
architecture (single output vs. multiple output), and the
kind of training (specific channel-dependent vs. generalized
channel-independent) impact on accuracy. Doing so makes
results comparable.

A. SPECIFICALLY PARAMETERIZED SMA
In the initial campaign a simple moving average was used for
prediction. This is a very basic approach which assumes that,
from a probabilistic viewpoint, behavior in the near future is
the same as the recent past. Since we wished to make a fair
comparison with ANNs, the width of the moving window on
which the average is evaluated was not defined once and for

all, but was instead specifically set for every given channel
and for every given horizon based on a preliminary training
phase according to (6).

The four plots in Fig. 5 show the SMA prediction error
(MSE) on channels 1, 5, 9, and 13 for two different Nf values
(5 and 10min) when Np is varied. As can be seen, a minimum
can be always singled out clearly, whose position provides
the optimal value N ∗

p (for the considered conditions, it lies
in the range from 120 to 1000). This can be explained by
considering the two main phenomena that contribute to the
prediction error:

1) The spectrum is non-stationary, hence knowing the
past is not enough to characterize the future precisely.
The farther the horizon, and the deeper the past on
which the SMA is computed, the more the behavior
of the wireless link may change in the meanwhile,
also depending on the specific spectrum dynamics.
This contribution increases as Tp and Tf grow.

2) The target we used for training (FDR) is obtained by
averaging the outcomes of Nf transmissions occurring
in the future. The lower the number of samples, the
higher the intrinsic variability affecting the estimation
of the related success probability. The very same holds
for the past interval, which includes Np outcomes.
These contributions decrease as Tp and Tf grow.

It is worth noting that the above reasoning mostly applies
also to the case where ANNs are used for prediction.

Results are reported in Table 2, which consists of four
parts, each one referring to a specific channel. Every such
part is split in four rows, which refer to different horizons
Tf equal to 1, 2, 5, and 10min, respectively. For every
row several metrics about prediction accuracy are reported,
evaluated on the related test database Dch

te . Besides the mean
squared error (MSE), the absolute error is also considered,
and in particular its mean value (MAE), as well as its 90 and
95 percentiles. On the rightmost column, parameter N ∗

p is
included.

In the following, prediction accuracy refers to the MAE,
unless otherwise stated. For the reasons described above, it
depends on both the considered channel and the horizon Tf
on which the target FDR is evaluated. By looking at the table,
one can see that the best accuracy (µ|e| = 1.91%) is achieved
for channel 5 when the future horizon spans over 5 minutes.
Behavior of channel 9 is the hardest to predict: in this case the
best estimates are obtained for a future interval of 2 minutes,
and when the horizon is enlarged to 10 minutes the absolute
error grows and exceeds 4.4%.
This can be explained by looking at the time diagrams

in Fig. 3. As can be seen, the failure rate on channel 5 is
quite low, whereas it is sensibly worse on channel 9. Non-
negligible interference also affects channels 1 and 13, but in
these cases the failure patterns are more ‘‘regular’’ and hence
they can be predicted to a better extent. Conversely, channel
9 is characterized by faster spectrum dynamics, with rapidly
changing interference.
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FIGURE 5. SMA training: prediction error (MSE) vs. past interval width Np for channels 1, 5, 9, and 13 (optimal N∗
p values are highlighted).

FIGURE 6. Single-output and multi-output ANN architectures: predictions
are made for a single vs. multiple (four) time horizons.

B. SPECIFICALLY TRAINED ANN
In this campaign a distinct ANN was considered for every
channel and for every horizon. As for the SMA in the previous
section, the databases used for training and test refer to the
same channel (channel-dependent prediction model), which
implies that they are strongly correlated. In fact, although the
interference pattern observed by the testbed on any channel
is likely to vary over time, this implying that it differs in
the training and test phases (displaced by several weeks),
it depends on the same set of nearby APs (deployed in
fixed positions) and similar sets of STAs. Intuitively, doing
so should provide the best prediction accuracy, since every
ANN is optimally trained using data acquired in conditions
that mostly resemble those it will encounter when used for
prediction. For this reason the results reported here constitute
sort of a best case for ANNs, against which the outcomes in
the following sections have to be checked.

