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ABSTRACT Inverse optimal control (IOC) is a problem of estimating a cost function based on the behaviors
of an expert that behaves optimally with respect to the cost function. Although the Hamilton-Jacobi-Bellman
(HJB) equation for the value function that evaluates the temporal integral of the cost function provides a
necessary condition for the optimality of expert behaviors, the use of the HJB equation alone is insufficient
for solving the IOC problem. In this study, we propose a triangle inequality which is useful for estimating
the better representation of the value function, along with a new IOC method incorporating the triangle
inequality. Through several IOC problems and imitation learning problems of time-dependent control
behaviors, we show that our IOCmethod performs substantially better than an existing IOCmethod. Showing
our IOC method is also applicable to an imitation of expert control of a 2-link manipulator, we demonstrate
applicability of our method to real-world problems.

INDEX TERMS Cost estimation, imitation learning, inverse optimal control, inverse reinforcement learning.

I. INTRODUCTION
The optimal control problem (OCP) is the problem of find-
ing optimal controls which minimize a specified objective
function within a dynamical system, typically in continuous
state, control signal (action), and time spaces [1]. This is
advantageous over reinforcement learning (RL) because RL
primarily focuses on Markov decision processes (MDPs),
which often require certain restrictions, such as discrete
state and action spaces [2]. Inverse optimal control (IOC),
an inverse problem of OCP [3], inherits these characteristics
when compared to its RL counterpart, inverse reinforcement
learning (IRL) [4]. IOC methods estimate a cost function
based on the observation of expert behaviors, assuming that
the expert has performed optimally according to the cost func-
tion. Consequently, IOC presents several limitations when
compared to IRL, particularly in its inability to accommo-
date stochastic controllers and environments. Nonetheless,
IOC also offers numerous advantages, such as its capacity
to handle a time-dependent cost function, a feature that is
usually unavailable in IRL methods rooted in MDPs. This
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capability arises because the expert’s cost function can be
time-dependent in OCP [1], [5]. Therefore, IOC offers dis-
tinct advantages over IRL, as it possesses the potential to
naturally address a time-dependent cost function as well as
continuous variables in state and action spaces.

Interesting applications of inverse approaches such as IOC
and IRL lie in imitation learning [6]. By solving an OCP with
the cost function estimated by IOC, the optimal controlling
behaviors demonstrated by the expert can be imitated. The
setting in which an imitator solves an RL problem with
the reward function estimated by the IRL is called appren-
ticeship learning [7]. In these imitation methods, designing
complex reward/cost functions can be avoided by perform-
ing optimal behaviors based on the estimated reward/cost
function [8]. Imitation learning that incorporates the inverse
approach can be further advantageous over other imitation
learning methods such as behavior cloning [9], [10]. Since
the estimated cost function generalizes the expert objective,
imitation learning with the inverse approach is effective even
when the expert and imitator are in different environments
(i.e., different system dynamics) [8], [11].

However, solving an IOC problem is difficult because
of the ill-posedness of the cost function (i.e., expert
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demonstrations are consistent with multiple cost functions).
The value function, which evaluates the temporal integral
of the cost function, is helpful in estimating the cost func-
tion. The Hamilton-Jacobi-Bellman (HJB) equation for the
value function provides the necessary condition for the opti-
mality of expert behaviors. However, the use of the HJB
equation alone is insufficient for solving IOC well, because
the HJB equation presents the local optimality just around
the expert behaviors. In this study, we propose the use of
a triangle inequality that presents the non-optimality of any
bypath that goes through a via-point on a non-optimal trajec-
tory. Because this inequality provides additional information
about the value function, its use in IOC can improve the
IOC solution by mitigating the ill-posedness possessed by the
inverse problem.

Although the idea of triangle inequality can be applied
to general IOC problems, we show several applications
to time-dependent IOC problems; that is, the underlying
cost function that the expert has used is dependent on
time. Examples of such tasks include path tracking con-
trol of a moving target [12] and autonomous driving [13].
These time-dependent tasks can easily be found in the real
world; therefore, well-established modern control methods,
such as model predictive control, have been applied to
time-dependent tasks [1], [14]. Considering this demand,
we demonstrate the application of our new IOC method to
the imitation learning of time-dependent tasks. To our knowl-
edge, there are no prior studies that explicitly showed the
imitation learning based on the time-dependent cost function
estimated by IOC. The IOCmethods for time-dependent tasks
have not been studied much.

In existing studies on IOC and IRL, the value and cost
functions have been approximated in various forms, such as
neural networks [15], linear combinations of features such as
Gaussian RBFs [16], [17], [18], and polynomials [3], [19].
In this study, we present a constrained linear-programming-
based algorithmwith polynomial approximation assumptions
for the value and cost functions. Because this algorithm does
not rely on a stochastic approximation, the implementation of
the triangle inequality is straightforward.

II. BACKGROUND
A. OPTIMAL CONTROL THEORY
In optimal control theory, the value function v(x), which
represents the minimum total cost when moving from an
arbitrary state x to a state in the terminal state set XT , plays
a central role. An OCP is a problem for obtaining optimal
control sequence u(·) that achieves the value function v(x0)
from a given initial state x0.

v(x) = min
u(·),T (≥t0)

∫ T

t0
l(x(τ ),u(τ ))dτ

s.t. ẋ = f(x,u), x(t0) = x, x(T ) ∈ XT (1)

Integrand l is the cost function that represents a scalar cost
for a pair of state x and control u. The value function v(x)

denotes theminimum cost integrated from the initial time t0 to
the terminal time T under the following three constraints: ẋ =

f(x,u) is the system dynamics, which is assumed to be known
throughout this study, x(t0) = x is the initial condition, and
x(T ) ∈ XT is the terminal condition.
Using the value function, we can obtain the HJB equation,

which is a necessary condition for optimal control u at any
state x.

0 = min
u

{
l(x,u) +

∂v
∂x

T
(x)f(x,u)

}
(2)

Relaxing the HJB equation yields the following inequality:

L(l, v)(x,u) := l(x,u) +
∂v
∂x

T
(x)f(x,u) ≥ 0. (3)

This implies that given a cost function l(x,u) and a value
function v(x), L(l, v) should not be negative for any pair of
state x and control u. The equality in (3) holds only when the
control u is optimal at the state x.

