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ABSTRACT The transition from Internal Combustion Engine vehicles to Electric Vehicles presents
challenges for fleet managers in terms of adapting operational processes and systems. One prominent
challenge is the Electric Vehicle Routing Problem, which requires careful consideration of battery
monitoring, efficient route planning, charging infrastructure availability, and vehicle performance
management. The goal is to alleviate range anxiety and ensure effective fleet management. In this context,
we propose a Reinforcement Learning approach in conjunction with graph-based modeling to solve Electric
Vehicle Routing Problem with Time Window. This paper provides a novel approach addressing the need
for efficient and sustainable electric vehicle fleet management. Our aim is to minimize the distance traveled
while serving customers within their time windows using the combination of Structure2vect and Double
Deep Q-Network. Real-world data from a public utility fleet company in Tunisia is utilized to evaluate
the proposed model, and comparisons are made with conventional benchmarking strategies and other
Reinforcement Learning approaches. The results highlight the effectiveness of the proposed model achieving
a reduction up to 50% in traveled distance while demonstrating enhanced computational efficiency through
reduced complexity and optimized runtime. Moreover, the obtained model can be directly applied to treat
the large-scale adoption of electric vehicles in fleets.

INDEX TERMS Deep reinforcement learning, DDQN, electric vehicles, EVRPTW, fleet, graph structure.

I. INTRODUCTION
Transitioning from Internal Combustion Engine (ICE) vehi-
cles to Electric Vehicles (EVs) requires fleet managers to
adapt their operational processes and systems while carefully
assessing their daily mileage requirements to anticipate the
issue of range anxiety. Monitoring battery levels, planning
efficient routes that consider the availability and accessibility
of charging infrastructure, optimizing charging schedules,
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and managing vehicle performance data become critical for
effective fleet management. In this context, the Electric
Vehicle Routing Problem (EVRP) emerges as a prominent
challenge that requires attention for the successful large-scale
adoption of EVs in fleets. The Vehicle Routing Problem
(VRP) is an NP-hard combinatorial optimization (CO)
problem that involves finding the optimal route for a fleet of
vehicles to ensure deliveries or services for a set of customers
in different locations. It is a generalization of the classical
Traveling Salesman Problem (TSP), where only one vehicle
serves multiple customers. The VRP has various variants
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based on different constraints and considerations: Capacited
VRP (CVRP) where the vehicle has a limited capacity,
VRP with time window (VRPTW) [1], which introduces
the time window within which the customer needs to be
serviced, etc. In this paper, we focus on CEVRPTW: the
electric vehicle-oriented variant of VRP with time window
and capacited vehicles constraints. Like for many other CO
problems, Reinforcement Learning (RL) can be an appealing
choice to solve the EVRP problem. Once formulated as
a Markov Decision Process (MDP), the EVRP becomes a
candidate for an RL solution, allowing an agent—in this case,
the EV fleet—to learn in an interactive environment through
trial and error, relying on evaluative feedback that depends
on its own actions and past behavior [2]. Given the lack of
prior knowledge about the environment dynamics, a model-
free reinforcement learning algorithm based on Q-learning is
well-suited to our case. Specifically, we utilize the Double
Deep Q-Network (DDQN), which combines reinforcement
learning with deep learning techniques to understand the
underlying complexity of the environment and generalize
to new, unseen situations. Another important aspect of our
solution is the incorporation of graph structured information.
Indeed, routes optimization problems are fundamentally
represented as graphs. Routes represent the edges of a graph
that link the customers, the fleet depot and the charging
stations, which all represent the nodes of the input graph. This
graph-based representation allows for efficient navigation
and optimization techniques to be applied and can lead to
more accurate and realistic modeling of the EVRP.

In this paper, we aim to explore the potential synergy
between DDQN and graph-based modeling. DDQN can
be used to learn efficient routing policies by considering
the graph structure of the problem. Based on our current
investigation of the field, this is the first time that Double
DQN is considered to solve EVRPTW problem while
keeping the graph-based representation of the problem
using strcuture2vect (S2V). We demonstrate that our model
outperforms state-of-the-art solutions while using a less
complex architecture. Furthermore, we show its effectiveness
with both synthetic and real-world data.

