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ABSTRACT Human activities are the principal contributors to oil pollution in marine ecosystems, thereby
causing severe ecological damage. The high volume of vessel traffic operating in these areas contributes
to the rapid contamination of the marine ecosystem, leading to frequent oil spill events, particularly near
ports where congestion is prevalent. Addressing this issue today necessitates the involvement of numerous
skilled personnel committed to the task. This team undertakes the repetitive and tedious work of surveying
the area, detecting spills, and employing various techniques to address each oil slick. The emergence of
Unmanned Surface Vehicle (USV) technology has introduced a promising alternative capable of alleviating
the process of continuous monitoring and cleaning operations in proximal shoreline areas. This paper
addresses the problem of USV cleaning operations near the port. The proposed method synthesizes a
hierarchical architecture that integrates traditional global path planning for multi-destination oil spills, along
with coverage path planning based on reinforcement learning, to adapt to dynamically changing oil spills.
This combined architecture results in a comprehensive solution, allowing navigationwithin the port’s vicinity
to address each occurrence of oil pollution. To evaluate the effectiveness of this approach, we conducted an
elaborate simulation designed to replicate port activities. The findings of this paper indicate a significant
reduction in pollution levels due to USV operation and underscore the ability to acquire complex policies
for dynamic coverage planning through the use of a reinforcement learning framework.

INDEX TERMS Autonomous agents, marine navigation, oil pollution, path planning, reinforcement
learning.

I. INTRODUCTION
Over the past decade, public awareness and interest have
grown regarding the negative consequences of oil spills
caused by human operations. This increasing concern has
motivated researchers to seek innovative solutions to environ-
mental problems [1].

Marine oil pollution, predominantly caused by human
activities, is one such problem with severe repercussions for
ecosystems. Oil spills strip birds of their insulation, poison
sea turtles, and inflict severe damage on the respiratory sys-
tems of dolphins and whales. Oil spill incidents fall into
two categories: the frequent ones, usually small scale, and
the rare large spills. Although events such as operational
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discharges, natural seepage, or pipe leakages are common,
their detection, monitoring, and management are still notably
challenging.

Addressing and mitigating marine oil spills is a com-
plex process that demands comprehensive logistical oper-
ation, which can only be managed by highly experienced
personnel. This operation necessitates expertise in inci-
dent management, monitoring methodologies, deployment
of barrier-installation vessels, and specialized oil recovery
techniques, such as the utilization of vacuums and absorbent
materials [2].

One way to deal with oil spills is the utilization of dis-
persants, substances designed to break down oil slicks into
smaller, more manageable droplets. These dispersants are
usually applied from aerial platforms or small vessels capable
of handling substantial payloads [3]. However, deploying
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these platforms requires skilled teams capable of accurately
targeting oil slicks. Thus, the primary focus is addressing
large oil spills since they pose an immediate danger, often
overlooking the smaller-scale incidents.

Addressing these incidents often requires human operators
to embark on prolonged, exhausting voyages that involve
repetitive and laborious tasks. This, in turn, leads to dedi-
cating numerous human resources to patrolling vessels near
oil pipelines, anchoring ships, and monitoring predetermined
areas, especially in the absence of automated methods and
platforms. Autonomous systems have established a new path
for confronting these problems, by facilitating the creation
of methods and tools that make the process of observing and
controlling water pollution more efficient. Although Remote
sensing permits the automated identification of oil spills,
the process of handling them continues to be an unresolved
matter.

An Unmanned Surface Vehicle (USV) demonstrates con-
siderable potential for advancing environmental disaster
mitigation, specifically in providing a continuous response
to oil spills of varying scales. These systems, designed to
carry substantial payloads and to operate in marine envi-
ronments, prove particularly effective when integrated with
remote sensing platforms. Such integration enables them to
tackle long-range tasks proficiently and accurately.

While a USV offers promise in mitigating environmental
disasters such as oil spills, two key challenges remain unad-
dressed:

1. The absence of an efficient method for multi-destination
path planning that ensures safe navigation near shores.

2. The lack of an adaptive Coverage Path Planning (CPP)
method that effectively cleans dynamic oil spills in a marine
environment.

Aiming to bridge these gaps, this study introduces a novel,
hybrid path-planning strategy, specifically designed for a
USV platform tackling multiple oil spill events near ports.
Utilizing real-time remote sensing information, our method
implements a visibility graph representation that enables us
to determine secure paths within oil spills. These routes then
serve to link separate spill groups by deploying classical path
planning techniques.

Subsequently, the method addresses the challenge of inter-
nal path planning within each distinct group of spills. This
problem is formulated as an Asymmetric Traveling Salesman
Problem (ATSP), facilitating the identification of the shortest
path among the routes. Lastly, given that each spill presents
a dynamic coverage path planning challenge, the local plan-
ner based on Reinforcement Learning (RL) is employed
to overcome this challenge and guide the USV cleaning
operation.