B. INVERSE OPTIMAL CONTROL WITH POLYNOMIAL
OPTIMIZATION
IOC is an inverse problem of OCP, which estimates
the cost function given a trajectory of the optimal con-
trol (x0,u0, t0), . . . , (xn−1,un−1, tn−1). Here, we explain
the linear-programming-based IOC method presented by
Pauwels and colleagues [3], which was used as a baseline
method in this study. Although the authors did not show appli-
cations to time-dependent IOC problems, their method could
estimate a time-dependent cost function. For convenience,
we describe a simplified version of the Pauwels’ method
in which the cost and value functions are assumed to be
independent of time. This baseline IOC method estimates
both the cost and value functions by optimizing the coeffi-
cients of the polynomial function approximators, which are
designed to have all monomial bases up to the degree given
as a hyperparameter. This method assumes that the dynamics
of a system ẋ = f(x,u) is given by a polynomial vector,
and the domains of the state and control space X and U , are
compact basic semi-algebraic sets of the formX = {x|gi(x) ≥

0, i = 1, . . . ,m},U = {u|kj(u) ≥ 0, j = 1, . . . , h} with
gi(i = 1, . . . ,m) and kj(j = 1, . . . , h) being polynomials of x
and u, respectively.

IOC is a problem of estimating the hidden cost func-
tion of an optimally behaving expert given the trajectory of
the expert, (x0,u0, t0), . . . , (xn−1,un−1, tn−1). In the baseline
method, the cost function is recovered by solving the follow-
ing constrained optimization problem:

inf
l,v,ϵ

ϵ + λ∥l∥1 (4a)

s.t. L(l, v)(x,u) ≥ 0, ∀(x,u) ∈ X × U (4b)

1
n

n−1∑
i=0

L(l, v) (xi,ui) ≤ ϵ (4c)

v(x) = 0, ∀x ∈ XT (4d)

A(L(l, v)) = 1 (4e)
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Equation (3) leads to (4b) and (4c), and (4c) is an epsilon
relaxation of the equality condition. Equation (4d) requires
the value function in the terminal state to be zero. In (4e),
A is a linear functional constraint for preventing the HJB
function L from becoming a trivial function, such as the zero
function; in our implementation the coefficient summation
of the polynomial L(l, v) is restricted to unity. Importantly,
there exists flexibility in designing the linear functional A.
This flexibility enables the incorporation of domain-specific
prior knowledge into the estimation process. Equation (4a)
attempts to minimize the slack variable ϵ plus L1-based
regularizer of the coefficients of the cost function l; λ > 0 is
a hyperparameter that controls the strength of the regularizer.
infl,v,ϵ indicates that this optimization problem is minimized
by optimizing the coefficients of the polynomial function
approximators for the cost l and value v functions, and the
slack variable ϵ.

III. INVERSE OPTIMAL CONTROL WITH TRIANGLE
INEQUALITY
Although the Pauwels’ method is simple and widely applica-
ble, its solution would not necessarily be good because of the
shortage of constraints; the HJB equation only imposes con-
straints on the derivative of the value function, and represents
the optimality condition of the expert behaviors only around
the expert trajectory.

To address this constraint shortage problem, we present
a new IOC method based on the triangle inequality, which
is an inequality for the value itself of the value function.
Section III-A introduces the triangle inequality that should
exist behind the expert optimal trajectory. Section III-B
describes the new IOC method which incorporates the trian-
gle inequality.

A. TRIANGLE INEQUALITY
Here, we derive the triangle inequality in a simple time-
independent setting, in which the cost and value functions
taken by the expert are independent of time; however, its
extension to address time-dependent settings is straight-
forward. The triangle inequality and IOC method for
time-dependent settings are described in Appendix A.

Fig. 1 depicts the concept of triangle inequality in an OCP
in two-dimensional state space. We assumed that route A is
the optimal route with the minimal total cost from the initial
state x0 to any terminal state in set XT . Route B → C is the
optimal route when it is constrained to pass through a via-
point x that is not on the optimal route. The triangle inequality
states that the total cost of B → C should be larger than that
of A for any via-point x.

Because the value function is defined as the minimum total
cost to reach any terminal state, the total costs of A and
C are given by v(x0) and v(x), respectively. However, the
minimal total cost of Route B cannot be represented by the
value function. To this end, we introduce an alternative value

FIGURE 1. Conceptual diagram of triangle inequality.

function in the ‘‘time-reversed’’ OCP, which is given by

rv(x) := min
u(·),t(≥t0)

∫ t0

t
−l(x(τ ),u(τ ))dτ

s.t. ẋ = f(x,u), x(t) = x, x(t0) = x0. (5)

The left-hand side of (5), called the reverse value function
in this study, denotes the minimal total negative cost from
the via-point x to the initial state x0 in a backward manner.
By reversing the integral interval, the reverse value function
rv(x) is shown to be equivalent to theminimum total cost from
the initial state x0 to the arbitrary via-point x. Therefore, the
minimal total cost of Route B is given by rv(x).

Accordingly, the triangle inequality is expressed as:

v(x0) = min
u(·),T (≥t0)

∫ T

t0
l(x(τ ),u(τ ))dτ (x(T ) ∈ XT )

≤ min
u(·),T ′(≥t0)

∫ T ′

t0
l(x(τ ),u(τ ))dτ

(x(T ′) ∈ XT , ∃t ∈ [t0,T ′] x(t) = x)

= rv(x) + v(x), (6)

where the constraints x(t0) = x0 and ẋ = f(x,u) are omitted
from parentheses for visibility. When the via-point x is on
optimal Route A, the equality in (6) holds. If Route A is the
sole optimal route in the state space, the inequality in (6)
should hold strictly for any via-point that is not on Route A.
HJB Equation for the Reverse Value Function: Similar to

the value function on the ‘‘time-forward’’ OCP, another HJB
equation in (7) also holds for the reverse value function. The
equality of this HJB equation is satisfied by the expert tra-
jectory (x0,u0, t0), . . . , (xn−1,un−1, tn−1) because the expert
trajectory is optimal in both ‘‘time-forward’’ and ‘‘time-
reversed’’ OCPs. The derivation is described in Appendix B.