The novelty of this paper lies in the development
of an innovative and efficient approach to tackling the
EVRPTW. For the first time, we harness the synergy between
DDQN and graph-based modeling to solve this problem,
employing well-defined reward structures and finely-tuned
hyper-parameters. This work not only breaks a new ground
in the field but also offers a practical solution with reduced
complexity, improved performance in terms of runtime and
traveled distance, making it a valuable contribution to the
existing body of research.

The remainder of this paper is organized as follows.
In Section II, we discuss related articles presenting reinforce-
ment learning models that solve EVRP and TSP variants.
In Section III, we define the problem formulation and MDP
model. In Section IV, we present our model using the
combination of DQN and S2V. In Section V, we present a

FIGURE 1. EVRPTW problem.

comprehensive set of experiments with both synthetic and
real world data scenarios. Finally, we draw our conclusions
and point out future work directions in Section VI.

II. RELATED WORK
Over the past few years, significant efforts have been made
to address the environmental concerns associated with EVs,
particularly in reducing energy consumption. Consequently,
the Electric Vehicle Traveling Salesman Problem (EVTSP)
has emerged as a crucial focus area. The EVTSP aims to
minimize both the total distance traveled and the energy
consumed while considering the need for EVs to recharge
their batteries at charging stations (CS) along the route.
Various approaches have been proposed to address the
Electric Vehicle Traveling Salesman Problem (EVTSP).
In terms of charging navigation strategy, Basso et al. [4]
employed Full Bayesian Regression, while Aygun et al. [3]
utilized heuristics combining Dijkstra and Floyd-Warshall
algorithms. Reinforcement learning techniques, which are the
main focus of the current study, have also been explored.
The Q-learning algorithm was applied by Ottoni et al. [6]
and Dorokhova et al. [5] while the authors of [9] used
the State-Action-Reward-State-Action (SARSA) algorithm.
Similarly [6] used SARSA to compare with Q learning. Deep
Reinforcement Learning (DRL) algorithms such as Double
Deep Q-Network (DDQN) [8] and Dueling Deep Q-Network
(DQN) [7] have also been explored. The Dueling DQN was
specifically used to optimize both travel and energy costs.
Jin and Xu [16] investigated the charging routing problem
for fleets and proposed an Actor-Critic (A2C) solution to
minimize the charging cost and the sum of travel costs
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TABLE 1. Summary of different approaches.

to charging stations. The same algorithm was utilized by
Bogyrbayeva et al. in [17] combined with Graph Attention
Mechanism (GAT) to solve the EVTSP.

Unlike the EVTSP, the EVRP assumes the existence of
multiple EVs (not just one), customers with static or dynamic
demands, charging stations and a depot as illustrated in
Figure 1. The vehicles must satisfy the customers before
the end of the planning horizon while minimizing the total
traveled distance. The EVRP may also involve various objec-
tives such as maximizing resource utilization or minimizing
costs related to travel time and energy consumption. When
the vehicle has a limited capacity, it needs to return to
the depot during the day to load more goods and be able
to serve the customers: this variant is known as Capacited
EVRP (CEVRP). In this context, a recent study conducted
by Basso et al. [12] employed safe RL with Q-learning to
address the CEVRP with stochastic demands. The study
paid careful attention to monitoring the battery State of
Charge (SoC) to ensure that energy constraints are not
violated during the optimization process. A variant of the
EVRP that incorporates time constraints is known as the
EVRP with Time Window (EVRPTW), where customers
must be served within specific time windows. In this context,
several approaches have utilized RL combined with Graph
Neural Networks (GNN) to represent the problem as a
graph. The initial introduction of this approach was made by
[18] and [19].
To address the EVRPTW, Lin et al. [13] proposed

a REINFORCE model augmented with Graph Attention
Mechanism (GAT) and Structure2vec (S2V) [20], enabling
the synthesis of local and global information from the graph
representation. Their objective was to serve all customers
within their timewindowswhileminimizing the total distance
traveled by the fleet. Qiu et al. [14] proposed an A2C
algorithm employing a Multi-head Attention (MH ATT)
encoder for state feature extraction, along with a Beam
Search-based decoder. Tang et al. [15] combined A2C with
GAT to solve the EVRPTW. Notably, their work introduced
an energy consumption model that considered factors such as
EV mass, speed, acceleration, and road gradient. The authors

of [10] utilized a dual-agent architecture consisting of a GAT
and a Rainbow DQN, an alternative DQN architecture.