Results are shown in Table 3, whose structure resembles
the one used for SMA. The rightmost column reports the
winning ratio W , that specifies how many times the ANN
provided a better accuracy than SMA. However, this quantity
is not particularly interesting, because it does not consider
how much the prediction of the loser is actually worse.
From the point of view of the MAE, the best accuracy is
obtained for Tf = 2min on channels 1 and 9, whereas on
channel 5 it is seemingly found when Tf approaches 10min
(µ|e| = 1.70%). Finally, on channel 13 error is minimal when
Tf exceeds 10min. Since the variance of the target depends
on the number of samples on which FDR is evaluated (and

TABLE 2. Prediction accuracy by using 16 SMAs where the window width
is specifically optimized for channels 1, 5, 9, and 13 (channel-dependent
prediction model) and future horizons 1, 2, 5, and 10 minutes.

hence, on Tf), this behavior can be explained by the faster
dynamics of channels 1 and 9, which make predictions over
larger horizons worse.

By comparing prediction accuracy on the different chan-
nels, we can observe that the error on channel 5 is generally
small, whereas it is quite large on channel 9. ANN always
managed to outperform SMA. This is a relevant result, and
implies that ML, even in its simplest form, goes beyond
the simple assumption that the future resembles the past. In
particular, it proves to be able to model non-trivial hidden
aspects of the spectrum in the presence ofWi-Fi traffic, which
leads to better predictions.

C. MULTI-TARGET ANN
In this campaign, we used a single ANN with four outputs
for every channel (channel-dependent prediction model) to
perform contextual FDR predictions for all time horizons.
Changes with respect to the previous campaign are purely
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TABLE 3. Prediction accuracy by using 16 single-output ANNs specifically
trained on channels 1, 5, 9, and 13 (channel-dependent prediction model)
and future horizons 1, 2, 5, and 10 minutes.

TABLE 4. Prediction accuracy by using 4 multiple-output ANNs
specifically trained on channels 1, 5, 9, and 13 (channel-dependent
prediction model) providing contextual outputs for future horizons 1, 2, 5,
and 10 minutes.

architectural. In fact, the same databases as before were used
for training and test. The single-output architecture of the
previous campaign and the multi-output architecture of the
current one are depicted side by side in Fig. 6.

Results are reported in Table 4. As can be seen, accuracy
of a multi-output ANN (MAE is taken again into account
as the metric for comparison) somehow resembles what
provided by a plurality of single-output ANNs, but the latter
typically show a lower error. There are some exceptions,
e.g., predictions over the next 5min for channels 5 and 13,
but they are mostly inessential. Sometimes, the multi-output
ANN behaved worse than SMA. Summing up, a simpler (and

cheaper, in terms of both memory occupation and training
time) ANN implementation is possible at the price of a
diminished accuracy.

D. GENERALIZED ANN TRAINING
A criticism about the use of ANNs to predict the quality
of wireless channels concerns their training. In the above
campaigns, ANNs were trained on a channel-by-channel
basis, to reflect differences between the related spectrum
conditions. To face spectrum non-stationarity in the long
term, training could be reiterated periodically by the involved
devices, e.g., by automatically invoking a suitable procedure.
Clearly, doing so is not trivial at all, and demands for the
permanent availability of computational resources on APs
and STAs.

It could be interesting to determinewhether or not a generic
training can be performed for ANNs, in order to characterize
Wi-Fi interference independently of the channel, and hence
of the traffic actually found on it (channel-independent
prediction model). To this purpose, we trained a single ANN
for every horizon with a database obtained by merging all the
training data used in the previous campaigns

Dall
tr =

⋃
c∈{1,5,9,13}

Dc
tr, (10)

where the union symbol denotes the ordered concatenation
of sequences. Then, we evaluated the prediction accuracy for
every single test database Dch

te .
This campaign permitted to appreciate how much a

specific, channel-dependent training, improves accuracy.
Channel-independent training demands for a noticeably
lower effort, and also provides a more generic solution.
In fact, the interference patterns observed by the testbed on
the different channels are mostly uncorrelated, since their
frequencies do not overlap. This is not completely true
because of the presence of nearby equipment (APs and STAs,
whose placement and traffic was not under our control)
tuned on non-canonical channels (other than 1, 5, 9, and 13).
Luckily, there were only a few of them. For example, an AP
operating on channel 3 interferes with both channels 1 and
5 of the testbed, which implies some correlation between
the related databases. Likewise, the contextual presence of
traffic on channel 3 and a 40MHz link obtained by bonding
channels 6 and 10 may create some dependency between
channels 1 and 13. In theory, the farther the channels, the
lower correlation.