RL(l, rv)(x,u) := l(x,u) −
∂rv
∂x

T
(x)f(x,u) ≥ 0 (7)

B. IMPLEMENTATION OF THE TRIANGLE INEQUALITY
In this subsection, we develop our new IOC method with
the triangle inequality in time-independent settings. Our IOC
method (8) is an extension of the baseline IOC method
(4), with the additional constraints from (8b) to (8l), with
the following assumptions: 1) the system dynamics is given
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by a polynomial vector, 2) xn−1 ∈ XT is satisfied by
the expert trajectory (x0,u0, t0), . . . , (xn−1,un−1, tn−1), and
3) the domains of state and control space are given as compact
basic semi-algebraic sets of the form X = {x|gi(x) ≥ 0, i =

1, . . . ,m},U = {u|kj(u) ≥ 0, j = 1, . . . , h} with gi(i =

1, . . . ,m) and kj(j = 1, . . . , h) being polynomials of x and u,
respectively.

inf
l,v,rv,ϵa,ϵb,ϵc

ϵa + ϵb + ϵc + λ∥l∥1 (8a)

s.t. -Constraints from the baseline method-

L(l, v)(x,u) ≥ 0, ∀(x,u) ∈ X × U (8b)

1
n

n−1∑
i=0

L(l, v) (xi,ui) ≤ ϵa (8c)

v(x) = 0, ∀x ∈ XT (8d)

A(L(l, v)) = 1 (8e)

-Constraints from the introduction of rv-

RL(l, rv)(x,u) ≥ 0, ∀(x,u) ∈ X × U (8f)

1
n

n−1∑
i=0

RL(l, rv) (xi,ui) ≤ ϵb (8g)

rv(x0) = 0 (8h)

A(RL(l, rv)) = 1 (8i)

rv(xn−1) = v(x0) (8j)

-Constraints from the triangle inequality-

v(x) + rv(x) ≥ v(x0), ∀x ∈ X (8k)

1
n

n−1∑
i=0

{v(xi) + rv(xi) − v(x0)} ≤ ϵc (8l)

Here, we describe how the additional constraints from (8b)
to (8l) have been derived. Constraints (8k) and (8l) originate
from the triangle inequality (6). Constraint (8k) requires the
triangle inequality to hold for any state x in domain X . Con-
straint (8l) is the epsilon relaxation of the equality constraint,
which should hold for any state x on the expert trajectory.
The constraints on the reverse value function from (8f) to (8i)
correspond to the constraints on the value function from (8b)
to (8e), and have been introduced to identify the reverse value
function using constrained linear programming. Furthermore,
(8j) should be satisfied because rv(xn−1) and v(x0) share the
same optimal trajectory.

1) APPLICATION TO MULTIPLE TRAJECTORIES SETTINGS
Depending on the situation, we can observe multiple expert
trajectories each from a different initial state to a state in the
shared terminal state set XT . Our linear-programming-based
method with triangle inequality can handle these situations
by defining a reverse value function for each expert trajectory.
For k expert trajectories, k reverse value functions {rvj}j=1,..,k
can be defined, each with a different initial state as a terminal
condition. Although the constraints from (8b) to (8e) are
applied to the single value function, we should duplicate the
constraints from (8f) to (8l) to cover multiple reverse value

functions. We present the algorithm and some further details
in Appendix C.

2) IMPLEMENTATION DETAILS
The optimization problem (8) is solved in the samemanner as
solving the baseline problem (4); the latter was solved based
on polynomial optimization and linear matrix inequalities [3].
The inequalities (8f) and (8k) were reduced to linear matrix
inequalities because each of them is an inequality over a
compact basic semi-algebraic set, as is inequality (4b) in the
baseline method. For the optimization, we used the YALMIP
toolbox in MATLAB [20], which is suitable for handling the
polynomial constraints included in (8). We present further
details in Appendix D.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
We compared our IOC method with the baseline IOC method
by using three types of simple OCP tasks. In particular, the
third is in an imitation learning setting when the expert is
taking time-dependent behaviors.

1) HYPERPARAMETERS
The polynomials to approximate l, v, and rv were set to
the same degree, assuming that they were of comparable
complexities. Parameter tuning was performed for the reg-
ularization parameter λ for each IOC method before each
experiment was performed. More details are described in
Appendix E.

2) TASKS
The following threeOCPswere solved by the steepest descent
method [1]. Although the domains of state and control space
in the three OCPs were normalized as [−1, 1] on each coor-
dinate to stabilize the numerical calculation, its enlargement
is straightforward.

3) OCP 1
Time-independent control to the origin of the two-dimensional
state space with the terminal time T being free, starting from
a randomly (uniformly) sampled initial state.

l(x,u) = x21 + x22 + u21 + u22, ẋ = u, XT = {(0, 0)}

X = {x| |xi| ≤ 1, i ∈ {1, 2}},

U = {u| |ui| ≤ 1, i ∈ {1, 2}}

4) OCP 2
Time-dependent control to chase a target that moves from
(−1, −1) to (1, 1) along time [0, 1], starting from a randomly
(uniformly) sampled initial state.

l(x,u, t) = (x1 − 2t + 1)2 + (x2 − 2t + 1)2 + 2(u21 + u22),

ẋ = 5u,XT = {(1, 1)},X = {x| |xi| ≤ 1, i ∈ {1, 2}},

U = {u| − 1 ≤ ui ≤ 1/2, i ∈ {1, 2}}, 0 ≤ t ≤ 1
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5) OCP 3
Time-dependent non-polynomial control with an intersect-
ing trajectory, which requires different controls at the same
state visited at different times. The cost function consists of
the non-polynomial time-dependent term expressing 2 loops,
l ′(x, t), and the input penalty term, u21 + u22.

l(x,u, t) := l ′(x, t) + u21 + u22

l ′(x, t) =



(x1 − 9t + 0.5)2 + x22 (0 ≤ t < 1/9)
(x1 − 0.5)2 + (x2 − 9t + 1)2 (1/9 ≤ t < 2/9)
(x1 + 9t − 2.5)2 + (x2 − 1)2 (2/9 ≤ t < 3/9)
(x1 + 0.5)2 + (x2 + 9t − 4)2 (3/9 ≤ t < 4/9)
(x1 − 9t + 4.5)2 + x22 (4/9 ≤ t < 5/9)
(x1 − 0.5)2 + (x2 + 9t − 5)2 (5/9 ≤ t < 6/9)
(x1 + 9t − 6.5)2 + (x2 + 1)2 (6/9 ≤ t < 7/9)
(x1 + 0.5)2 + (x2 − 9t + 8)2 (7/9 ≤ t < 8/9)
(x1 − 9t + 8.5)2 + x22 (8/9 ≤ t ≤ 1)

