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ABSTRACT The significance of forecasting the behavior of road agents is on the rise, particularly
in Advanced Driver Assistance Systems (ADAS) enhancement. Predicting road agents’ intentions holds
paramount importance for Autonomous vehicles, especially considering the forthcoming coexistence of
ADAS systems with heterogeneous road entities within urban roadways. The behavioral attributes of
non-lane based traffic, featuring a mix of various elements, are prevalent not only in urban scenarios but
also in unstructured environments. This research aims to predict the movement patterns of surrounding
vehicles in non-lane based environments. This study captures the surrounding vehicles’ intent to utilize
tight lateral spaces in non-lane based environments through the variations of lateral descriptor values. The
investigation takes into account several factors, including leveraging contextual cues, retaining spatial data
related to neighboring vehicles, and identifying driving patterns. To achieve these objectives, a hybrid model
is introduced, combining a modified structured Long Short Term Memory (LSTM) with lateral descriptor
based uncertainty estimation on top of established detection and tracking algorithms. This integration
enhances the ability to capture spatial attributes of neighboring vehicles along with the assessment of traffic
conflict indicators with lateral descriptor contextual cues. The methodology is evaluated across two distinct
datasets: one simulating scenarios of neighboring vehicles within well-defined urban road setups, and the
other representing non-structured environments. The empirical findings highlight the effectiveness of the
proposed method, showcasing an impressive 24.69% enhancement in prediction accuracy compared to
baseline models with 5-seconds prediction horizon.

INDEX TERMS ADAS, heterogeneous traffic, LSTM, mixed traffic, lateral descriptor, non lane-based.

I. INTRODUCTION
Three major factors to achieve ADAS systems on urban
roads are road scene awareness, understanding other road
agents’ intentions and predicting their futuremotions. Human
drivers analyze road scene, understand the intentions of
other road users from their trajectory and predict their
future trajectories based on experience [1]. ADAS sys-
tems find major breakthrough developments with latest
sensors, high performance computing platforms and good
connectivity. They witnessed number of success in highway
traffic environments scenarios, however they are evolving to
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achieve real-time performance on edge devices with limited
computing power [2]. Also, ADAS systems face numerous
challenges in urban traffic environments and with non-
lane-based environments [3]. The characteristic differences
between structured and non-structured environments have
been explained in detail in [4]. The differences between
lane-based traffic and non-lane based traffic can be observed
with respect to the type of road users, driving discipline and
movement directions. In lane-based environments, mostly
the driving is disciplined, and all surround vehicles will
be moving in same direction as that of subject vehicle.
However, in non-lane-based environments, the driving is
widely undisciplined and concurrent appearance of various
classes such as two wheeler, three wheeler, pedestrians
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FIGURE 1. Typical non-lane-based scenario and lateral descriptor
changes.

and stray animals can be present. In lane-based scenarios,
vehicles will be confined to the lane and hence the leading
vehicle is referred as ego vehicle. Whereas in non-lane-based
scenarios, vehicles moving in adjacent lane, suddenly change
the course and gets into the track of subject vehicle to utilize
the available lateral space and hence referred as surround
vehicles. Adaptation of current ADAS systems to non-lane-
based environments hugely rely on intent forecast and motion
trajectory prediction. A typical scenario in non-lane-based
environment is explained in Figure 1, where a two-wheeler
rider moves from left edge to right edge in successive

frames. Apparently, the changes in lateral position values
and bounding box dimensions of this two-wheeler provide
critical information on lateral space utilization. In non-lane-
based scenarios, lateral descriptors play a vital role in Time to
Collision (TTC) calculation. Lateral descriptor is the lateral
distance between mid-point of the subject vehicle and lead
vehicle, and they are also referred as Center Lane Separation
(CS). A CS scenario in a non-lane-based environment is
explained in Figure 2. In this scenario, few vehicles moving in
front of the subject vehicle. The CS between subject vehicle
and surround vehicle 1 (SV1) is CS1 and that of Surround
vehicle 2 (SV2) is CS2. The TTCs corresponds to SV1 and
SV2 are different and hence different control actions might be
required based on lateral descriptor value changes.

FIGURE 2. Lateral distancing between subject vehicle and surround
vehicles.

