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ABSTRACT Malicious software or misbehaving applications have the potential to trigger signaling storms
on mobile networks, leading to battery drainage on devices and causing bandwidth overuse at the cell
level. Additionally, these storms may result in an excessive signaling load within the mobile operator’s
infrastructure. This paper uses a combination of time series prediction, adaptive threshold, and anomaly
detection algorithms to predict signaling storms. Whether a signaling storm will be triggered in the future
can be determined based on the fluctuation pattern of the data. Ourmethod enables us to identify the top cause
of the signaling storm in advance, so that the network optimization team can address the issues that will arise
in advance, maximizing the stop-loss. The time series prediction algorithm has significant advantages over
the moving average and TFT(Temporal Fusion Transformers), with a WAPE(Weighted Absolute Percentage
Error) of only 0.09. Adaptive threshold can avoid treating holiday data as abnormal data, and the accuracy of
anomaly detection based on the automatic adaptive threshold is higher than the traditional fixed threshold.
In addition, combining the signaling conduction chain can also perform top cause localization to identify
the upstream network element instance that first encountered the problem. The entire algorithm not only
performs well in the current network but also performs well in artificially generated signaling storm data,
pioneering the field of signaling storm prediction.

INDEX TERMS Time series prediction, adaptive threshold, conduction chain, signaling storm prediction.

I. INTRODUCTION
The core network mainly consists of three parts: 4G core
network, 5G core network, and IMS(IP Multimedia Subsys-
tem) core network. The user’s mobile terminal may initiate
a call after completing registration on the core network. The
core network is composed of multiple network elements with
their corresponding ability to handle registration and call
requests.

As the network receives more terminal signaling requests
than it can handle, network congestion and the avalanche
effect occur, resulting in network unavailability. This is
referred to as a ‘‘signaling storm’’ by the media. For example,
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in the event of natural disasters such as earthquakes, a large
number of users make phone calls, resulting in a call impact,
excessive pressure on the PSBC (Proxy Call Session Control
Function and Session Border Control) and DRA (Diameter
Route Agent) network elements of the IMS network leads
to a signaling storm. Another example is that batch user
registration can cause overloading of HSS(Home Subscriber
Server) or UDM(Unified Data Management) which are both
core network elements, leading to a signaling storm. The
widespread use of smartphones and the quick proliferation
of mobile Internet have drawn attention to the signaling storm
effect that communications networks could trigger. This trend
will worsen rather than improve in the 5G age. As a result,
it is critical to investigate the signaling storm issue in the core
network.
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Due to signaling strain, Telenor, the fourteenth-largest tele-
com provider in the world, went unavailable for 18 hours
in June 2011. With 3 million people affected, this outage
cost Telenor over USD 18 million [1], [2]. Similar to this,
in April 2012, Verizon’s Long Term Evolution (LTE) net-
work malfunctioned and was out of commission for 24 hours
due to signal overload, impacting hundreds of thousands of
subscribers [3]. In December of the same year, Verizon’s 4G
Network collapsed three times [4]. Approximately 2.52 mil-
lion users in Tokyo were impacted by the DoCoMo outage
in January 2012, which was the seventh such incident in
only eight months and was brought on by signaling load
[5]. In the early morning of July 2, 2022, KDDI, the sec-
ond largest operator in Japan, experienced a signaling storm
due to a failed cutback operation of its core router, result-
ing in a 62-hour mobile network malfunction that affected
39.15 million users nationwide and a serious impact on
industries such as finance, aviation, logistics, automotive, and
power in Japan. It was the largest network system failure
that KDDI had ever encountered [6]. These network failures
demonstrate how critical it is to analyze signaling storm
concerns.

The existing research on signaling storms in diameter
networks lacks effective prediction, detection, and handling
methods. To address recent episodes of signaling storms,
commercial solutions have emerged, mainly falling into three
categories:

(i) Anomaly detection and mitigation tools [7]: These
approaches involve counting the number of successive sig-
naling transitions that do not use allocated bandwidth.Mobile
devices exceeding a certain threshold are temporarily blocked
to prevent network overload.

(ii) Air interface optimization: This group aims to increase
the number of simultaneously connected devices in the
access network. The technologies in this category continually
evolve with new standards, specifications, and proprietary
admission/congestion control and scheduling algorithms. For
example, one solution to address signaling issues over the
s4 interface between SGSN (Service GPRS Support Node)
and MME (Mobile Management Entity) is to internalize the
s4 interface by co-locating the SGSN and MME in the same
device [8].