ẋ = 20u, x(t0) = (−0.5, 0), XT = {(0.5, 0)},

X = {x| |xi| ≤ 1, i ∈ {1, 2}},

U = {u| |ui| ≤ 1, i ∈ {1, 2}}, 0 ≤ t ≤ 1

B. ACCURACY OF THE ESTIMATED COST FUNCTIONS
First, we examined the accuracy of the cost functions esti-
mated by our IOC and the baseline IOC methods in OCP 1
and OCP 2. The experiments were performed in two different
situations: one in which a single expert trajectory was given,
and the other in whichmultiple expert trajectories were given.
Each experiment was evaluated using various degrees of
polynomials for approximating the cost, value and reverse
value functions. When applying IOC methods to the optimal
(expert) trajectories in OCP 1 and OCP 2, we used time-
independent and time-dependent polynomials, respectively.
The following error function (9) was used to evaluate the
estimated cost functions:

min
α

√√√√∫ T
t0

∫
U

∫
X (l(x,u, t) − αl̂(x,u, t))2dxdudt∫ T
t0

∫
U

∫
X l(x,u, t)2dxdudt

. (9)

This function represents the difference between the correct
cost function l and the estimated cost function l̂ over the
entire domain and was normalized between 0 and 1. Because
there was an indeterminacy in the global magnitude of the
cost function, we prepared a scalar α to compensate for this.
Equation (9) was used to evaluate a time-dependent cost
function, whereas the integral over time was eliminated when
evaluating a time-independent cost function.
Results: Fig. 2 shows the accuracies of the cost function

in terms of the normalized error (9) averaged over ten tri-
als. In each trial, the expert trajectories were started from
different initial states that were randomly sampled from the
state space. Fig. 2a and Fig. 2b show the accuracies with a
single expert trajectory setting when our IOC and baseline
IOC methods were applied to a single trajectory generated

by OCP 1 and OCP 2 experts, respectively. Our IOC method
exhibited smaller errors than the baseline IOC method in
both time-independent and time-dependent settings, partic-
ularly when the degree of the approximation polynomials
was large. The computation time of our IOC method was on
average 1.88 times longer than that of the baseline method
(Appendix D). Fig. 2c and Fig. 2d show the accuracies
with multiple trajectory settings, each applied to three expert
trajectories generated by OCP 1 and OCP 2 experts. Our
IOC method performed better than the baseline method, even
when multiple expert trajectories were given.

C. VALUE FUNCTION VISUALIZATION
To understand the benefits of the triangle inequality, we here
visualize the value functions estimated by the baseline and
our IOC methods. Fig. 3 shows the value functions of OCP 1,
estimated by the baseline IOC method (Fig. 3a and Fig. 3c)
and our IOC method (Fig. 3b and Fig. 3d). We also examined
two settings of the degree of approximation polynomials:
degree of 4 (Fig. 3a and Fig. 3b) and 8 (Fig. 3c and Fig. 3d).
The correct value function of OCP 1 is v(x) = x21 + x22 .
Overall, our method exhibited better approximations for

the value functions than the baseline method. The correct
value function was mirror symmetric along the diagonal lines
in the two-dimensional state space and took its minimum
at the origin. Although the baseline method approximated it
as asymmetric for both degrees ((3a) and (3c)), our method
estimated it more symmetrically ((3b) and (3d)). This can be
understood that the region apart from the expert trajectory
was poorly estimated by the baseline method because of
the shortage of constraints, whereas our method estimated it
well by utilizing the additional information from the triangle
inequality.

Also, the value function estimated by the baseline method
with degree 8 was worse than that with the degree 3. The esti-
mated value function was more asymmetric so that the corner
near the expert trajectory took higher value than the other
corners. This can be seen as an over-adaptation; because
the number of base monomials was relatively large with
the polynomial degree being 8, the shortage of constraints
became more severe for the distant region from the observed
expert trajectory. This result suggests that our IOC method
could prevent over-adaptation particularly when the number
of monomial bases for the approximation is large.

D. IMITATION LEARNING OF TIME-DEPENDENT
CONTROLS
Here, we applied the baseline and our IOC methods to
imitate the expert trajectory for a time-dependent and non-
polynomial control problem in OCP 3. In both mimickers,
that is, the baseline and our IOC mimicker, we first estimated
the cost function based on a single expert trajectory for OCP 3
(Fig. 4), then we solved the OCP for the estimated cost
functions. Note that both IOCmimickers utilized an extended
time-dependent version of the IOC methods, which are
described in Appendix A. Because this is a time-dependent
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FIGURE 2. Normalized errors by the two IOC methods for various degrees of approximation polynomials. The lines and error bars denote the mean and
standard error over ten runs. In Fig. 2a and Fig. 2b, IOC performed with a single expert trajectory. In Fig. 2c and Fig. 2d, IOC performed with 3 expert
trajectories. Each expert trajectory started from an initial state randomly sampled from the state space (hence different from the other initial states).

FIGURE 3. Visualization of the estimated value functions. The green + marks show the expert trajectories used by the IOC methods. The correct
value function is v (x) = x2

1 + x2
2 , which has circular contours.

control problem, the expert trajectory was intersected twice
in the state space near the origin; these intersections cannot
be imitated by most other traditional IOC methods which
estimate a time-independent cost function. In this experiment,
the degree of the approximation polynomials and regulariza-
tion parameter λ were chosen to best mimic the expert data
(with respect to the squared error when reproducing the expert
trajectory) among the following ranges: polynomial degree ∈

{4, 6, 8} and λ ∈ {10−10, 10−8, 10−6, 10−4, 10−2
}.

Fig. 4b and Fig. 4c show the trajectories generated by the
baseline and our IOC mimickers, respectively. Although our
IOC mimickers could reproduce 2 circular motions in the
state space, the baseline mimicker could only imitate 1 cir-
cular motion, demonstrating the usefulness of the proposed
method even in the scenario of imitation learning.

As an additional experiment, we further examined the
control generalization of imitation learning by the two IOC
mimickers. As in the previous experiment, the OCP behaviors
with the estimated cost functions were compared with the
OCP behaviors with the correct cost function, but the initial
states of these OCPs were different from that of the expert
trajectory in Fig. 4. This setup is to examine the generalization
capability of the IOC mimickers. The experiment was per-
formed with the hyperparameters that had been shown to be
optimal in the previous experiment. Fig. 5 shows the imitation
behaviors starting from a different initial state, where our
IOC mimicker successfully produced a similar trajectory to
the optimal trajectory whereas the baseline mimicker failed.
For statistical evaluation, we repeated this imitation ten times
starting from ten different initial states taken uniformly from

the state space. Table 1 lists the mean squared error and
its standard error over these ten trials, for the baseline and
our IOC mimickers. From this table, we can see that our
IOC-based imitation learning could reproduce the expert
OCP’s behaviors much better than the baseline method, even
when initial states were different from the initial state with
which the cost function had been estimated.