The novelty of this paper is as follows:
1. Resolving the multi-destination ATSP among obstacles

to secure an optimal path.
2. Integrating traditional methodologies with the Proximal

Policy Optimization (PPO) RL technique in the context of
USV path planning.

3. Implementing CPP to address the oil spill’s motion and
extension.

II. RELATED WORK
In this section, we provide an overview of the state-of-the-art
research related to the problem of USV cleaning operations
near ports, as addressed in this paper. Our study focuses
on a hybrid model integrating multi-destination global path
planning with an RL coverage path planning method for a
USV platform.

A. UNMANNED SURFACE VEHICLES
In recent years, there has been a growing interest in the devel-
opment of USV technology, spurring intensive progress in the
creation of new applications. These applications encompass
various fields, such as disaster management [1], search and
rescue [4], and network infrastructure [5]. As illustrated by
Jung et al. [6], a USV was employed to confront harmful
algal blooms that disseminate across the lake’s surface, allow-
ing for prolonged deployments. Another illustrative example
highlights the USV’s capacity to engage in prolonged tasks,
such as examining water quality, a challenge that requires
continuous monitoring to ensure the safety of the water
reservoir. Jo et al. [7] presented a USV platform capable
of inspecting and reporting water conditions, thus acting as
a maneuverable sensor. Similarly, Osen et al. [8] presented
the use of a USV as a maneuverable sensor to address the
problem of aquafarming, allowing for the automation of farm
inspections.

B. USV OIL SPILL CLEANING
Emerging technologies in autonomous systems, specifically
in the field of USVs, provide platforms that can significantly
facilitate the process of oil spill cleaning. Studies addressing
the oil spill challenge present USV platforms designed for
various tasks, such as detection and sampling [9], boom
deployment around anchoring ships [10], or boom maneu-
vering with two USVs for oil spill recovery [11]. Special
cleaning approaches based on CPP have been utilized in
studies focusing on large spills [12]. Furthermore, researchers
have addressed the challenge posed by the movement and
extension of oil spills over time. To tackle such dynamic sce-
narios [13], they propose dynamic path-planning techniques
capable of adapting accordingly.

Despite substantial advancements in addressing key issues,
a gap remained in a solution that utilizes USV for contin-
uously managing scattered oil spills in congested maritime
environments near ports.

C. MULTI-DESTINATION PATH PLANNING
Multi-destination path planning is a complex combinatorial
problem that requires determining the sequence in which
multiple targets or destinations should be reached. This
involves devising an efficient and often optimal route that
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guides the agent to each goal, ensuring every target is visited
while minimizing cost measures.

A frequently encountered formulation of this problem is
the Traveling Salesman Problem (TSP). This problem is cen-
tered around determining the most efficient, or shortest, route
that an agent can take to visit a collection of destinations.
Given that this challenge falls into the category of NP-Hard
problems, it’s often tackled using stochastic optimization
strategies, such as simulated annealing [14], genetic algo-
rithms [15], or the ant colony optimization [16].
Even though these strategies may not consistently yield

the global optimum solution, precise methods such as the
Held-Karp algorithm, rooted in dynamic programming, are
available. However, the complexity of this method isO(2nn2),
which makes it intractable in many practical problems.
To speed up the computation process, other methods that
yield high-quality solutions have been devised, such as the
heuristic 2-opt approach [17], and the approximation method
known as the 1.5-approximation algorithm [18]. While the
TSP has been thoroughly examined, there remains a sig-
nificant challenge in dealing with multi-destination path
planning in contexts featuring obstacles. In these scenar-
ios, many of the destinations are obstructed by obstacles,
which cause the line-of-sight path to become unfeasible.
Consequently, determining the minimal distance between
each pair of these destinations relies on methods such as
Dijkstra’s algorithm, A∗, or Rapidly exploring Random Trees
(RRT) [19]. However, due to their complexity, using these
methods for each destination pair soon becomes computa-
tionally impracticable.

D. COVERAGE PATH PLANNING
The objective of a CPP algorithm is to design a path for
an agent that covers an entire target area. Typically, CPP
methods are designated for monitoring static environments
with obstacles. The problem bears similarities to the TSP,
in which the agent is required to visit every cell in the
task area, a solution to which is NP-Hard [20]. Given
the complexity of this challenge, studies have suggested
employing multiresolution partitioning to divide the task area
into distinct segments [13], or alternatively, structuring the
site into convex parts [21]. In line with these approaches,
Sheny et al. [22] presented a method based on a convolutional
neural network approach to solve this problem and overcome
the computational hurdle. Furthermore, Incorporating RL
with classic methods can address CPP problems by breaking
the task area into smaller segments and training RL agents to
handle these smaller task regions [23].