Table 1 provides a summary of the studies that have
explored the EVTSP and EVRP problems utilizing Machine
Learning or Reinforcement Learning methodologies. The
table highlights that, to the best of the authors’ knowledge,
there has been limited utilization of graph-structured infor-
mation in RL methods for solving the EVRP.

In this paper, our contribution lies in the application of
DDQN with graph embeddings and Structure2vec to solve
CEVRPTW. This combination of techniques, to the best of
our knowledge, has not been previously explored for this
specific problem. Additionally, we test the performance of
our model by utilizing real-world data, to further increase the
relevance and applicability of our findings.

III. PROBLEM STATEMENT
In this paper we consider Capacitated Electric Vehicle
Routing Problem with Time Windows but, for the sake of
simplicity, in the rest of this paper we refer to it as EVRPTW.
The problem is modeled as a fully connected graph G =

(V ,A) with 3 types of Vertices: customers (Vc), charging
stations (Vs) and a depot (Vd) as illustrated in Figure 1.
We consider having only one single depot which is always
denoted by the node 0. Each edge (i, j) ∈ E in the graph is
associated with the distance di,j, the energy cost ei,j and the
travel time �i,j. The goal is to minimize the total distance
traveled by all the EVs in the fleet while serving all the
customers within a certain time window.

Each vertex i is associated with an array X ti =

(xi, yi, si, ei, d ti ) where (xi, yi) denotes the coordinates of a
vertex i. The pair (si, ei) indicate the starting and ending
time of the time window associated with each vertex. A time
window specifies the allowable time interval during which
the customer must be served. Additionally, d ti represents the
demand at vertex i at step t. For the depot and CS demand is
always 0, and if a customer i ∈ Vc is visited its demand is set
to 0. As we are normalizing all the variables, the time window
of the CSs and the depot is set as [0,1] where 1 represents the
end of the planning horizon.
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TABLE 2. Variables and parameters definitions of the EVRPTW model.

We also keep track of EV characteristics (load tn, soc
t
n),

where at each step t, load tn denotes the load of EV n, and
soctn represents the EV n battery state of charge (SoC). In this
paper, we assume a fleet of homogeneous EVs with the same
maximum capacity denoted by load t0n which is the load of
EV n at the start of the planning horizon t0. As a result,
the EV load cannot exceed the EV n maximum capacity:
load tn ≤ load t0n . Finally, we consider global variables T t and
NEV where T t represents the system time and NEV indicates
the number of EVs in the fleet.

The solution is a sequence of visited vertices denoted
as V T

= {i, j, . . . , k} where V T represents the set of
all the visited vertices with different EV routes separated
by the depot. It is important to note that every solution
starts and ends at the depot. If we consider this solution
example {0, 1, 2, 3, 0, 4, 5, 6, 0}: this sequence implies that
there are 2 EVs used, one EV route is {0, 1, 2, 3, 0} and the
second EV route is {0, 4, 5, 6, 0}. Table 2 summarizes the
variables and parameters discussed above.

IV. METHODOLOGY
In this section, we describe the model we use to solve
EVRPTW as stated before. Our solution consists of combin-
ing graph-structured data with DRL.

A. GRAPH EMBEDDINGS
Graphs are an effective structure for representing network
data, allowing us to capture connections between customers,
charging stations (CS), and road topology features. Unlike

traditional data structures such as arrays or lists, graphs
lack built-in tools and structures compatible with ML
algorithms. To address this challenge, graph embeddings
were introduced, where the whole graph is encoded in one
single vector like a compressed representation. In contrast,
using an adjacency matrix as a direct representation for
large graphs, such as those with 100 nodes, becomes highly
impractical due to the resulting matrix size (e.g., a 100 ×

100 matrix), which leads to significant computational costs
and excessive memory requirements [21].