Another scenario with varying lateral position values,
varying bounding box dimensions and the bottom edge
movement of tracked object is explained in Figure 3. These
visual cues provide information about the target vehicle’s
dynamics and possibility of conflict occurrence. Therefore,
a hybrid model was proposed that uses lateral descriptor
contextual cues in conjunction with pattern based modified
LSTM approach. This model combines the advantages of
retaining surrounding vehicles spatial information and their
interactions for trajectory prediction.

The main contributions of this paper can be summarized as
follows. A modified Multivariate multiple parallel structured
LSTM network is proposed for trajectory prediction. This
network is specially adapted to manage input sequences
centered around surround vehicle centroids, enabling the
prediction of their future coordinates. Following the predic-
tion phase, the model estimates uncertainty based on lateral
descriptor contextual cues, an inventive approach to calibrate
traffic conflict indicators, particularly tailored for non-
lane-based scenarios. This lateral descriptor-based method
achieves accurate prediction of surrounding vehicles future
positions. This novel methodology enables the evaluation
of TTC from onboard camera feed with moving reference
points in contrast to conventional TTC calculation from fixed
reference points.

The rest of this paper is organized as following. Section II
presents a brief review of the related work for the problem.
Section III describes the proposed solution. Section IV
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FIGURE 3. Vehicle tracking scenarios with appearance vector.

describes the datasets used, and Section V explains validation
approach and the results. Section VI concludes this paper.

II. RELATED WORK
Motion trajectory Prediction approaches are categorized
into Physics based, Planning based, Pattern based and
Contextual cue based approaches as summarized in Table 1.
Physics-based trajectory predictions work well for lane based
scenarios and for non-lane-based scenarios pattern-based
trajectory prediction produce better results.

Trajectory Prediction approaches began with Kalman filter
applications such as Extended Kalman Filter and Unscented
Kalman Filter. Kalman filter approach is a typical example
of physics-based approach. Physics based approaches suffer
with the inability to adapt to driving situations. Planning
based approaches consider the reasoning about end goals.
Since the goals are incorporated into the prediction, these
approaches perform better than physics-based approaches.
However, planning based approaches do not model the
interaction between neighboring agents. Contextual cue
based approaches overcome this constraint by incorpo-
rating neighborhood interactions. Recently pattern-based
approaches such as LSTM networks are widely used for
trajectory prediction applications because of the accuracy
and speed. LSTM approach is capable of retaining vital
information over a long-time sequence. This approach
captures inter dependencies of multiple agents and preserve
the spatial information of neighbors. Also, LSTM networks
are best suited for mono vision camera applications. From
the literature summarized above the trajectory prediction
methods based on single approach performs well on the
focused criteria but they fail to cover other aspects impacting
the trajectory prediction. And also, these methods do not
take into account the parameters specific to non-lane-based
environments.

Among various ADAS functions, Adaptive cruise control
(ACC) is a complex feature that works both in highway
environments and in urban environments as well. Partial
automation of vehicle’s longitudinal control with respect to
the ego-vehicle’s dynamics is achieved through ACC. ACC
uses onboard sensors to follow the preceding vehicle with
optimal headway spacing that improves the safety, comfort,
and stability of the vehicle [29]. With this function, speed
of the subject vehicle is maintained as per driver’s input

and at the same time a safe distance is maintained with
respect to the lead vehicle. To develop functions like ACC,
accurate measurement of conflict indicators such as TTC is
important. There are various references available to calculate
traffic conflict indicators from a stationary camera feedwhere
the camera is stationary and located close to traffic signals
or intersections. However, functions like ACC require TTC
calculations from onboard sensors and onboard camera feeds.