This approach enables near-optimal solutions while sub-
stantially reducing computational time. Operations to clean
oil spills necessitate a coverage path that encompasses the
entirety of the oil slick area, enabling a USV to per-
form in-situ operations. Leveraging Image Processing and
Self-OrganizingMapmethodologies, a USV tasked with spill
removal can effectively detect and thoroughly cover the entire

oil spill zone [12]. While CPP solutions have effectively
tackled the issue of static coverage, there remains a necessity
for real-time adaptive strategies to manage oil spill coverage,
as the oil travels in the ocean medium.

E. REINFORCEMENT LEARNING
The swift progress in RL techniques in recent decades has
unlocked new possibilities for tackling complex problems.
Among these techniques, Deep learning-based RL architec-
tures like deep Q-Network [24], deep deterministic policy
gradient [25], PPO [26], and Soft Actor-Critic [27] have
demonstrated exceptional capabilities in handling complex
stochastic tasks. These methods have proven to be effective
in areas such as cooperative path planning [28], navigat-
ing constrained environments [29], and patrolling water
resources [30]. However, challenges arise in training tasks
that require prolonged processes due to the inherent behavior
of RL agents that rely on a specific, dense, and short-term
reward system [31], [32]. This situation prompts the adoption
of hybrid and hierarchical techniques that merge classical
methods’ stability and resilience with RL’s efficiency and
generality [33].
This way, the multi-tasking problem can be addressed by a

hierarchical structure of classic planning for long-range tasks
while the RL agent handles the sub-tasks [34].

This paper presents a solution for navigating congested
marine environments during oil spill clean-up operations. The
method tackles the ATSP by pinpointing oil spill locations
and deploying an RL agent for their cleanup. A layered
framework is used, supplemented with an RL agent specif-
ically trained to map out the CPP route for the dynamically
changing area.

According to this literature review, the research advance-
ments of this proposed method are:

1. An adaptive CPP method that enables the addressing of
dynamically changing areas.

2. The efficient path planning method for the multi-
destination problem.

3. A hybrid method integrating classic and RL techniques
to overcome the challenges posed by the sparse reward struc-
ture of the global problem.

III. METHODOLOGY
The main aim of this hierarchical system is to address
the navigation of a USV for the purpose of cleaning up
oil spill pollution in complex and congested environments.
This system uses remote sensing data and the local sensing
capabilities of the USV itself to operate in real-time and
dynamically adjust the planned path as needed.

A. FRAMEWORK
In the study outlined in this paper, we have constructed a
simulation framework replicating a congested marine port
scenario Fig. 1. The framework is built around four funda-
mental components: (1) the shoreline and breakwater, which
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FIGURE 1. A simulation framework that replicates the Haifa port coastline
and presents an initial stage scenario of a crowded port.

serve as obstacles, (2) ship routes, which function as a
roadmap, (3) artificial ships that maneuver within the port
region, and (4) unpredictably occurring spills originating
from these vessels. We utilized Google Maps to accurately
capture the shoreline and breakwater shape of various ports,
presented in Fig. 1 as the brown area. Subsequently, employ-
ing the RRT algorithm, we established a comprehensive
roadmap spanning the marine area to simulate vessel routes
near the ports, shown as a blue graph in Fig. 1.
Following that, we devised arbitrary trajectories for each

vessel and implemented a kinematic model [28], represented
by the coordinates (X ,Y ,θ ), in which only axial velocity was
assumed, in accordance with the following model:

X i+1 = X i +1t · uiv · cos (θ)

Y i+1 = Y i +1t · uiv · sin (θ)

θ i+1 = θ i + uiδ ·1t (1)

In this model, X and Y stand for Cartesian coordinates,
θ indicates the direction, (uiv, u

i
δ) are the specific actions

taken, and1t represents the time step. This is used to simulate
the movement of each vessel during the scenario. Each of
these vessels is presented as a red dot on the roadmap in Fig. 1.
During each iteration, the probability of a vessel spilling

oil is determined by the equation:

P
(
x i+1

)
= P

(
x i
)
+ ϵprob (2)

where P(x i) represents the probability of a vessel spilling oil
in the current iteration, P(x i+1) represents the probability in
the following iteration, and ϵprob represents the change of

likelihood resulting from the elapse of time. The oil spill is
produced as a collection of Gaussian pollutants combined,
each forming a distinct shape and adhering to a particular
equation:

S i =
∑
n

1
2πσxσy

e
−

(
(x−µx )2

2σ2x
+

(y−µy)
2

2σ2y

)
. (3)

S i represents the cumulative pollution, constituted of nGaus-
sian pollutants. Here, σx and σy denote the dispersal of the
function, while µx and µy signify the location of the spill
peak, which is in the vicinity of the vessel region.

Lastly, the USV, shown as the black cube in Fig. 1, employs
the same kinematic model as outlined in (1). The cleaning
capacity area of the USV is denoted by Cl , and the USV
tackles the spills by covering the polluted regions affected by
these spills.