(iii) Dedicated signaling infrastructure solutions: These
solutions target the expected growth in core network sig-
naling, especially concerning policies, charging, mobility
management, and other new services introduced in LTE net-
works. Authors in [9] shed light on signaling attacks targeting
the RRC (Radio Resource Control) protocol that generate sig-
naling storms for 3G networks. Enabling dynamic resource
scaling in response to network traffic requirements, con-
gestion control, and load balancing in the core network is
projected to be less problematic with the trend toward net-
work function virtualization.

In terms of signaling storm prediction, some scholars
use classification algorithms to predict signaling storms.
Zhang et al. predicted signaling traffic and set traffic thresh-

olds, and predicted signaling storms by comparing the
predicted values with the thresholds [10]. Among those meth-
ods, some are still in the theoretical stage, while others have
poor prediction performance in storm scenarios due to limited
signaling storm data in the current network.

In our research, to predict the growth of signaling services,
a dynamic signaling traffic prediction model is first built
using historical traffic data and a prediction algorithm. The
adaptive method is then merged, breaking the restriction that
the original algorithm utilizes fixed thresholds, to dynami-
cally configure and adjust the anomalous thresholds of the
signaling traffic-related indicators of network elements. This
can ensure that when holidays come, our traffic threshold is
relatively high to avoid identifying holidays as anomalies.
This study will also discover the aberrant top-cause network
element that generates this signaling storm based on the
justification of the entire signaling network conduction chain
after detecting that a signaling storm is going to occur. Our
contributions are summarized as follows:

• In order to forecast the growth of signaling services,
this method builds a signaling traffic prediction model
using a prediction algorithm and historical traffic data.
This method’s signaling model can more accurately and
promptly predict traffic value since it can better capture
traffic spikes.

• Not just the signaling storm-associated determination
index can be predicted using this method. The tech-
nology makes advantage of adaptive dynamic traf-
fic thresholds to effectively manage signaling storms.
The signaling traffic thresholds for network element
anomaly identification and evaluation were determined
using the aforementioned prediction and evaluation
results and the current adaptive algorithm.

• In addition, once a signaling storm is anticipated or
confirmed, an early warning message is promptly sent
out, and the top cause of the storm is identified using
the network element conduction chain. This information
is then given to the technical maintenance team so they
can prepare for potential future signaling storms. As a
result, this approach can effectively prevent and mitigate
signaling storms.

The remaining part of the article is divided into four parts.
Section II introduces relevant research in this field. Section III
introduces our proposed method. Section IV is the exper-
imental section including a discussion of the experimental
results. Section V summarizes our work and provides some
prospects.

II. RELATED WORKS
A. SIGNAL STORM IDENTIFICATION AND PREDICTION
Overall, there is a lack of effective solutions to predict or
detect signaling storms. Yang Lin et al. have proposed a
solution for ZTE’s integrated signaling storm [11]. Usually,
only one static, passive solution is used, which is to configure
traffic thresholds in each link to handle signaling storms [12].
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FIGURE 1. The architecture of the proposed framework.

Zhang Ning et al. used self affine fractal interpolation method
[13], [14] to predict signaling traffic, and used adaptive
thresholds to predict signaling storms by comparing predicted
values with thresholds [10].

B. TIME SERIES PREDICTION
Many scholars use temporal prediction algorithms to pre-
dict temporal data. Zhang et al. use a self-affine fractal
interpolation algorithm to predict signaling traffic [10].
Mu Wenxuan et al. used neural networks to analyze global
warming [15]. The moving average model is adopted for the
forecast of the trend in sales data of a confectionery baking
industry [16]. In 2021, Google released a great time series
prediction model TFT (Temporal fusion transformers [17]),
which has strong explanatory power and is favored by many
scholars. Shereen Elsayed et al. used ensemble decision trees
for time series prediction, outperforming most deep neural
networks in multiple tasks [18]. Haiyi Zhou et al. invented a
time series prediction algorithm called Informer, which is a
long series prediction artifact [19].

C. ANOMALY DETECTION
There are three main methods for anomaly detection:

• Distance based anomaly detection ([20], [21]);
• Density based anomaly detection ([22]);
• Clustering based anomaly detection ([23]).

Distance-based anomaly refers to that given distance d ,
if the number of other points in a circle with a radius of
d around data point A is very small, then data point A is
considered an outlier. Density based anomalies refer to that
data objects in low density areas as outliers. Clustering based
anomaly detection refers to grouping similar data points into
a cluster, where outliers are points far from the cluster center.