Traffic conflict study is a proactive approach that helps
to avoid crashes before they occur. Traffic conflicts could
be measured by multiple evaluation indicators such as
TTC [30], Time to Accident (TA) [31], Deceleration Rate
to Avoid Collision (DRAC) [32], and Post Encroachment
Time (PET) [33]. Though there are various temporal safety
indicators used for different applications, PET and TTC have
been widely considered as potential parameters in defining
warning threshold for ACC/collision avoidance system [34].
Due to its simplicity and reliability, usage of TTC is widely
used for different traffic situations specially to analyze and
extract high-risk lane change interaction patterns as given
in [35]. A minimum TTC value TTCmin is an indicator to
estimate the criticality of an encounter. In short, lower the
TTCmin threshold, higher will be the severity of a collision.
Most of the research on TTC in traffic safety evaluation
has been focused on lane-based traffic scenarios. Different
TTCmin thresholds have been defined to differentiate critical
behavior and normal behavior [36], safe and unsafe vehicle
encounters [37]. Selection of thresholds for PET and TTC
considering different traffic dynamics, geometric designs,
and speed limit are explained in [38]. These thresholds help
to provide an early collision avoidance warning to the drivers
when TTC falls below the recommended/defined threshold.
TTC also helps to characterize the collision risk as low,
moderate, and high [39], [40]. TTC calculation for non-
lane-based environments require the observation on lateral
descriptor contextual cues. Das and Maurya [41] has made
an important observation that vehicles in lane-based traffic
maintain a mean distance of 1.78m from the left edge of
the lane, with 0.34m standard deviation. This observation
sets a threshold criterion to distinguish lateral offset for
lane based and non-lane-based traffic. A detailed insight
into TTC threshold calculations based on type of lead
vehicle and the correlation between TTC and center line
separation with copula literature framework was given by this
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TABLE 1. Existing approaches comparison.

research. Typical distribution profiles of best fitted stochastic
uncertainties models for lateral descriptors and TTC are
presented in Figure 4. Logistic distribution and normal
distribution were selected for TTC and lateral descriptors
respectively to provide the best fit. The histogram plots
indicate the TTCs between surround vehicles range from 0s to
3.6s while the peak of distribution lies at 1.5s. Similarly, the
lateral descriptor ranges up to 3m and the peak occurs at 1.5m.
From this figure it is evident that the variations in longitudinal
gaps and lateral descriptors provide a better understanding
of surrounding objects in non-lane-based traffic streams and
there exists a strong relationship between them.

From the literature cited above, it is evident that a dominant
pattern-based prediction approach is necessary to capture
spatial information of surrounding vehicles. However, this
approach alone will not be sufficient for non-lane-based
environments, because the road agents in these environments
often change their course and hence the model needs to
take into account the parameters critical for non-lane-based
environments.

III. PROPOSED METHOD
In a scene with concurrent road users utilizing tight lateral
road spaces, the problem of estimating vehicle conflict
indicators is of twofold. The first challenge is the appropriate
network that effectively considers the tight lateral vehicle
interactions. The next challenge is to factor the effect of
lateral descriptors to accurately predict the TTC on top of pre-
diction. Based on these premises, this paper aims to provide a
frameworkwith amodified encoder decoder structural LSTM
network to predict the positions of the surrounding vehicles
that are being tracked. In addition, this framework models
the dependence between longitudinal descriptors and lateral

descriptors depending upon the lead vehicle and enables the
accurate calculation of respective TTC. Framework for the
proposed method is given in Figure 5. The main stages of
this framework are detection, tracking, trajectory prediction,
CS calculation, TTC estimation and conflict prediction.
These stages are explained in the following sections.

A. SURROUNDING VEHICLES DETECTION
Onboard camera feeds are sliced into frames and the frames
are fed into You Only Look Once (YOLO) framework which
is the popular network used for object detection [42] due to
their speed, accuracy, easy to train, validate and deployment.
YOLO Model combines bounding box prediction with class
labels in an end-to-end differentiable network. YOLOmodels
consist of 3 main stages. First stage is a convolutional
neural network which extracts image features with different
granularity. Second stage consists multiple layers to mix and
combine image features and pass to prediction stage. Third
stage consumes those features and predict the bounding boxes
and classes. YOLO_V5 is used in the proposed framework
for the object detection as it is a performance improvement
version using PyTorch training procedures. The input image
is divided into an SxS grid and for each grid YOLO
predicts multiple bounding boxes. In addition to bounding
box center coordinates(x,y), width(w) and height(h), YOLO
also predicts the probability of each object class(C). The
absolute position of a predicted bounding box is calculated
using the following equations.

bx = σ (tx)+ cx (1)

by = σ (ty)+ cy (2)

bw = pw · etw (3)

bh = ph · eth (4)

120808 VOLUME 11, 2023



J. Antony, S. M: Surrounding Vehicle Motion Prediction in Non-Lane-Based Environments

FIGURE 4. Probability density for lateral descriptors and TTC.