B. METHOD OVERVIEW
This methodology employs a hierarchical structure incorpo-
rating both global and local planningmechanisms to devise an
oil cleanup strategy within a port-like region. The initial stage
of global planning relies on the utilization of remote sensing
imagery, deploying a visibility graph to link each oil spill
with adjacent, visible spillages through a secure pathway.
Consequently, these oil spills are grouped into interconnected
subsets that have safe paths between them. These subsets
are then connected by identifying a pair of nodes that offer
the shortest route. Each interconnected subset is ultimately
addressed by formulating the scenario as an ATSP. Upon
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detecting each new oil spill, an RL-based local planner is
deployed. This planner uses local vision data to efficiently
guide the USV toward cleaning the spill.

C. GLOBAL VISIBLE ATSP
The process of global path planning utilizes remote sensing
data to create the path for the USV. Assuming we can detect
oil spills S i close to the port through remote imagery, the USV
needs to navigate the port effectively and attend to each spill
event. This involves determining safe navigation paths among
these oil spills. For this objective, we formulate the oil spills
visibility graph V. This graph connects spills that are within
line of sight. The method for constructing this visibility graph
is described in Algorithm 1.

Algorithm 1 Visibility Graph

Inputs: VE
← Initialize an empty edge set.

VV
← Collection of oil spill nodes.

O← Obstacles.
Output: V← Visibility graph.
for each

{
Vi
| 0→ n

}
in VV do:

for each
{
Vj
| i+ 1→ n

}
in VV do:

if in LineOf Sight
(
O, Vi, Vj

)
then:

Add edge VE
←
(
Vi, Vj

)
return V

The visibility graph provides all the direct safe routes
that can be traveled without encountering obstacles. Now,
we identify all the connected spill groups. These groups are
defined as groups in that an obstacle-free path can connect
any pair of spills. These groups are also called the intercon-
nected subsets in the visibility graph.

As such, the challenge in this stage is to identify set C,
which contains all interconnected subsets derived from the
visibility graph. To solve this challenge and detect these
interconnected subsets, we execute the FindInterconnected-
Subsets, as outlined in Algorithm 2. The process involves
generating an empty subset called Ci, and then randomly
choosing a spill from the set, which comprises all the spills.

Algorithm 2 FindInterconnectedSubsets
Inputs: V← visibility graph.
Output: C← Collection of interconnected

Subsets.
C← {}

Vvis
← ∅

for each
{
Vi
| 0→ n

}
in V do

if Vi /∈ Vvis then
S← FloodFill

(
Vi, Vvis,V)

Add S to C

Return C

Next, we implement the FloodFill (Algorithm 3) until
the interconnected subset is found. This iterative process
is repeated for all the spills associated with interconnected

Algorithm 3 FloodFill
Inputs: V← visibility graph.

Vs
← Start node.

Vvis
← Visited nodes.

Output: S← Interconnected Subset.
Add Vs to Vvis

S← {Vs}

for each
{
Vi
| 0→ n

}
in V [Vs] do

if Vi /∈ Vvis then
S← S∪ FloodFill

(
Vi, Vvis, V

)
Return S

subsets. The result of this grouping procedure, which involves
finding the interconnected subsets is depicted in Fig. 2.

FIGURE 2. Illustrating the interconnected clusters derived from the
visibility graph.

Subsequently, a connection between the generated subsets
needs to be established, which requires identifying the two
nearest accessible nodes within each interconnected subset.

The algorithm is designed to generate the shortest path
that links two separate subsets. To achieve this, the algorithm
must first identify the closest spills within the departing and
arriving groups and connect them via the most minimal path.

Algorithm 4 MinimalPathFinding, commences the pro-
cess by arbitrarily selecting oil spills from separate subsets.

Algorithm 4MinimalPathFinding

Inputs: SD← Depurture set.
Sa← Arrival set.
O← Obstacles.

Output: P← path
Vd
← random node from SD

Va
← random node from Sa

TP← Dijkstra
(
Vd, Va

)
Vd
v ← FindVisibleNode

(
TP, SD, O

)
Va
v← FindVisibleNode (Reverse(TP), Sa, O)

Cut TP from Vd
v to Va

v
Vd
m← argmind∈SD

∥∥ d− TP0
∥∥

Vd
m← argmina∈SA ∥ a− TPn∥

P← {Vd
m, TP, Va

m}

Return P
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Subsequently, these selected spills are connected by the short-
est path, which is generated by the Dijkstra algorithm. This
path is then utilized to search for the minimal connecting path
between the subsets by finding the final visible nodes in each
subset, as outlined in FindVisibleNode Algorithm 5.

Algorithm 5 FindVisibleNode
Inputs: TP← Path

S← Set
O← Obstacles.

Output: V← Visible Node.
for each

{
Ti | 0→ n

}
in TP do:

if ∀Vi
∈ S, ! LineOfSight

(
O, TPi, Vi

)
then

return Vi−1

The algorithm starts an iterative process in which it pro-
gresses along the path, searching for the last node that is
visible in the departing subset and the first node in the arrival
subset. These nodes are then used as initial and final locations
in the connecting path between the subsets.