One-class learning methods are also used for anomaly
detection (e.g., [24]). Unlike the above methods, this method
is trained on a normal dataset and then used to detect outliers.

Multiple outlier detection techniques, including con-
ventional and one-class learning approaches, were exam-

ined by Swersky et al. [25], finally, it is concluded that
SVDD(Support Vector Data Description) and LOF(Local
Outlier Factor [22]) are superior to other anomaly detection
algorithms, but these tests are implemented in a static context.
[26] utilizes an autoencoder to detect outliers in data streams.
Every time there is a notion drift, the model is retrained.
Xuanhao Chen et al. proposed an unsupervised anomaly
detection algorithm for multivariate time series.

The above methods all overlook the important issue of how
to set the threshold between normal and abnormal values.
Configuring traffic thresholds in each diameter link is highly
challenging because a DRA device contains hundreds of
diameter links, each with a different traffic value. As the
network function workload changes, the traffic value of a
diameter link changes and gets higher. As a result, the rising
network demand cannot be supported by a fixed static traffic
threshold. If the threshold for signaling traffic is set too high,
the traffic control function will never reach its target value.
The fixed static traffic threshold cannot be used in this cir-
cumstance since the signaling traffic value will dramatically
grow over the vacation period. In conclusion, it is not possible
to define fixed thresholds in signaling storm identification to
effectively predict and manage signaling storms.

III. PROPSED FRAMEWORK
In this article, we invent an algorithm called DLAT to pre-
dict signaling storms. The algorithm mainly includes three
parts: deep learning for time series prediction of traffic, adap-
tive threshold algorithm for providing dynamic thresholds of
traffic, signaling storm discrimination and Top Cause identi-
fication module for determining whether a signaling storm is
about to occur, and outputting the upstream network element
that triggers the signaling storm. The algorithm architecture
diagram is shown in Figure 1.

A. TIME SERIES PREDICTION
This paper uses a multiple regression neural network
algorithm with linear layer and Relu activation function,
to predict the future value of indicators by inputting past
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indicator values, time, holiday characteristics, etc. The cal-
culation formula of the algorithm is as follows:

a[i]j = w[i−1]
1 ∗ a[i−1]

1 + w[i−1]
2 ∗ a

[i−1]
2 + . . . + w[i−1]

n

∗ a[i−1]
n + b[i−1]

n (1)

a[i]j = Relu(a[i]j ) (2)

where a[i−1]
1 , a[i−1]

2 , . . . ,a[i−1]
n are the outputs from the previ-

ous layer, (w, b) are parameters to be learned.

FIGURE 2. Multiple regression diagram.

B. ADAPTIVE THRESHOLD FOR ANOMALY DETECTION
In this research, we applied an automatic threshold updating
algorithm to address the threshold setting process required
for anomaly detection in non-static data streams efficiently,
without the requirement to provide additional data with labels
beyond the starter background or ordinary dataset required to
train the anomaly detector. We have developed an intelligent
adaptive approach that utilizes sliding windows and hypoth-
esis testing. Hypothesis testing is employed to determine
whether the thresholds should be updated. The algorithm,
referred to as Algorithm 1, is divided into two parts and takes
the history data (S) and the parameter values as inputs. It’s
important to note that the training data exclusively consists
of normal data.

The algorithm is divided into two parts: one to calculate
the threshold and one to assess whether the threshold needs
to be updated based on the sliding window. For the part of
threshold calculation, the detection label, which is defined
to mark whether an upper threshold or a lower threshold is
required for this indicator, is applied to calculate the threshold
in twoways. Then the CV (Coefficient of Variation) is defined
as:

cv =
σ

µ
(3)

where the σ is the standard deviation of the input data, and
the µ is the average of the input data.

The threshold updating section can be launched by apply-
ing the initial threshold for the whole algorithm, which is
obtained by the judgment of the CV value. The algorithm
utilizes three windows: w, w1, and w2. The purpose of win-
dow w is to calculate the threshold, while windows w1 and
w2 are used to assess whether the means of scores in both

FIGURE 3. The pseudocode for adaptive threshold algorithm.

windows are significantly different. The choice between the
t-test and the z-test for determining significant mean differ-
ences depends on the sample size; the t-test is used when
the sample size is less than 30, and the z-test is employed
otherwise. Given that the number of values reviewed before
making a decision is always larger than 30, the algorithm opts
for the z-test.