In this paper, we use S2V [20] to represent the EVRPTW
graph in an embedded feature space. S2V extracts graph
features by performing a sequence of nonlinear function
mappings as represented in Equation 1 [20]. We use this
representation to extract local and global information of the
graph state and feed it to the DDQN model. The model input
X ti is first embedded into X̂ ti vector using a linear layer. It is
then used in S2V to generate the graph embedded vector µk

i .

µk
i = relu(θ1X̂ ti + θ2

∑
j∈Ni

µk−1
j + θ3

∑
j∈Ni

relu[θ4di,j]). (1)

In equation 1 [20], Ni is the set of connected vertices
(neighboring nodes that are connected by an arc), di,j is the
distance between vertex i and j. θ1, θ2, θ3 and θ4 are trainable
variables and relu is a non-linear activation function. First,
µk
i , where k ∈ [0, .., p], is initialized with µ0

i = X̂ ti and
then updated recursively for p rounds following equation 1 to
generate the final µ

p
i for each vertex i. Afterwards, the final

vectorµp
i will be the graph representation and the input to the

RL model we use to solve EVRPTW.

B. REINFORCEMENT LEARNING
The RL method of the EVRPTW comes with five major
components: the agent, the environment, the state, the action
and the reward. The agent is the decision maker, which takes
action based on the environment situation called state at
decoding step t. The environment will give a reward to the
agent depending on how good his action is. Over the time,
the agent will try to maximize the cumulative reward [2]. The
agent learns a policy which is a mapping between the tuples
(states, actions). A good policy is when it serves to optimize
the expected sum of rewards.

To solve this problem, we need to transform it into anMPD
formulation, where the environment represents the graph
G = (V ,E) described above with the different vertices and
edges. Inspired by the work of Bdeir et al. [22], we define
the state space with some modifications. At each step t, the
state is represented by a combination of vertices coordinates
and boolean variables. Specifically, the state is defined as
St = (coords, σ ti , λ

t
i , δ

t
i ) at step t where coords are the

vertices coordinates, σ ti denotes whether a vertex i is already
in solution or not, λti represents if vertex i is the last visited
or not (i.e., corresponds to the EV current position) and
δti represents whether the demand of vertex i is null (i.e.,
satisfied). If V t represents the set of vertices visited at step
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t and vt represents the last visited node at step t, Equations
(2) - (4) represent the boolean variables of the state space.

σ ti =

{
1 if i ∈ V t

0 otherwise
(2)

λti =

{
1 if i = vt

0 otherwise
(3)

δti =

{
1 if d ti > 0
0 otherwise

(4)

In RL models, the agent will take the decision based on the
state of the environment as mentioned earlier. For this reason,
the RL state will be modeled as a graph and will serve as the
input for the graph embeddings in the S2Vmodel, specifically
as the vector X ti referenced in Equation 1.

The action space represents a set of discrete actions a(a ∈

A) := (Vc,Vs,Vd). The agent decides to go to a customer
(Vc), a station (Vs) or a depot (Vd).

At each step t, we update the state based on the transition
functions (5) - (8). First, we update the customers remaining
demands and EV load as follows.

d ti =

{
0 if i ∈ V t

d t−1
i otherwise

(5)

load tn =


load t−1

n − d t−1
i if i /∈ Vd

and i = vt

load t0n if i ∈ Vd

(6)

Second, the EV SoC is updated as follows.

soctn =

{
soct−1

n − soc(di,j) where i = vt−1andj = vt

soct0n otherwise
(7)

Finally, we update the system time T in Equation 8. If vt

represents the last visited vertex at step t, �vt ,vt+1 is the
traveling time between vt and vt+1. �s represents the service
time at each node i ∈ Vc. To simplify, we assume the service
time to be the same constant for all customers. The �c is the
charging time in a charging station. In this paper, we assume
a linear charging time like in [13].