The next step involves generating the shortest path among
the visited oil spills in each subset. As mentioned earlier,
a graph was created that contains subsets and connecting
paths between these sets, thereby ensuring the existence of
an obstacle-free route between any two spills on the map.

Formulating the ATSP with designated starting and ending
points allows the problem to be considered a point-to-
point ATSP problem, thereby facilitating the solution. The
approach to solving this problem, when provided with a
predefined start-end couple, necessitates an auxiliary node.

The auxiliary node virtually links the initial and final nodes
through a directed zero-cost edge, effectively converting our
problem into a classic ATSP problem.

Consequently, a pathway from start to end is established
without incurring additional costs. In order to solve our
problem with minimal cost, it is necessary to transform our
point-to-point ATSP into a classic ATSP problem formula-
tion. This transformation is described in (4).

min
∑
i∈S

∑
j∈S,i<j

cijxij

s.t xij ∈ {0, 1}, i, j = 0, 1, . . . , n

ui ∈ Z, i = 2, . . . , n∑
i=1,i̸=j

xij = 1, j = 1, . . . , n

∑
j=1,i̸=j

xij = 1, i = 1, . . . , n

ui − uj + (n+ 1)xij ≤ n, ∀i ̸= j, i ̸= 1, j ̸= 1

1 ≤ ui ≤ n, ∀i ̸= 1

xn+1,1 = 1

xn,n+1 = 1 (4)

In this equation, the relative distance between the nodes
is denoted by cij, and the path is represented by a binary

variable xij, which is equal to one if a specific path is taken and
zero otherwise. To prevent subtours and ensure that each node
is visited only once, the Miller-Tucker-Zemlin formulation is
utilized. This formulation introduces the variable ui, signi-
fying the sequence of oil spill visits. Additionally, a dummy
auxiliary node is defined as n + 1 to ensure that node n is
visited last. Accordingly, this connection is forced by setting
the constraints xn,n+1 = 1, and xn+1,1 = 1, which are used
to transform the point-to-point ATSP problem into a standard
ATSP without incurring extra costs.

The last challenge in this process is to generate a global
obstacle-free path that guides the USV through all the oil
spills. However, for the ATSP solution to be viable, a fully
connected, obstacle-free graph is required. Algorithm 2 guar-
antees only the existence of one route between any oil spills
within the same subset, posing an additional constraint. This
constraint, when combined with the requirements for a single
visit to each spill and limited accessibility to certain spills,
may lead to violations of obstacle limitations.

Therefore, in the final stage, we designed an iterative
process that incrementally constructs an obstacle-free path
among all the oil spills on the map and gradually generates
the path to overcome this challenge.

The generation of the global path commences with
Algorithm 1, which is tasked with constructing a visibility
graph of the oil spills. This graph subsequently serves as the
basis for identifying the available connected subsets among
the oil spills. Upon completing this identification, the method
calculates the sequence in which the USV visits these sub-
sets, factoring in the relative distances of their centroids,
and reorganizes the collection of subsets accordingly. This

Algorithm 6 GlobalPathSolver
Inputs: V← visibility graph.

O← Obstacles.
Output: P - path
set Vi to V
While Vi

̸= ∅

C← FindInterconnectedSubsets
(
Vi
)

Cent ← IdentifyCentroids (C)
dis← ComputeCentroidsDistances ( Cent )
C← ReorderSubsets (C, dis )
for each i in C do:
Pi,,ont ←MinimalPathFinding

(
Ci, Cl+1, O

)
Pi,int ← SolveATSP

(
Ci, P0, PN

)
Pc← ConcatenatePaths

(
Pi,int , Pi,con

)
for each

{
Pj, Pj+1

}
in P do

if Pj |H Vj
∩!LineOfSight

(
O, Pj, Pj+1

)
then

Vi
← RemoveVertex

(
Vi, Vj

)
else
index← j
Break

Pcconnected ← ConstructPath (Pc, 0 , index)
return Pcconnected
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FIGURE 3. Presents a visualization of the global path planning solution.
a) demonstrates a section of the Rotterdam port with narrow passages.
b) illustration of a multi-docking port area.

reordered collection serves as the input for Algorithm 4. The
algorithm identifies both the connecting path between the
subsets, denoted as Pi,con, and the interior path within each
subset, denoted as Pi,int . The interior subset is obtained by
solving the ATSP problem as specified in (4). The entire
process generates a candidate solution, denoted as Pc, which
undergoes an evaluation for connectivity. Only the connected
sub-path of the candidate Pcconnected ⊂ Pc, is retained, and
the method iteratively continues for the remaining unvisited
oil spills. The process reaches completion when all oil pol-
lutions have been addressed, as detailed in GlobalPathSolver
Algorithm 6. Fig. 3 Presents the comprehensive solution for
the global planning of USV oil cleaning.