E. IMITATION LEARNING IN A COMPLEX DYNAMICS
We have so far assumed linear (or polynomial) dynamics,
which is a requirement for utilizing our IOC algorithm based
on polynomial optimization. To show further applicability to
non-polynomial dynamics, which often arises in real-world
applications, here we examined an imitation learning task of
2-link manipulator control. Since the dynamics is represented
as a complicated differential equation including trigonomet-
ric functions, we applied our IOCmethod to the approximated
dynamics with the Taylor expansion up to the second order.
Unlike previous experiments that used optimal control, the
expert trajectory was manually crafted to perform back-and-
forth control.

In this task, the state space was four-dimensional as x =

[θ1, θ2, θ̇1, θ̇2] and the control space was two-dimensional as
u = (τ1, τ2). Here, θi and τi are the angle and torque of the
ith joint, respectively. Each coordinate of the state and control
space was rescaled to be within the interval [−1, 1] to avoid
possible numerical instability. The upper and lower rows in
Fig. 6 visualize a series of expert and imitation behaviors,
respectively. Our IOC method could well imitate back-and-
forth control demonstrated by the expert, even when the
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FIGURE 4. Imitation control by the baseline IOC method (Fig. 4b) and our IOC method (Fig. 4c), based on a single expert trajectory (Fig. 4) that has
solved OCP 3. The squared error of the baseline IOC method was 2.72 × 100 with the degree of approximation polynomials being 6 and λ = 10−8. The
squared error of our IOC method was 1.74 × 10−1 with the degree of the approximation polynomials being 6 and λ = 10−8. The gradual change in
color from blue (dark) to yellow (light) indicates the progress of time.

FIGURE 5. Imitation control starting at a different initial state (−0.49, 0.44) from that (−0.50, 0.00) of the original expert trajectory. Fig. 5a, Fig. 5b,
and Fig. 5c show the OCP trajectories with the correct cost function, with the cost function estimated by the baseline IOC method (i.e., baseline IOC
mimicker), and with the cost function estimated by our IOC method (i.e., our IOC mimicker), respectively.

FIGURE 6. Imitation learning of control of a 2-link robot. The upper and lower figures display expert and imitation
behaviors, respectively. Each column is a snapshot of the behaviors at a certain time.

TABLE 1. Mean squared errors of imitation trajectories starting from
different initial states.

dynamics was non-polynomial and hence approximated by
the Taylor expansion. Further discussion and details are pro-
vided in Appendix F.

V. CONCLUSION AND FUTURE WORK
In this study, we presented a new IOC method based on
the newly introduced triangle inequality. Although the HJB
equation is a well-established condition for optimality in
control theory, it is insufficient for effectively solving the
inverse problem in IOC. In our experiments, we found
that the triangle inequality was effective in estimating the

better representation of the value function, thus improving
the accuracy of the cost function estimated by the value-
function-based IOC method (Section IV-B). We also found
that the improved IOCmethod was preferable in the imitation
learning scenario (Section IV-D). Our IOC-based mimicker
imitated expert control well, even starting from an initial
state that was different from that of the expert trajectory.
Moreover, our imitation learning method worked even in a
time-dependent OCP setting. As far as we know, IOC’s appli-
cability to imitation learning of time-dependent tasks has not
been studied by other research. We believe that this improved
performance and enlarged applicability in the imitation of
optimal controls would also enlarge the application domains
of the OCP and IOC.

Because our formulation is based on the optimal control
theory, which assumes that the system dynamics are deter-
ministic and known, an extension to the situations where the
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system is stochastic and/or unknown requires some additional
devices. One possible direction in this regard would be to
introduce spatial constraints similar to the triangle inequal-
ity to IRL. In many IRL formulations, we maximize the
likelihood or posterior probability based on the gradient opti-
mizationmethod [21], [22]. Our IOCmethodwith the triangle
inequality could be extended in a similar way by seeking the
zero point of the stochastically identified Bellman equation.
However, the extension of our method to this IRL formulation
has a disadvantage in that it has to dispose of the con-
tinuous action/state space and continuous time assumptions
employed in optimal control theory. Moreover, in principle,
conventional RL formulations based on MDPs cannot handle
time-dependent cost functions. The path-integral-based RL
formulation may become the foundation for extending our
method to stochastic environments without losing continuous
space and time-dependent cost function assumptions [23].
Although our study assumed that the expert trajectory was

optimal, this may not be satisfied in many practical applica-
tions, suggesting a possible limitation of IOCwhen compared
to IRL. However, as shown in Appendix G, our IOC method
demonstrates remarkable resilience in the presence of obser-
vation noise within the expert trajectory. Therefore, our IOC
method can be applied even in stochastic environments,
at least to some extent, without losing the advantages of IOC.

To address the challenge of handling non-optimal tra-
jectories in a principled manner, it is necessary to extend
our triangle inequality to weakened constraints, as proposed
by [24]. Additionally, the deterministic dynamics assump-
tion may not always be available in practical applications.
Nonetheless, in Section IV-E and Appendix G, we demon-
strated that our method outperforms the baseline method even
for complex dynamics with system-identification errors and
noisy systems, respectively. Thus, we believe that our IOC
method is useful not only for deterministic dynamics but also
for non-deterministic ones.

In this study, we relied on the existing software for
constrained linear programming [20], which restricted our
tasks to being relatively low-dimensional. Applications to
high-dimensional tasks can be realized using kernel meth-
ods [25] or nonlinear neural networks [26]. Because these
function approximators are often optimized based on a
(stochastic) gradient descent method to seek a zero-point
of the Monte Carlo-based gradient function, we can utilize
these function approximators by extending our constrained
optimization problem to a gradient-based method.

APPENDIX A
PROPOSED METHOD FOR TIME-DEPENDENT SETTINGS
In this section, we present the triangle inequality and an
associated Inverse Optimal Control (IOC) method in time-
dependent settings. Here, we assume that the expert trajectory
(x0,u0, t0),..,(xn−1,un−1, tn−1(= T )) from the initial state
x0 and time t0 is observed, where T is the fixed terminal
time and xn−1 is in the terminal state set, xn−1 ∈ XT .
We also assume that the dynamics ẋ = f(x,u, t) is given as

a polynomial vector, and the domains of the state and control
space, X and U , are given as compact basic semi-algebraic
sets of the form X = {x|gi(x) ≥ 0, i = 1, . . . ,m},U =

{u|kj(u) ≥ 0, j = 1, . . . , h} with gi(i = 1, . . . ,m) and
kj(j = 1, . . . , h) being polynomials of x and u, respectively.