T t =


T t−1

+ �vt−1,vt + �s if vt ∈ Vc
T t−1

+ �vt−1,vt + �c if vt ∈ Vs
0 if vt+1

∈ Vd

(8)

Regarding the reward, after experimenting with various
reward formulations, we have opted for one that is inversely
proportional to the distance traveled as represented in
Equation 9. Unlike already existing works [13], [15], [18],
[19], [23] who mostly adopt a negative distance, this for-
mulation gives better results. In reinforcement learning, the
updates of Q-values are directly influenced by the magnitude
of rewards. Our observations have shown that when reward
variations are insufficiently large, the model struggles to
adapt effectively. To address this issue, we employ a reward

formulation that is inversely proportional to the traveled
distance, as it introduces higher variance compared to a
negative distance-based reward. This reward formulation is
like a penalty based on the distance and the action chosen
by the agent as represented in Equation 9. The longer the
distance, the more the agent is penalized. Additionally, if the
number of EVs used (NEV

used ) at time step t in the solution
exceeds the total number of available EVs in the fleet (NEV ),
there is an additional penalty for the distances traveled by
the extra EVs in their respective routes, as specified in
Equation 9.

r t =


1

dvt ,vt+1
if NEV

used ≤ NEV

1
2 ∗ dvt ,vt+1

if NEV
used > NEV

(9)

For simple environments, there are several RL meth-
ods to use. However in our case, the environment is
high-dimensional and complex as it depends on several
variables as explained above. As a result, model-free DRL
algorithms are more adapted specifically DQN.

C. DQN
DQN is an off-policy model-free algorithm used to solve
problems with discrete actions. The architecture we use is
illustrated in Figure 2. DQN is a value-based algorithm that
attributes a Q-value to actions based on the state s at step t
and the agent will pick the action a with the maximumQ(s,a).
This Q-value is an estimation of how good a certain action is
at the given state, and it is updated following the Bellman
equation 10 [2].

Q(st , at ) = (1 − α).Q(st , at ) + α.[rt (st , at )

+ γ.max(Q(st+1, at+1)] (10)

The model takes the environment state s as an input and
outputs Q-values Q(st , at ) of each possible action a at step
t based on the learning rate α, the reward rt (st , at ) at
timestep t, the discount factor γ , which is responsible for
prioritizing either immediate or future rewards (depending
on the value), and the Q value of the next state and next
action Q(st+1, at+1). After training, the model will be able
to approximate Q-values for actions that maximize the
cumulative reward. However, an instability can be caused in
this architecture when calculating Q(st , at ). In the Bellman
equation (10), Q(st , at ) is computed based on Q(st+1, at+1),
where st+1 is only one step ahead of st . Both states
are determined using the same Q network, resulting in a
situation of pursuing a moving target [2]. To address this
issue, a second neural network called the Target network is
introduced to estimate Q(st+1, at+1). This approach, known
as Double Deep Q-Network (DDQN), utilizes two neural
networks for estimating Q-values.

The training steps are illustrated in Figure 2 and the pseudo
code is summarized in Algorithm 1. Each training episode
simulates a complete tour of a single graph from depot,
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FIGURE 2. The proposed model architecture with DQN training method.

to serving all customers to going back to the depot at the
end. The initial step involves the initialization of the neural
network weights. In each subsequent training iteration, a new
environment is initialized, generating the initial state s0. The
reward is initially set to zero, and an experience replay
memory is created to store the agent’s experiences. Following
this, a while loop is executed until the agent reaches the final
state, which occurs either when the tour ends and all the
customers are served, or when the agent reaches the end of
the planned horizon.