D. RL-CPP
The RL-CPP is an approach founded on RL techniques
explicitly intended to manage the dynamic characteristics of
oil spills that demonstrate temporal growth. This method-
ology is outlined in the scheme represented in Fig. 4 and
is designed to tackle the complexities of managing oil spill
incidents in a dynamic and localized context.

The task commences with an initial state si, and the agent’s
mission is to effectively contain oil spills within a designated
local area, denoted as Mnxn. The state space of the task,
denoted by S, is defined within a discrete X X Y coordi-
nate system, wherein the obstacle-free area is represented

as X X Y ∈ Mfree. The local area M, which is identified
by cells where the oil density exceeds a specific threshold,
is represented by ϵ, and expressed as

Mi
p =

{
1 Pi ≥ ϵ

0 else
(5)

The reward shaping presents a significant challenge during
the development of the RL method, as it necessitates formu-
lating a reward function that encompasses all aspects of the
cleaning scenario. We divided the reward function into three
distinct components to address this challenge.

The first reward functionR1, the net impact of the cleaning
action performed by the agent and formulated as:

Ri
1 =

∑
i

Mi
p −

∑
i

M′ip (6)

Here, Mi
p refers to the number of cells where the oil density

exceeds the threshold ϵ before the execution of the agent’s
action a. Subsequently, M′

i
p represents the remaining oil

density in the area following the agent’s action. The second
reward function aims to emphasize the reduction of unneces-
sary movement and avoidance of repeated positioning.

Ri
2 =

{
−0.1 free location
−0.5 occupied location

(7)
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FIGURE 4. The system overview begins with creating a global framework for the training process of the RL agent. This framework extracts
local scenarios, which are compiled into a dataset. This dataset is then utilized to train the agent’s local CPP.

The third reward component is a penalty for colliding with
obstacles.

Ri
3 =

{
0 obstacle free
−50 obstacle

(8)

These components together assemble the reward function
as

R = Ri
1 + Ri

2 + Ri
3 (9)

The agent’s course of action is governed by the policy π ,
which dictates the agent’s response based on the state it
receives. Within the framework of the Markov decision pro-
cess, the objective is to derive a policy π that maps states to
actions π : S → A while maximizing the agent’s reward for
mitigating oil pollution. Specifically, given an initial state s,
the aim is to find policy π∗ that satisfies the following condi-
tion

∑
i M
′i
p = 0.

E. TRAIN RL AGENT
The training scenarios for the RL agent are derived from the
global framework, as illustrated in Fig. 4. Initially, local data
from multiple oil pollution events were collected to establish
a dataset, denoted as Ê. The data collection process included
the detection of oil spills, as well as the capture and storage of
data for each local event. This data contained specific details
such as the locations of obstacle-free areas, represented as
Mfree, and the pollution data, denoted byMp. Once collected,
this data was integrated into the RL framework to provide
training data for the agent.

The training process commences with the RL framework
randomly selecting a pair of obstacle and pollution maps
from the dataset Mfree, M

init
P ∼ Ê. A random initial state,

sinit , is set for the agent. Based on this initial state, the first
set of observations is recorded. These observations include

limited-range visual data of obstacles Mi
free,local , and oil

slicks Mi
p,local , in the vicinity of the USV.

The policy subsequently dictates the agent’s movements
at each time step. This continuous interaction between the
agent’s observed environment and its subsequent actions
evolved throughout the RL training process, enabling the
agent to learn how to navigate and clean oil spills effectively.

Fig. 5 presents the training area involving oil spills, where
the agent is confined to a restricted area, and operates to clean
the spills. The agent’s cleaning capability is localized around
its position, denoted by C i

p,local , and it operates without prior
knowledge about the local pollution shape.

F. PROXIMAL POLICY OPTIMIZATION
The PPO [26] algorithm achieves stability by balancing the
trade-off between exploration and exploitation. This ensures
the reliability of the acquired policy. Such stability is attained
by an objective function that restricts substantial changes
in the policy during each update, thereby providing both
stability and robustness to the method.

The process initiates with the agent gathering data from
the environment based on the existing policy, as illustrated
in Fig. 4. These experiences are stored in a buffer and
subsequently utilized to compute the gradients essential for
updating the policy parameters. The gradient estimator is
given as follows:

ĝ = Êt

[
∇θ logπθ (at | st) Ât

]
(10)

Consequently, policy gradient estimator, is expressed as

LPG(θ ) = Êt

[
logπθ (at | st) Ât

]
(11)

Although straightforward Optimization on LPG (θ) might
fail, the PPO approach ensures training stability using a
unique objective function.
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FIGURE 5. The RL agent is represented in green and located in a
restricted area, surrounded by obstacles shown in brown. Guided by a
policy, the agent works to clean up the local pollution, which is marked in
black, following a path indicated in blue. Sub-figures a and b
demonstrate the agent cleaning process in multi-destination and obstacle
surrounded scenarios.