The objective of a time-dependent optimal control problem
is to find the control sequence u(·) that achieves the value
function v(t0, x0) from the initial state x0 at the initial time
t0. This time-dependent value function is defined using the
time-dependent cost function l(x,u, t) and the fixed terminal
time T . Arguments t, x should satisfy t0 ≤ t ≤ T , x ∈ X .
The dynamics ẋ = f(x,u, t) is allowed to be time-dependent.

v(t, x) = min
u(·)

∫ T

t
l(x(τ ),u(τ ), τ )dτ

s.t. ẋ = f(x,u, t), x(t) = x, x(T ) ∈ XT (10)

The following HJB equation is derived from the value
function (10).

−
∂v
∂t

(x, t) = min
u

{l(x,u, t) +
∂v
∂x

T
(x, t)f(x,u, t)} (11)

This HJB equation (11) is converted into the following
inequality:

L(l, v)(x,u, t)

:= l(x,u, t) +
∂v
∂x

T
(x, t)f(x,u, t) +

∂v
∂t

(x, t) ≥ 0.

Given the expert trajectory (x0,u0, t0), . . . , (xn−1,un−1,

tn−1), the baseline method [3], which can deal with
time-dependent problems in principle, recovers the cost func-
tion using the following minimization problem:

inf
l,v,ϵ

ϵ + λ∥l∥1

s.t. L(l, v)(x,u, t) ≥ 0, ∀(x,u, t) ∈ X × U × [t0,T ]

1
n

n−1∑
i=0

L(l, v) (xi,ui, ti) ≤ ϵ

v(T , x) = 0, ∀x ∈ XT
A(L(l, v)) = 1.

To derive the triangle inequality, the following time-dependent
reverse value function rv is introduced. Arguments t , x must
satisfy t0 ≤ t ≤ T , x ∈ X .

rv(t, x) := min
u(·)

∫ t0

t
−l(x(τ ),u(τ ), τ )dτ

s.t. ẋ = f(x,u, t), x(t) = x, x(t0) = x0 (12)

Using this reverse value function, the triangle inequality
can be derived as follows (constraints x(t0) = x0, ẋ =

f(x,u, t) are omitted from parentheses for simplicity):

v(t0, x0) = min
u(·)

∫ T

t0
l(x(τ ),u(τ ), τ )dτ (13a)

(x(T ) ∈ XT )
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≤ min
u(·)

∫ T

t0
l(x(τ ),u(τ ), τ )dτ (13b)

(x(T ) ∈ XT , x(t) = x)

= rv(t, x) + v(t, x). (13c)

Equation (13a) represents the total cost of the optimal route
from the initial state x0 and time t0. Equation (13b) indicates
that the total cost is greater than or equal to (13a) when there
is an additional constraint to pass through a via-point x at
time t . Dividing the integral into two terms separated at time
t , i.e., rv(t, x) and v(t, x), we have the equation in (13c). The
equality of this triangle inequality (13) is satisfied when pair
(t, x) is on the optimal trajectory.

Moreover, as derived in Appendix B, the HJB equation for
the reverse value function is expressed as an inequality:

RL(l, rv)(x,u, t)

:= l(x,u, t) −
∂rv
∂x

T
(x, t)f(x,u, t) −

∂rv
∂t

(x, t) ≥ 0. (14)

Using the derived inequalities in (13) and (14), the con-
straints from (15f) to (15l) can be derived in the same manner
as for the time-independent case. All these derived constraints
yield the following constrained optimization problem:

inf
l,v,rv,ϵa,ϵb,ϵc

ϵa + ϵb + ϵc + λ∥l∥1 (15a)

s.t. -Constraints from the baseline method-

L(l, v)(x,u, t) ≥ 0, ∀(x,u, t) ∈ X × U × [t0,T ]
(15b)

1
n

n−1∑
i=0

L(l, v) (xi,ui, ti) ≤ ϵa (15c)

v(T , x) = 0, ∀x ∈ XT (15d)

A(L(l, v)) = 1 (15e)

-Constraints from the introduction of rv-

RL(l, rv)(x,u, t)≥0, ∀(x,u, t)∈X×U×[t0,T ]
(15f)

1
n

n−1∑
i=0

RL(l, rv) (xi,ui, ti) ≤ ϵb (15g)

rv(t0, x0) = 0 (15h)

A(RL(l, rv)) = 1 (15i)

rv(T , xn−1) = v(t0, x0) (15j)

-Constraints from the triangle inequality-

v(t, x) + rv(t, x) ≥ v(t0, x0), ∀(t, x) ∈ [t0,T ] × X
(15k)

1
n

n−1∑
i=0

{v(ti, xi) + rv(ti, xi) − v(t0, x0)} ≤ ϵc. (15l)

APPENDIX B
HAMILTON-JACOBI-BELLMAN (HJB) EQUATION FOR THE
REVERSE VALUE FUNCTION
In this section, we derive the HJB equation for the reverse
value function. Considering a small change in time, 1t(> 0),

the reverse value function (12) can be transformed as follows:

rv(t, x) := min
u(·)

∫ t0

t
−l(x(τ ),u(τ ), τ )dτ

= min
u(·)

{

∫ t−1t

t
−l(x(τ ),u(τ ), τ )dτ

+

∫ t0

t−1t
−l(x(τ ),u(τ ), τ )dτ }

= min
u(·)

{

∫ t−1t

t
−l(x(τ ),u(τ ), τ )dτ

+ rv(t − 1t, x(t − 1t))}.

Application of the Taylor expansion yields the following
equation:

= min
u

{l(x,u, t)1t + rv(t, x) −
∂rv
∂t

(t, x)1t

−
∂rv
∂x

T
(t, x)f(x,u, t)1t + o(1t)}.

Dividing by 1t and taking the limit 1t −→ 0 yields the
following HJB equation:

0 = min
u

{l(x,u, t) −
∂rv
∂t

(t, x) −
∂rv
∂x

T
(t, x)f(x,u, t)}.

The corresponding inequality to this HJB equation is obtained
as follows:

RL(l, rv)(x,u, t)

= l(x,u, t) −
∂rv
∂t

(t, x) −
∂rv
∂x

T
(t, x)f(x,u, t) ≥ 0.

In the time-independent cases, this inequality becomes as
simple as:

RL(l, rv)(x,u) = l(x,u) −
∂rv
∂x

T
(x)f(x,u) ≥ 0.