In the above campaign, the training and test databases
are still correlated, since the former contain data acquired
on every channel. To make them completely uncorrelated,
at least in theory (truly-channel-independent prediction
model) a further campaign was carried out where the training
database for every channel includes all databases with the
exception of the one related to the channel itself

D¬ch
tr =

⋃
c∈{1,5,9,13}\ch

Dc
tr. (11)
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TABLE 5. Prediction accuracy on channels 1, 5, 9, and 13 and for future horizons 1, 2, 5, and 10 minutes by using ANNs trained with the (specific) related
databases Dch

tr (channel-dependent prediction model), a single (generic) combined database Dall
tr (channel-independent prediction model), and

(specific) combined databases D¬ch
tr purposely created to be as independent as possible from the channel under test (truly-channel-independent

prediction model).

This is expected to represent the worst case for what concerns
ANN training.

Results are reported in Table 5, which is split in 16 parts,
one for every channel ch and future horizon Tf. Every such
part includes in turn three rows. The first row refers to the
channel-dependent prediction model, and shows the same
results as Table 3 (included here to ease comparison), whereas
the second is related to the channel-independent prediction
model. Finally, the third row concerns the above case of bad
training using databases created according to (11).
As can be seen, not necessarily specific training always

bests generalized training. Curiously, excluding the channel
under test from training did not always led to theworst results.
Channels 5 and, especially, 13 are those which benefit more
from a specialized training. By looking at time diagrams in
Fig. 3, this likely depends on the fact that the interference
patterns used for test and training are similar. Conversely,
predictions that rely on a generalized training are typically
more accurate on channel 9. By referring again to the time
diagrams about the FDR, this is probably due to the fact
that this channel suffers from a severe and irregularly-shaped
interference. Therefore, widening the variety of cases on
which training is performed is beneficial. The same holds
for channel 1, where the patterns used for training and test
look dissimilar (seemingly, something happened that made

the spectrum conditions change tangibly in the course of the
experiment). In this case, performing training on all channels
with the exclusion of the one under test occasionally provided
slightly better accuracy.

From above results one can see that generalized training
often constitutes a valid alternative to channel-specific
training. This is another relevant outcome of this work, since
the former is way simpler to implement than the latter. Likely,
this depends on the fact that ANN behavior is quite complex
and cannot be described easily. Therefore, experimental
campaigns like those described in this paper are the only way
to assess their performance in the wild.

VII. PRACTICAL FEASIBILITY
A relevant point when ANNs are exploited to predict channel
behavior in real equipment is the trade-off between prediction
accuracy and computational complexity. Generally speaking,
increasing the overall number Np of past outcomes achieves
better accuracy, because the ANN is provided a larger
amount of information about channel’s conditions. Accuracy
is expected to improve also when Ns is shrunk, as doing so
makes time resolution of FDR statistics more fine-grained.
However, reducing Ns too much might increase variability
when computing averages ai on short time intervals (when
i is low).

VOLUME 11, 2023 120091



A. S. Colletto et al.: On the Use of ANNs to Predict the Quality of Wi-Fi Links

A. COMPLEXITY
The number of input features fed to the ANN, as specified by
(7), is Np/Ns. The asymptotic complexity of the ANN input
layer (and hence, its contribution to the time taken to perform
a test) is linear versus this quantity.

A first experiment was run to evaluate the average
execution time T̄p for a single test operation. Three different
architectures were considered: the first and the second were
based on Intel® CoreTM CPUs, and in particular a desktop
based on an i3-10105@3.70GHz and a notebook based on an
i7-11800H @2.30GHz, respectively, whereas the third was a
Raspberry PI 2 based on an ARMv7 Processor rev 4 (v7l).
The ANN was tested by letting Np = 14400 and varying Ns
from 30 to 480 in steps of 5. For every Ns value the test was
repeated one million times, and the arithmetic mean of the
related execution times was computed. Results for Intel Core
and ARM are shown in plots a and b of Fig. 7, respectively.
As expected, T̄p is inversely proportional to Ns.