Themethod relies on a crucial component termed the prob-
ability ratio r(θ ). The ratio measures the extent of deviation
between the new policy’s probability of taking specific action
and the old policy’s probability of taking the same action.

rt (θ ) =
πθ (at | st)

πold
θ (at | st)

(12)

The ratio serves as a component of PPO’s policy objective
function, known as a clipped surrogate objective. This func-
tion is specifically designed to ensure that the new policy does
not substantially diverge from its previous policy. The clipped
surrogate objective is defined as

JCLIP(θ ) = E
[
min

(
rt (θ )Ât

min
(
clip (rt , 1− ϵ, 1+ ϵ) Ât

))
(13)

In this equation, Ât is the Generalized Advantage Estima-
tion (GAE), which can be determined using the following
equation:

Akt =
k−1∑
l=0

(γ λ )lδVt+l (14)

Here, δVt+l represents the temporal difference residual, which
calculated according to the equation:

δt = rt + γV (st+1)− V (st) (15)

FIGURE 6. Displays the performance metrics of the RL agent throughout
its training phase within a randomly configured local environment.

In addition to policy optimization, PPO uses a value function
V (s) to estimate the expected future return at each step. This
function is referred to as value function loss and is computed
as the mean squared error between the predicted value and
the actual return.

LVF (φ) = E
[
(V (s;φ)− R)2

]
(16)

The algorithm initiated by gathering transitions into a set of
buffers denoted as D. At each timestep, the policy dictates
an action at , that the agent subsequently executes on its
environment. This action produces a transition data consisting
of the action at , the present state st , the subsequent state
st+1, and the associated reward rt reward. Following this,
computations are performed to determine the cumulative
reward Rj, the temporal difference residual δ, and the GAE
Âj. Utilizing these computed values, the algorithm calculates
the probability ratio r (θ), and the PPO objective PPOobj
calculated. Once all transitions in a trajectory are processed,
a batch is randomly selected, and the policy parameters θ are
subsequently updated based on this selected batch.

IV. EXPERIMENTS
To address the simulative experiments of this study, we exam-
ined separately and combined the global and local path
planning.

A. LOCAL RL-CPP EXPERIMENTS
This section introduces an analysis focused on the implemen-
tation of the RL method in a local pollution cleaning context.
The primary objective of the RL agent is to maneuver through
various obstacles to cleansemultiple instances of oil pollution
across differing local scenarios. The agent initiates the task
in position, denoted as si, is randomly selected within Mfree.
The agent’s visual capabilities, represented by Mi

free,local and
Mi

p,local are defined as a 10x10mask. Additionally, the clean-
ing capacity of the agent C i

p,local is 3x3 mask.
The scenario was evaluated utilizing the PPO algorithm,

configured with two hidden layers, each containing 512 units.
The cleaning mask of the RL agent was specifically designed
to remove all adjacent spills surrounding the agent’s location.
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FIGURE 7. A composite representation of three distinct scenarios of RL policy navigating local cleaning scenarios. The figure
consists of six individual images illustrating the spatial progressions of the RL agent in cleaning the localized pollution areas at
different stages. Accompanied by a graph, the figure also details the corresponding reward metrics over the course of the training.

In addition, the pollution threshold value, denoted by ϵprob

was set at 0.1.
In the training process of the RL agent, we employ a

specific set of hyperparameters to optimize performance.
We set the clipping range ϵ = 0.2 to moderate the policy
update and ensure stability. The learning rate is configured to

α = 3 · 10−4 to regulate the rate of policy optimization, and
entropy regularization is incorporated with β = 3 · 10−4 to
balance exploration and exploitation trade-offs. Furthermore,
we use a discount factor γ = 0.99 to adequately weigh future
rewards, and the trace decay is set to λ = 0.95 to manage the
bias-variance trade off in the advantage estimation.
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FIGURE 8. During the experimental phase, the oil pollution levels were
presented on a logarithmic scale.

During the training process for our reinforcement learn-
ing model, a total of 107 time steps were executed across
32 parallel environments, a batch size of 64, and 400 distinct
local environments. This comprehensive training process
necessitated 8 hours of computational time on a single
NVIDIA GeForce RTX 4080 GPU.

The evaluation metrics included both the mean value
and the standard deviation of the agent’s reward, computed
based on 1000 epochs. The results of this experiment are
depicted in Fig. 6. These results present a general improve-
ment in the performance of the RL during the training
process.

Fig. 7a demonstrates a local spill located within a narrow
passage. The depiction of the cleaning process, which spans
from sinit → s75 is performed by theUSV. TheUSV performs
a spiral motion with overlapping movement, as presented
in s45. In the presented scenario, a significant increase in
rewards is observed throughout the training process, with
rewards transitioning from 20 to 120.

Fig. 7b, a local scenario is presented, featuring multiple
discrete spill locations. As illustrated, the agent initiates the
process with an initial cleaning of the spills, subsequently
returning for a secondary cleaning to remove the residuals.
This event is characterized by a sparse reward structure,
owing to the presence of several minor, distinct spills within
the scenario. The reward pattern throughout the training

FIGURE 9. Sequential snapshots of the global path planning of the USV at six distinct time intervals. These images depict the evolution of the USV
global navigation.
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exhibits fluctuations, starting with an approximate average
value of 20 and reaching 60 by the end of the training process.