APPENDIX C
PROPOSED METHOD FOR MULTIPLE
TRAJECTORIES SETTINGS
In this section, we describe our IOCmethod inmultiple expert
trajectories settings. There are k expert trajectories each
indexed by j: {(xj0,u

j
0, t

j
0), . . . , (x

j
nj−1,u

j
nj−1, t

j
nj−1)}j=1,...,k ,

where each trajectory has nj tuples of state, control and time
stamp. The last states {xjnj−1}j=1,...,k in the trajectories are
assumed to be in the terminal state set XT .

The triangle inequality is derived for each trajectory. So,
we define k reverse value functions {rvj}j=1,..,k , each having a
different initial state xj0 in the expert trajectories as a terminal
condition. We introduced a modified epsilon relaxation in
(16c) to deal with the k trajectories. Constraints (16f) to (16l)
are defined for each trajectory because each trajectory utilizes
its specific reverse value function.

inf
l,v,ϵa,{rvj,ϵ

j
b,ϵ

j
c}j=1,...,k

ϵa +

k∑
j=1

{ϵ
j
b + ϵjc} + λ∥l∥1 (16a)
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s.t. -Constraints from the baseline method-

L(l, v)(x,u) ≥ 0, ∀(x,u) ∈ X × U (16b)

1∑k
j=1 nj

k∑
j=1

nj−1∑
i=0

L(l, v)
(
xji,u

j
i

)
≤ ϵa (16c)

v(x) = 0, ∀x ∈ XT (16d)

A(L(l, v)) = 1 (16e)

-Constraints from the introduction of

{rvj}j=1,...,k−

RL(l, rvj)(x,u) ≥ 0,

∀(x,u) ∈ X × U (j = 1, . . . , k) (16f)

1
nj

nj−1∑
i=0

RL(l, rvj)
(
xji,u

j
i

)
≤ϵ

j
b (j = 1, . . . , k)

(16g)

rvj(x
j
0) = 0 (j = 1, . . . , k) (16h)

A(RL(l, rvj)) = 1 (j = 1, . . . , k) (16i)

rvj(x
j
nj−1) = v(xj0) (j = 1, . . . , k) (16j)

-Constraints from the triangle inequality-

v(x) + rvj(x) ≥ v(xj0), ∀x ∈ X (j = 1, . . . , k)
(16k)

1
nj

nj−1∑
i=0

{v(xji) + rvj(x
j
i) − v(xj0)} ≤ ϵjc

(j = 1, . . . , k) (16l)

In time-dependent cases, k expert trajectories {(xj0,u
j
0, t

j
0)

, . . . , (xjnj−1,u
j
nj−1, t

j
nj−1(= T ))}j=1,...,k share the common

terminal time T , and each last state {xjnj−1}j=1,...,k is in the

terminal state set XT . Initial time t j0 for each trajectory can
vary with the assumption t j0 ∈ [t0,T ] for some scalar t0.
Using (12), the k time-dependent reverse value functions
{rvj}j=1,..,k are defined as having initial time and state t j0, x

j
0

as the terminal condition. Using the time-dependent con-
straints derived in Appendix A, the following program is
formulated:

inf
l,v,ϵa,{rvj,ϵ

j
b,ϵ

j
c}j=1,..,k

ϵa +

k∑
j=1

{ϵ
j
b + ϵjc} + λ∥l∥1

s.t.-Constraints from the baseline method-

L(l, v)(x,u, t) ≥ 0, ∀(x,u, t) ∈ X × U × [t0,T ]

1∑k
j=1 nj

k∑
j=1

nj−1∑
i=0

L(l, v)
(
xji,u

j
i, t

j
i

)
≤ ϵa

v(T , x) = 0, ∀x ∈ XT
A(L(l, v)) = 1

-Constraints from the introduction of {rvj}j=1,...,k -

RL(l, rvj)(x,u, t) ≥ 0,

∀(x,u, t) ∈ X × U × [t j0,T ](j = 1, .., k)

1
nj

nj−1∑
i=0

RL(l, rvj)
(
xji,u

j
i, t

j
i

)
≤ϵ

j
b (j=1, . . . , k)

rvj(t
j
0, x

j
0) = 0 (j = 1, . . . , k)

A(RL(l, rvj)) = 1 (j = 1, . . . , k)

rvj(T , xjnj−1) = v(t j0, x
j
0) (j = 1, . . . , k)

-Constraints from the triangle inequality-

v(t, x) + rvj(t, x) ≥ v(t j0, x
j
0),

∀(t, x) ∈ [t j0,T ] × X(j = 1, .., k)

1
nj

nj−1∑
i=0

{v(t ji , x
j
i) + rvj(t

j
i , x

j
i) − v(t j0, x

j
0)} ≤ ϵjc

(j = 1, .., k).

APPENDIX D
COMPUTATIONAL RESOURCES
All the experiments were performed using a MacBook
Pro with 16 GB memory and an Apple M1 chip. The
MATLAB version is R2020b. As we described in Section III
of the main text, we followed the original method [3] to
let the inequality hold over the whole domain. In this method,
the inequality constraints are transformed into the class of
SOS (sum of squares) polynomials, which are subsequently
converted into linear matrix inequalities. This transformation
allows us to efficiently solve the optimization problem using
a semi-definite programming solver, enabling an efficient
algorithm execution. Semi-definite programming, employed
in both the baseline and our IOC methods, is one of the
convex optimization problems. Due to the convexity of the
IOC problems, the optimized parameters are guaranteed to be
globally optimal, except for numerical inaccuracies. Because
of this, the current comparison in terms of the optimized cost
function directly reflects the best performance of each IOC
method, indicating their respective effectiveness.

Since our new method employs a similar technique to
implement the triangle inequality and the inequality from
the HJB equation, the number of constraints has increased
further. However, the computational time did not increase
significantly, at most doubling in a single trajectory setting.

We experimentally evaluate the computational resources in
this section. Table 2 lists the mean computational time for
estimating the cost function in OCP 1 and its standard error
over 10 trials. Each row represents the degree of approxima-
tion polynomials. As shown in the degree 8 row in Table 2,
the computational time required for our IOC method was
1.88 times longer than that of the baseline method.

In the multiple expert trajectories setting, the computa-
tional time for the baseline and our IOC methods increases
with the number of trajectories. The computational time for
these IOC methods was compared using OCP 1 with the
approximation polynomial degree being 4 throughout this
experiment. Table 3 lists the mean computational time and
its standard error over 10 trials. Each row represents the
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TABLE 2. Computational time (seconds) in the single expert trajectory
setting with various polynomial degrees.

TABLE 3. Computational time (seconds) in the single expert trajectory
setting with various numbers of expert trajectories.