FIGURE 5. Proposed framework.

where (bx , by) represents the predicted center coordinates of
the bounding box and (cx , cy) represents the coordinates of
the top-left corner of the grid cell. The dimensions of the
anchor boxes are represented by (pw, ph) and (tx , ty, tw, th)
represents the predicted offsets and dimensions. Softmax
activation is used to calculate the class probabilities for an
object in a grid cell.

P(class|obj) =
esclass

6c
i=1e

si
(5)

where sclass represents the raw score for a specific
class ‘c’.

B. SURROUNDING VEHICLES TRACKING
DeepSORT framework is used for surround vehicles tracking
like the one used in [43]. DeepSORT is an extension of the
SORT (SimpleOnline Realtime Tracking) algorithm.Kalman
filter is the main component in DeepSORT algorithm for
noise factoring and uses prior state to predict the good fit
for bounding boxes. This algorithm also uses ‘Appearance’
metric to overcome the shortfalls of Kalman filter like
occlusions and different viewpoints. Deep Sort method is
suitable for approaches where the data is used on the fly [44].
The computational resources required for this framework is
less compared to other popular deep learning approaches. The
prediction step state and Error covariance are denoted by

x̂k|k−1 = Fk x̂k−1|k−1 + Bkuk (6)

Pk|k−1 = FkPk|k−1FTk + Nk (7)

The update step state and Error covariance are denoted by

x̂k|k = x̂k|k−1 + Gk (Zk − Hk x̂k|k−1) (8)

Pk|k = (I − GkHk )Pk|k−1 (9)

where the Kalman Gain Gk is calculated by

Gk = Pk|k−1HT
k (HkPk|k−1H

T
k +Mk )−1 (10)

Here Fk represents state transition matrix, Bk represents
control input matrix and Nk represents process noise.
Similarly, Zk represents measurement matrix, Hk represents
observation matrix andMk represents measurement noise.

C. SURROUNDING VEHICLE MOTION PREDICTION
Multivariate Multi-Step LSTM network is used to generate
future trajectory of surround vehicles. There are two types
of Multivariate Multi-Step LSTM models to analyze multi-
variate time series data. They are Multiple Input Multi-Step
Output model and Multiple Parallel Input and Multi-Step
Output model depending upon the dimension of input
sequence and the dimension of predicted output sequence.
The problem considered for this work is related to multi-step
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time series forecasting because it requires a prediction of
multiple time steps into the future. Usually, for multi-step
forecasting problems twomain types of LSTMmodels can be
used. They are Vector Output Model and Encoder-Decoder
Model. Former model outputs a vector directly that can
be interpreted as a multi-step forecast and later model is
developed for forecasting variable length output sequences.
This encoder-decoder model is also known as seq2seq model.
The enhanced version of this Encoder-Decoder model for
multivariate multi-step with Parallel Input sequences and
multi-Step prediction is used in this application.

A typical tracking scenario with 3 frames of varying lateral
distance and varying bounding box dimension was shown
in Figure 3. Let the observed trajectory is represented as
X = X1,X2,X3, . . .Xn. Where X ti = (x ti , y

t
i ) and x ti ,

yti corresponds to the observed x, y position of surround
vehicle i at time instance t . And the predicted trajectory is
represented by Y = Y1,Y2,Y3, . . . ,Yn Where Y ti = (x̂ ti , ŷ

t
i )

and (x̂ ti , ŷ
t
i ) corresponds to the predicted x, y position of

surround vehicle i at time instance t . Here the observed
time series is represented as t = Tk−h, . . . ,Tk−2,Tk−1,Tk
and the prediction time series is represented as t =
Tk+1,Tk+2, . . . ,Tk+p.