Concerning differences among the different architectures,
when Ns = 120 (as in the experiments described in the
previous section) T̄p is 11.4µs for the Intel i7, 14.6µs for
the Intel i3, and 142.6µs for the ARMv7. These architectures
(particularly the latter) are mostly compatible with high-end
commercial APs software implementations, and execution
times are low enough to enable adoption in real devices.

B. ACCURACY
As said above, the value selected for Ns also impacts on
prediction accuracy. For this reason, a second experiment

FIGURE 7. Mean execution time T̄p vs. Ns (Intel Core and ARMv7).

TABLE 6. Relative improvement of the prediction accuracy by using a
single-output ANNs trained and tested on channels 1 (channel-dependent
prediction model) with Tf = 2 min and variable value of
Ns = 30, 60, 120, 240, 480.

was carried out where Ns was set equal to 30, 60, 120, 240,
and 480 (corresponding to basic interval widths from 15 s to
4 minutes). We considered, as an example, the specific case
of a single-output ANN specifically trained (and tested) on
channel 1 for a future horizon equal to 2 minutes (cf. Table 3).
Again, Np = 14400, i.e., the past interval was kept fixed to
two hours.

Results, reported in Table 6, describe the relative variation
(as a percentage) of accuracy metrics with respect to the
reference case when Ns = 120. They clearly highlight that,
when Ns is lowered down to 60 (or even 30), improvements
on µe2 (the performance indicator minimized by the ANN)
are negligible compared to the increase of computation times
(see plots of Fig. 7). IncreasingNs to 240 (or 480) leads, on the
one side, to a sensible decrease of computation times, but
on the other it causes a substantial performance degradation,
especially for what concerns µe2 . In conclusion, the value
Ns = 120 we selected appears to be a good compromise
between prediction accuracy and computational complexity.

VIII. CONCLUSION
Despite wireless networks are more and more used in many
different context, due to their ability to provide wire-free
connections, they are not able yet to offer applications the
same quality of service as conventional wired solutions like
Ethernet. While throughput has increased steadily over the
past decades, to the point that, in theory, the performance
of currently available technologies like Wi-Fi 6 and 5G is
comparable (and, sometimes, higher) than Gigabit Ethernet,
transmission on air lags behind cables for what concerns
dependability and timeliness.

Deterministic MAC mechanisms, like trigger frames in
Wi-Fi 6, effectively counteract intra-network interference.
Unfortunately, they can do little or nothing against distur-
bance due to external sources. In this case, knowledge about
the spectrum conditions in the recent past could be exploited
byML to statistically improve network behavior beyondwhat
deterministic MACs can reasonably do.

This paper is aimed to present our most recent findings in
this field. In particular, we predicted the mean failure rate on
a wireless link over specific future time horizons by means
of ANNs trained on the outcomes of the past transmission
attempts. Results show that prediction accuracy achieved by

120092 VOLUME 11, 2023



A. S. Colletto et al.: On the Use of ANNs to Predict the Quality of Wi-Fi Links

ML is better than conventional methods that rely on moving
averages.

A second question we tried to answer is how much
training impacts on accuracy. In particular, we compared the
performance of ANNs specifically trained on the channel on
which they will be used and those where training exploits
a generic database that covers all channels. Results show
that accuracy is mostly comparable, and channel-independent
training could be the best option in those cases where
spectrum conditions are likely to change (as happens
over long time spans). Advantages of channel-independent
prediction are undeniable: in fact, the same ANN could be
employed in a variety of scenarios, e.g., by integrating it in
the network equipment directly.

Among the activities we plan for our future work, the
most important are the analysis of the proposed methodology
under different conditions, including varying traffic loads and
dynamically changing network configurations, as well as the
study of ANNmodel scalability, its extendability to protocols
other than Wi-Fi, and the suitability of alternative methods
(for instance, probabilistic ones based on Markov chains).
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