When both windows w1 and w2 are full, the algorithm
computes the p-value generated from the z-test on both win-
dows. If the p-value is less than 0.05, the threshold is updated
based on the historical data in w. The update_threshold func-
tion calculates the new threshold using the historical values
stored in w, that’s what line 1 to line 12 do. The assumption
is that a concept drift has occurred when the mean of w1
significantly differs from that of w2. Therefore, the threshold
is recalculated based on the new values stored in w. After the
update, w is shrunk to retain only the most recent values. This
allows the algorithm to forget earlier data in the data stream
and prepares the window for detecting potential future drifts.

To ensure safety and handle scenarios where the conditions
for updating the threshold are never met, the algorithm auto-
matically updates the threshold when the size of w becomes
divisible by 576. However, in such cases where no concept
drift has taken place, the window is not shrunk to avoid dis-
carding important past data. To control storage consumption,
an upper bound is set on the size of w. When w reaches this
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upper bound, the oldest values are removed to ensure that the
size of w remains within the specified limit.

When holiday comes, the threshold will be updated due
to changes in data distribution. Taking traffic indicators as
an example, the threshold for holidays will be relatively
high compared to normal days, in order to avoid misjudging
holidays as abnormal after an increase in holiday traffic.

C. STORM IDENTIFICATION & TOP CAUSE
(Storm Identification) In order to continue with the storm
identification procedure, we need to collect the indicator
anomaly detection result. We may retrieve the predicted val-
ues of signaling indicators by the timing prediction algorithm,
and by comparing them with the adaptive thresholds-
generated thresholds, we can further filter out the anomalous
indicators. The forthcoming signaling storm is divided into
three groups based on the relevant signaling storm disposal
plan materials and professional principles of communication,
which are the call impact signaling storm, the batch registra-
tion signaling storm, and the DRA overload signaling storm.
For example, when the number of registration requests for
PSBC exceeds its adaptive threshold and the registration suc-
cess rate is less than its adaptive threshold, we conclude that a
signaling storm caused by batch registration is about to occur
in the future. Diverse indications that are irregularly triggered
and satisfy a logical judgment requirement are classified as
one of the three signaling storms, and additional signaling
storm warnings are sent out.

(Top Cause) The top cause network element that generated
the signaling storm is then identified by our algorithm based
on the network element signaling conduction chain after
the signaling storm alert has been activated. Three separate
signaling chains for the discovered three different signaling
storm situations can be summed up by analyzing the signaling
chain of network elements, which are illustrated in Table 1.
The 4/5G conduction chains are also shown in Figures 4 and
5 (mainly marked with red lines). For ease of understanding,
we use a table to illustrate the network elements, as shown in
Table 2.

TABLE 1. Conduction chain.

The top cause network element that triggered the entire
signaling storm at the very beginning can be further tracked
back by identifying the anomalous network element for
the present anomaly indicator and the signaling conduction

TABLE 2. Description of the network element.

FIGURE 4. 4G conduction chain.

FIGURE 5. 5G conduction chain.

chain. By pre-locating top cause network elements, net-
work optimizers can address anomalies and abnormalities in
advance, preventing signaling storms to the maximum extent
possible.

IV. EXPERIMENTS
A. DATASET
1) DATA SOURCE
The experimental data is generated and collected through
experimental equipment. We connect experimental equip-
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TABLE 3. The basic dataset statistics.

TABLE 4. Part of indicators used and corresponding calculation formulas.

TABLE 5. Comparison of the performance of three algorithms.

ment through NWDAF which is the network data analysis
function of 5G core network to obtain PSBC, AMF and other
network element data, and store the data in the hive database
for analysis and prediction. The time span is from June 1,
2023 to June 18, 2023.

2) VARIABLE DESCRIPTION
Since the data is transmitted through a unified interface, the
data has a standard format, including:

• Performance indicator measurement: counter ID, meas-
Result (measure Result);

• Network element-related information: element name,
element type, region code;

• Time information: start time, end time, duration.

3) DATA PROCESSING
Data is naturally processed, especially when calculating the
total success rate, by dividing the total number of successful
requests by the total number of requests. The basic dataset
statistics are shown in Table 3 (A sequence consists of the
element name and its corresponding counter ID). Table 4
is used to present some of the indicators and calculation
formulas we use.

FIGURE 6. Training and validation loss of our prediction model.

FIGURE 7. Line chart of three algorithms’ prediction results (number of
registration requests of a certain PSBC).

FIGURE 8. Prediction results and anomaly detection results of a certain
PSBC’s registration number.

FIGURE 9. Prediction results and anomaly detection results of a certain
PSBC’s registration success rate.