H i,(1)
t = LSTM enc(H i,(1)

t−1 ,X it ;W
(1)
H ) (11)

H i,(2)
t = LSTM enc(H i,(2)

t−1 ,H i,(1)
t ;W (2)

H ) (12)

H i,(3)
t = LSTM enc(H i,(3)

t−2 ,H i,(2)
t ;W (3)

H ) (13)

where

X it = f (x it , y
i
t ;WE ) (14)

Here f() is the function mapping (x it , y
i
t ) to the vector X it ,

WE ,W (1)
H , W (2)

H and W (3)
H represent weight matrices. H i,(k)

t
represent hidden state vector for layers k=1,2,3.
Ŷ it is the encoded vector obtained from Eq. 4 and fed to the

decoder network.

H i,(1)
t = LSTMdec(H i,(1)

t−1 , Ŷ it ;W
(1)
H ) (15)

H i,(2)
t = LSTMdec(H i,(2)

t−2 ,H i,(1)
t ;W (2)

H ) (16)

H i,(3)
t = LSTMdec(H i,(1)

t−3 ,H i,(2)
t ;W (3)

H ) (17)

Prediction output of LSTM decoder for VRU i at time t is
given by Y it = f (x̂

i
t−1, ŷ

i
t−1;WD) and obtained from Eq.8

Y it = f (x̂ it−1, ŷ
i
t−1;WD) (18)

Here f() is the function mapping (x̂ it , ŷ
i
t ) to the vector Y it ,

WD, W
(1)
H , W (2)

H and W (3)
H represent weight matrices. H i,(k)

t
represent hidden state vector for decoder layers k=1,2,3.
The encoder LSTM and decoder LSTM model are jointly

trained to minimize prediction errors.

Loss =
k+p∑
i=1

(Y ti − Y (G)
t
i ) (19)

where Y ti and Y (G)ti are predicted sequences and ground
truth sequences respectively. The architecture of one layer of
modified structural LSTM architecture used in this model is
given in Figure 6. The layers are dynamically chosen based
on the number of vehicles tracked.

D. TTC CALCULATION
PET is defined as the time difference between the first road
user leaving conflict point and second road user reaching the
conflict point. When the lead vehicle leaves conflict point at
t1 and subject vehicle reaches this point at t2, then PET is
defined as follows.

PET = t2 − t1 (20)

TTC is defined as the time remaining for the occurrence of
a collision between 2 road users if both road users maintain
the course and speed. Let dLV and speedLV represents the
distance and speed of lead vehicle. And dSV and speedSV
represents the distance and speed of lead vehicle, then TTC
is defined as follows.

TTC =

∣∣∣∣ dLV
speedLV

−
dSV

speedSV

∣∣∣∣ (21)

The PET and minimum TTC are calculated using the
following three steps. The first step is to start individual
counter sequences of the trajectories of subject vehicle and
surround vehicles to obtain the conflict point for each lead
vehicle. Conflict point shall be obtained if the tracked object
area reduction falls below the bounding box dimension
change threshold value. The second step is to determine the
frame numbers of the pair when approaching this conflict
point. The third step is to calculate PET by dividing time
difference by frames per second and then to calculate the TTC
dynamically.

E. LATERAL DESCRIPTOR BASED UNCERTAINTY
ESTIMATOR MODEL
After TTC is obtained, collision risk is calculated by adding
lateral descriptor bias for uncertainty estimation. This lateral
descriptor biasing is managed outside LSTM model without
affecting iterative training of the neural network. This
uncertainty estimation is calculated as follows.

LVUi =


0, py(k+1|t) > py(k|t)∧ A(p(k+1|t)) ≤

A(p(k|t))
1 py(k + 1|t) < py(k|t) ∧ A(p(k +

1|t)) >= A(p(k|t))

where LVUi, k and t represent Lead vehicle uncertainty index,
prediction step index and time index respectively. py(k|t) and
A(p(k|t) represents lateral position and Area of Bounding
Box respectively. Similarly, lead vehicle turn direction is
calculated as follows.

LVTd =


−1, py(k + 1|t) < YLthres
0, py(k + 1|t)YLthres < py(k + 1|t) < YRthres
1 py(k + 1|t) > YRthres
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FIGURE 6. Structured LSTM network layer for single vehicle.

where LVTd , YLthres and YRthres represent Lead vehicle
turn direction, and threshold values for left and right turn
scenarios.