Fig. 7c, a local spill scenario is depicted, featuring oil slicks
positioned to both the left and the right of the local scenario.
The agent commences its action within the visible sequence
from sinit → s80, and subsequently starts to explore until
it reaches s120. From s120 → s200, the USV proceeds to
clean the second location. Throughout the training process,
rewards distinctly increase, with the average value rising
from 60 to 120.

B. PLANNING EXPERIMENTS
The experiments involved a USV employing global planning
combined with the RL policy designed for local oil pollution
scenarios. Within this context, the maximal linear velocities
for the USV and the vessels were set to uiv = 10, and
uiv = 1 respectively. Both the USV and the vessels had
maximal angular velocities set at uiδ = 1. Additionally, the
spillage rate for the vessels was determined in accordance
with (2), where the increase factor for spillage probability was
defined as ϵ = 10−5.

In Fig 8, the levels of oil pollution are represented on
a logarithmic scale, showing an initial rise while the USV
remains in an idle state during the time interval t0 → t200.
Following this phase, the USV initiates its cleaning process,
resulting in a significant decline in the rate of increase of the
pollution level. This reduction in the rise rate is prominent
and is aligned with the USV’s cleaning process.

Furthermore, Fig. 9 depicts the global planning process,
specifically illustrating the evaluation of oil spills from ves-
sels and the corresponding cleaning process executed by the
USV during the experiment. The global path planning begins
at t200 and is updated every 200 time steps or when the global
path is completed. This update executes the global path plan-
ning process to create a new global route. The experiment was
conducted in a simulated area of the Haifa port environment,
with 50 simulated vessels randomly navigating within the
port area.

During each pollution incident, the USV initiates the local
planner to address the situation, and then continues the global
route once the local cleaning process is completed.

In the given context, one global time step is equivalent to
ten state transitions, expressed as t0 → t1 = s0 → s10.
Fig. 10 illustrates various situations related to spill cleaning,
showcasing fragments that include both single and multi-
ple instances. These instances exhibit differing dispersion
attributes, whether the spills are spread out or centralized.
The cleaning operation is constrained to a total of 50 state
transitions during the experiment.

V. CONCLUSION AND FUTURE WORK
in this work, several key findings emerge that underscore
the efficacy of the applied methodologies. As presented
in Sec. IV, the hierarchical method employed herein com-
bines global planning for long-term missions with a RL
policy for short-term cleaning tasks. This approach effec-

FIGURE 10. Demonstrate four distinct cleaning scenarios along the
Experiment, where the left-side image presents the initial state, and the
right-side shows the final stage of the cleaning process.

tively addresses challenges identified in the literature review,
specifically those associated with cleaning dynamically
changing multi-destination oil spills.

These challenges lead to development complexities such
as efficiently clustering the oil spills into groups, identifying
the departing and arriving oil spills in each group, and solving
the ATSP problem with specific arrival and departure nodes
in the absence of fully connected graph. Furthermore, incor-
porating an RL method with a classic approach requires
delicate tuning of parameters to ensure seamless integration.

Fig. 6 demonstrates the RL agent’s learning process, com-
bined with Fig. 7, underscores the RL policy’s capacity to
yield efficient cleaning paths in an area cluttered with obsta-
cles and multiple oil spills.
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Furthermore, Fig. 8 illustrates the impact of the USV on
reducing pollution levels within the port area, substantiating
the effectiveness of the USV cleaning process. The data
depicts a reduction in pollution levels, led by the USV’s
cleaning process.

As this is ongoing research, future work will focus on opti-
mizing the single USV scenario and developing newmethods
for multi-agent scenarios.

This will include delivering improved versions of this
method with adaptive state transition numbers during local
cleaning and optimizing the periods for updating global path
planning. An adaptive switching policy between global path
planning and the RL will also be developed, aiming to gener-
ate optimal solutions that take into account RL policy’s path.

Extending this method to multi-agent solutions will not
only have a more significant impact on reducing pollution
levels but will also open substantial research options. This
extension encompasses various aspects: the allocation of
responsibilities for pollution cleaning among team members
and the establishment of policies for information exchange,
such as a policy that could be based on event-triggered tar-
get allocation. Another significant challenge associated with
this method is the acquisition of remote sensing data under
conditions that impair visibility, such as cloudy weather.
This particular challenge, however, presents opportunities for
advancements in multiple areas: the development of new
methods for efficient port surveillance, the establishment of
protocols for data sharing tailored specifically to oil spill
detection, and the formulation of robust control solutions
employing both centralized and distributed intelligent sys-
tems to meet defined performance criteria. Lastly, research
opportunities in RL include the acceleration of training
through distributed strategies and the development of collab-
orative policies via distributed learning.
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