B. COMPARISON OF PREDICTION ALGORITHMS
Figure 6 shows the trend of the loss function of the model
on the training set and the validation set. As the number of
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FIGURE 10. (a) Prediction results and anomaly detection results of AMF’s registration number. (b) Prediction results and anomaly detection results of
PSBC’s call success rate. (c) Prediction results and anomaly detection results of UDM’s active user number. (d) Prediction results and anomaly detection
results of ICSCF’s called success rate.

training steps increases, both the training loss and validation
loss reach relatively reasonable values.

We compare the experimental results of the algorithm in
this article with the moving average and TFT. Table 5 shows
that our algorithm has significant advantages compared to the
moving average and TFT. Under normal circumstances, the
three algorithms have similar effects, but they appear high
and low in storm scenarios.

Under normal circumstances, we visualized the true num-
ber of registration requests for a certain PSBC and the
predicted values of the three algorithms and found that our
algorithm had a good fitting effect, with the moving average
having a certain lag, while TFT had poor performance. This
may be because the training data of TFT did not include data
from storm scenarios. Of course, there are very few signaling
storm data in real network.

C. VISUALIZATION OF OVERALL ALGORITHM RESULTS
Figure 8 shows the prediction, threshold, and anomaly detec-
tion of the number of registration requests for a certain PSBC
network element instance. The gray line represents the adap-
tive threshold, which is updated once over time. At 14:30,
an abnormal indicator was predicted (predict a point every
15 minutes, and the value at 14:45 will exceed the threshold).

Similarly, Figure 9 shows the registration success rate of
the network element instance. At 14:30, it is predicted that the
indicator will soon fall below the threshold and an exception
will occur.

Figures 10 shows the prediction and anomaly detection
of relevant indicators for AMF, PSBC, UDM, and ICSCF

network elements. The predicted value of AMF’s registration
number has suddenly increased at about 14:45, while the
PSBC’s called success rate, UDM’s active user number, and
ICSCF’s called success rate have all experienced a sudden
decrease.

D. ANALYSIS OF RESULTS
The blue dots in Figure 8 represent the predicted value of
PSBC registration number, and the predicted value of 14:45 is
predicted at 14:30. At the same time, the adaptive threshold
algorithm provided an adaptive threshold (as shown by the
gray line) at 14:30. Since the blue dot at 14:45 exceeded its
adaptive threshold, it was judged as abnormal. That is to say,
we predicted at 14:30 that the registration number for PSBC
in the future will be abnormal.

Similarly, Figure 9 shows that we predicted at 14:30 that
the future registration success rate of PSBC would be abnor-
mal. Based on the signaling storm discrimination rules (as
mentioned in the previous Section III Storm Identification
module), since both the predicted value of registration num-
ber and registration success rate are abnormal, it can be
determined that a signaling storm will occur in the future due
to batch registration). That means we predicted at 14:30 that
a signaling storm would occur in the future.

As this signaling storm is a signaling storm of registration
type, we can search for the top cause along the 5G registration
conduction chain and ultimately find the AMF (Figure 10 (a)
indicates that we predicted at 14:30 that registration number
for a certain AMF network element instance in the future will
exceed its adaptive threshold, meaning that AMF is about to
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experience an exception). As AMF is at the upstream of the
entire conduction chain, it is the top cause of this signaling
storm.

At this point, we successfully predicted a signaling storm
of registration type at 14:30, and the top cause of this signal-
ing storm is AMF.

V. CONCLUSION
This article combines time prediction, adaptive threshold,
and anomaly detection algorithms to predict signal storms.
Firstly, this article differs from previous research on the
control of signaling storms. We use time series prediction
algorithms to predict signaling storm data, which facilitates
the early detection and processing of signaling storms. Addi-
tionally, the multiple regression neural network algorithm
used in this article is lighter and has better performance in
terms of structured data (WAPE can reach 0.091 even in storm
scenarios). This method, further combined with adaptive
threshold-based anomaly detection, which is more effective
and outperforms fixed anomaly thresholds to avoid consid-
ering holiday data as abnormal data. Finally, the combined
signaling conduction chain of this method can also perform
top cause localization to identify the upstream network ele-
ment instance that encountered the problem first. The entire
algorithm pioneered signal storm prediction, achieving pre-
diction of signaling storm and top cause localization, which
can prevent the occurrence of signaling storms in advance.
In the future, more feature assisted prediction will be intro-
duced, such as UE (User Equipment) information, to achieve
earlier prediction of signaling storms.
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