There can be 4 possible scenarios from the results obtained
above. If LVUi is 0 or if LVTd is -1 or 0 then those scenarios
are considered as non-serious conflicts. On the other hand,
if LVUi is 1 or if LVTd is 1 then those scenarios are considered
as serious conflicts for right hand driving environments.
Similarly, the uncertainty index can be calculated for Left
hand driving environments by changing the threshold criteria.

IV. DATASET
Two datasets are applied in this work for the accuracy
verification. The first dataset is the Next Generation Sim-
ulation (NGSIM) dataset [45]. This data set is a widely
used dataset to test the prediction accuracy and one such
application is explained in [46]. This data set is used to
test the Prediction accuracy of the proposed model against
3 baseline models. The baseline models considered here are
Dual Learning LSTM Model, Multi modal maneuver-based
LSTM Model and Modified LSTM vehicle interactions
Model. These models were tested with same NGSIM dataset,
and the results are publicly available. This NGSIM dataset
is publicly available and derived from the US Federal
Highway Administration. Each data slice includes vehicle’s
parameters, their position, velocity, yaw rate, and size.
For this work, the trajectory data from Peachtree Street
videos and Lankershim Boulevard video are considered. The
second data set was collected from 4 different metro cities
in India with mixed heterogeneous traffic. A 1080 pixel
on board camera (Model Number: ELP-USBFHD01M) is

placed in the windshield to capture the road scenes and
the acquired video samples were fed through NVIDIA
Jetson TX2 development kit. Video to frames conversion,
YOLO object detection algorithms, DEEP SORT tracking
algorithms, Encoder Decoder algorithms and TTC estimation
algorithms were executed in this NVIDIA board. This data
set contains 20446 road elements from about 31923 frames.
The actual trajectory of each road element was recorded in
the work presented in [4] and this trajectory information
was compared against the results obtained with the proposed
approach.

V. IMPLEMENTATION DETAILS
Keras was used to generate in an end-to-end fashion. The
number of hidden state dimensions of LSTM encoder and
decoder are both 200 and trained with ‘ReLU’ activation
function. The proposed method was trained by Adam
optimizer with 0.001 learning rate for 300 epochs with a mini
batch size of m=32. The mean squared error (MSE) between
the predicted sequence and the ground truth sequence was
monitored on the validation loss. The implementation model
algorithm is presented in Algorithm 1.

VI. RESULTS AND DISCUSSION
The efficiency of proposed model against baseline models
are listed in Table 2. These baseline models are best
performing models to date and their prediction accuracy is
high compared to other popular models. These models are
selected to verify the accuracy of proposed model with the
same NGSIM dataset. The proposed model outperforms the
Dual learning baselinemodel by 14%. The RootMean Square
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TABLE 2. RMSE comparison with existing methods.

TABLE 3. TTC variations with respect to lateral descriptors.

Algorithm 1 Surrounding Vehicle Tracking and Uncertainty
Estimation

initialize
capture video
for each (frame) do

num_SVs← YOLO_V5(frame)
for n = 1tonum_SVs do

num_traj← DEEP_SORT (SVn)
for Ph = 1tonum_pred_hori do

for i = 1tonum_traj do
Xi, pred ← sub− LSTMj(Xobs)
Yi, pred ← sub− LSTMj(Yobs)
XPh+1 = f (XPh,N(0,W))

end for
i← i+ 1
calculate (CS)
calculate (TTC)
TTCoffset = f (CS,TTC,Veh_Type)

end for
Ph← Ph + 1

end for
end for

Error (RMSE) error of Multimodal LSTM and Modified
LSTM model is greater than the proposed method by 28%
and 14% respectively. Once the prediction accuracy of this
model is verified using NGSIM data set, the second data set
which includes the traffic flow from Indian metro cities was
applied. This data set is used in the work [4] and it includes
all dynamics of non-structured environments. Also, this data
set contains trajectories of 2 wheelers and 3 wheelers which
are major constituents of multi road agent scenarios.