TABLE 4. List of parameter λ used in each setting.

number of expert trajectories. Although the computational
time for both methods increased almost linearly with the
number of expert trajectories, ourmethod showed a larger rate
of increase in the computational time.

We consider this larger rate of increase in our IOC method
was caused by the additional constraints implemented for
each trajectory. Since the number of constraints for HJB
equations and triangle inequalities increased linearly with
the number of expert trajectories, the computational time
increased almost linearly as well.

APPENDIX E
HYPERPATAMETERS FOR REPRODUCIBILITY
This section describes the parameter-tuning process and
regularization parameter λ used in OCP 1 and OCP 2.
Before each experiment in the main text, both IOC meth-
ods were performed with the following range of λ ∈

{10−10, 10−8, 10−6, 10−4, 10−2
}. The polynomial degree 6,

which is the center in the polynomial interval, was used in this
process. Approximation errors calculated by the error func-
tion (9) were averaged over 5 trials, and the λ producing the
leastmean error was chosen. Table 4 lists the hyperparameters
chosen for each setting. (2a)-(2d) in Table 4 represent the
figures in the main text, which corresponds to the following
settings: OCP 1 with a single expert trajectory, OCP 2 with
a single expert trajectory, OCP 1 with 3 expert trajectories,
OCP 2 with 3 expert trajectories, respectively. Since the
hyperparameters of both IOCmethods aremeticulously tuned

TABLE 5. Parameters of a 2-link manipulator.

in every experimental settings, we can evaluate and compare
the best performance of the IOC methods, ensuring a fair
comparison of the problem formulations between the IOC
methods.

APPENDIX F
EXPERIMENTAL DETAILS OF A 2-LINK
MANIPULATOR IMITATION
A. EXPERIMENTAL DETAILS
This section describes the details of the experiment presented
in Section IV-E. Equation (18) represents the dynamics of a
2-link manipulator [27] used in this study.

[
M11 M12
M21 M22

] [
θ̈1
θ̈2

]
+

[
H1
H2

]
+

[
G1
G2

]
=

[
τ1
τ2

]
M11 = m1l2a1 + m2

(
l21 + l2a2 + 2l1la2 cos θ2

)
+ I1 + I2

M12 = M21 = m2

(
l2a2 + l1la2 cos θ2

)
+ I2

M22 = m2l2a2 + I2
H1 = −m2l1la2 sin θ2θ̇

2
2 − 2m2l1la2 sin θ2θ̇2θ̇1

H2 = m2l1la2 sin θ2
˙θ21

G1 = (m1la1 + m2l1) g cos θ1 + m2la2g cos (θ1 + θ2)

G2 = m2la2g cos (θ1 + θ2) (18)

The state space was four-dimensional as x =

(θ1, θ2, θ̇1, θ̇2), where θ1 and θ2 are angles of the two joints
of the manipulator. The control space was two-dimensional
as u = (τ1, τ2), i.e., the torques applied to the two joints. The
parameters of the manipulator are shown in Table 5.

The non-polynomial dynamics was approximated by
applying the Taylor expansion around [θ1, θ2, θ̇1, θ̇2, τ1, τ2] =

[−π/2, π/2, 0, 0, 0, 0] up to the second order.
Unlike OCP 1 and OCP 2, which used quadratic cost func-

tions, expert trajectory was given by the following equations:

θ1(t) =



if 0 ≤ t < 1/2
96π t5 − 120π t4 + 40π t3 − 3π/4

if 1/2 ≤ t ≤ 1
−96π(t − 0.5)5 + 120π (t − 0.5)4

−40π(t − 0.5)3 − π/4
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TABLE 6. Squared errors of imitation trajectories.

θ2(t) =



if 0 ≤ t < 1/2
−96π t5 + 120π t4 − 40π t3 + 3π/4

if 1/2 ≤ t ≤ 1
96π(t − 0.5)5 − 120π (t − 0.5)4

+40π(t − 0.5)3 + π/4.

(19)

Equation (19) was designed to perform back-and-forth
control between the two angles, (θ1, θ2) = (−3π/4, 3π/4)
and (θ1, θ2) = (−π/4, π/4). The velocity and acceleration
at each angle were 0. Obviously, the cost function associated
with the expert trajectory given by the function (19) is time-
dependent.

The imitation behaviors were produced by solving theOCP
with the following settings: 1) the cost function estimated
by IOC with the approximated dynamics, 2) the initial and
terminal states set to (θ1, θ2, θ̇1, θ̇2) = (−3π/4, 3π/4, 0, 0),
and 3) the correct dynamics (18).

B. ADDITIONAL EXPERIMENT
As shown in Section IV-E, our method based on the triangle
inequality successfully imitated the expert behaviors. As an
additional experiment, we compared the baseline and our
IOC methods in terms of imitation performance with various
settings of the hyper-parameter λ. During this experiment, the
degree of approximation polynomials was consistently set at
4 to keep the computation time feasible.

Table 6 presents the squared error between the expert’s and
mimicker’s control trajectories. Our method could imitate the
expert’s behaviors most accurately with λ = 10−4. Fig. 6 in
the main text shows the result in this setting.

APPENDIX G
SENSITIVITY TO NOISES
Most IOC methods, including the baseline [3] and our
method, assume that the demonstrated trajectories are opti-
mal, i.e., the solutions of OCP. Here, we examined how well
our IOC method works, when this optimality is not fully sat-
isfied; in particular, we applied our IOCmethod to a situation
in which there were expert trajectories that had been disturbed
by observation noise. As an experimental setup, we re-used
the setup for OCP1 with 3 expert trajectories setting (Fig. 2c
in the main text), but we applied two modifications: 1) the
random noise from the uniform distribution of [−0.05.0.05]
was added to each state and control signal along the expert
trajectories, and 2) the initial states were sampled from the
uniform distribution of [−0.95, 0.95] for each coordinate
instead of [−1, 1] to ensure the noisy trajectories stayed in
the domain X . Fig. 7 shows the accuracy of the estimated
cost functions over ten trials with this setting. Our IOC

FIGURE 7. Normalized errors by the two IOC methods for various degrees
of approximation polynomials. The lines and error bars denote the mean
and standard error over ten trials. According to the procedure in
Appendix E, λ was tuned to 10−8 and 10−6 in the baseline and our
methods, respectively.

method estimated the cost function more accurately than the
baseline method even when the expert trajectories included
observation noise (i.e. the observed dynamics is stochastic).
This result suggested that the incorporation of our triangle
inequality has effectively mitigated the inherent uncertainties
introduced by observation noise.
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