The TTC variation with respect lateral descriptor values
for different lead vehicles are presented in Table 3. The TTC

FIGURE 7. TTC variation with changing CS vehicle for subject lead pair.

values for different range of CS values are segregated in eight
equal intervals. For some range of CS values, this data set do
not have the road agent trajectory and those cells are marked
as Not available (NA). From this table it is evident that the
TTC values around central axis of the frame is slightly less
than those around 0.5 m to 1m range. This is because, the
lead vehicles in this range of (0.5m <= CS < 1.0m) on both
left and right axis tend to divert from the current lane to
adjacent lane. However, vehicles perpendicular to central axis
have less TTC because those vehicles are either obstructed or
maintaining the course with same speed. Again, the TTC for
vehicles in the range of (1m <= CS < 2m) on both left and
right axis, tend to decrease because the lead vehicles started
moving away the subject vehicle lane.

The variation of mean TTC with respect to CS range is
given in Figure 7. From this figure it is evident that threshold
values for 3W, car and truck are relatively close and the range
-1.5m < CS < 1m is crucial to avoid maximum collision
instances. Sensitivity graph of the TTC variation for different
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FIGURE 8. TTC sensitivity for different road users.

TABLE 4. TTC percentage decrease with respect to minimum TTC values.

FIGURE 9. Trajectories orientation for RWD lanes.

classes of road users are plotted in Figure 8. From this
figure, it is evident that the TTC range of 3 wheelers are
little high since they are slow moving vehicles compared to
other classes. The TTC range for cars and truck are similar
because these classes occupy the maximum width of the
lane space. The instances of orientation of trajectories with
respect to CS range are presented in Figure 9. It is evident
that there more instances of trajectories are observed on the
right side compared to left side of the central axis. This
result is due to the fact that this traffic was observed in the
Right-Hand Drive (RHD) scenario. In these driving scenarios

FIGURE 10. Longitudinal gap variation with speed.

FIGURE 11. Percentage of threat detection.

the lead vehicles tend to align to the right-hand side more
than the left-hand side direction and vice versa for Left Hand
Drive (LHD) scenario. These observations form the basis to
conclude which range of CS values are prone for collision
events and which direction to central axis will have more
lead vehicles and their relationship with driving side such as
LHD or RHD. The percentage decrease of TTCs compared
with baseline TTC when CS= 0.34m is presented in Table 4.
This result matches with the fact that 2 wheelers move fast
to utilize tight lateral spaces with more confidence and hence
their TTCs are on higher side. Also, the elements in this traffic
tend to follow the lead vehicles closely maintaining lower
longitudinal gaps. The variations in average longitudinal gap
with speed for different lateral descriptors are presented
Figure 10. As discussed before, the detected trend further
confirms the increasing relationship of longitudinal gap and
speed for each lateral descriptor range. With the increase in
lateral descriptor between the vehicles, the longitudinal gap
decreases at different trail vehicle’s speeds. The observation
was also made to compare the differences of recognition
timing between constant velocity approach and the proposed
approach and presented in Figure 11. It is evident that
the proposed algorithm recognized the target earlier in
around 58% of total cases by up to 5s. Around 36% of
cases were identified in same time. Therefore, the proposed
algorithm recognized more than 90% of vehicles ahead of
time compared to baseline algorithm.
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VII. CONCLUSION
The method proposed in this paper uses tracked object
position, dimension, CS variations, bottom edge trajectory
to identify the TTC values. This method utilizes LSTM’s
capability to capture multi agents inter dependencies along
with their spatial information and the contextual cues. The
relative importance of lateral descriptors and their offset
values enables the model to accurately predict surrounding
vehicles trajectories depending upon the type of lead vehicle.
Both LSTM based prediction and contextual cue-based
prediction augments the prediction accuracy with identifi-
cation of driving patterns along with preserving the spatial
information between neighboring vehicles. The proposed
model was tested on two video datasets. Experimental results
show that the specific range of CS values (0.5m <= CS <
1.0m) are prone for more collision events compared to other
ranges. The proposed method can be easily integrated with
mono-vision camera feeds which is instrumental to develop
ADAS applications for non-structured environments. This
method also provides uncertainty estimation from moving
references. It is also observed that the direction to central axis
will have more lead vehicles depend on the kind of driving
environment and this observation will help to confine the
focus area to observe critical conflicts. In addition to these
parameters, it was also observed that combining lead vehicle
brake light illumination with the TTC, would further improve
the accuracy of detected TTC. Further investigation needs to
be conducted to expand this concept. The proposed model
enables calculation of traffic conflict indicators with moving
reference points and has the potential to be implemented for
mono vision camera applications.
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