At each new state st , the model selects an action based on
exploration or exploitation strategy using an ϵ-greedy policy.
Exploration occurs when the agent decides to explore the
environment and randomly chooses an action. Exploitation
involves exploiting the model by computing the Q-values
for all possible actions, and selecting the action having
the maximum Q-value MaxQ(st , at ) based on the greedy
approach. Subsequently, the chosen action is applied to the
environment, resulting in a reward and the next state st+1
denoted as s′ in Figure 2.
These experiences are stored in the experience replay

memory and utilized for model training at a later stage. When
a sufficient number of experiences are accumulated in the
replay memory, a batch of <states, actions, rewards, next
states>, denoted as < s, a, r, s′ >, is sent to the model to
compute the loss. During this step, the model recalculates
Q(st , at ) for each state-action pair in the batch, while the
target network computes Q(st+1, at+1) for each next state
st+1 considering all possible next actions. The next action
at+1is then chosen based on MaxQ(st+1, at+1). The model
subsequently performs a gradient step by calculating the

Algorithm 1 DDQN

1: Initialize the environment, network weights θ, θ̄ ;
2: Create experience replay memory;
3: for episode = 1,2,.., N episodes do
4: Generate new Graph G = (V ,E) and initialize state
s0;

5: while tour not ended or T t < 1 do
6: 1- Select an action at using ϵ-greedy;
7: 2- Get reward rt and next state st+1;
8: 3- Store experience < st , at , rt , st+1 > in

experience memory
9: end while
10: if enough samples in experience replay then
11: 1- Sample a random batch of experiences;
12: 2- Compute Q(st , at ) and Q(st+1, at+1);
13: 3- Perform a gradient descent step

GradientLoss(Q(st , at ),Q(st+1, at+1)) using the
sampled batch;

14: 4- Update DQN parameters θ ;
15: 5- Update target network parameters θ̄ = θ every

N step steps
16: end if
17: end for

loss between the two terms in the Bellman Equation (10):
(1−α).MaxQ(st , at ) and α.[rt (st , at )+γ.MaxQ(st+1, at+1)],
employing a loss function. Last but not least, an optimizer
updates the weights of the model’s neural networks based
on the calculated loss. Finally, the target network is updated
every n step.
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TABLE 3. Training parameters.

D. MASKING SCHEME
During the DQN training, specifically the exploration phase,
the model might return invalid actions in some states. For
example, visit a CS to charge again even when there is no
need to, just because it is the nearest node. In order to prevent
the repetitive selection of invalid actions within full discrete
action spaces, several works apply a technique known as
masking scheme [24]. This technique implies to ‘‘mask out’’
infeasible actions and only let the model sample from the
valid and feasible ones. Using this method, we can accelerate
the training and effectively manage the vast space of actions.
when masking, we should avoid explicitly instructing the
model on how to behave in various states, which deviates
from being model-free and learning from past experiences.

In this paper, we use this technique to hide infeasible
solutions and avoid giving critical actions to the environment
or the experience replay. The model applies the masking
scheme in both exploration and exploitation. We suppose that
an EV is at vertex vt at step t, the model will compute all
Q-values for all possible actions. These Q-values will then be
passed to a masking function, which filters out invalid actions
and returns the maximum Q-value among the valid ones that
satisfy the following conditions.

• If a customer vertex i ∈ Vc has already been visited (i.e.,
d ti = 0), it is considered redundant and masked.

• If the ending of time window ei of a customer extends
beyond the current system time ei ≥ T t , it is not feasible
to visit that customer, and thus it is masked.

• When the EV load can no longer accommodate the
demand of any customer, all customers and charging
stations (Vc ∧ Vs) are masked, leaving only the depot
Vd as alternative.

• If the EV is currently at customer i ∈ Vc and its battery
SoC is insufficient to visit the next customer j ∈ Vc and
return to the depot, all customers (Vc) are masked. Only
the CS (Vs) remain accessible.

• When the EV is at the depot, it is already fully charged.
For this reason, all charging stations are masked to avoid
selecting them as potential destinations. Conversely,
if the EV is at a CS, the depot ismasked to prevent it from
being chosen as a destination. This condition is to avoid
the back-and-forth trips between depot and CS. Even if

the EV has no SoC to go to depot and needs to charge
first, it still cannot visit a CS before depot. We noticed
during the training the model adapts to this constraint.

V. RESULTS
In this section, several case studies are carried out using both
synthetic and real-world fleet traffic data to showcase the
efficiency and effectiveness of the proposed model.

A. EXPERIMENTAL SETTING AND HYPER-PARAMETERS
DISCUSSION
All the tests are performed on a desktop with i7-8700K
CPU (3.70 GHZ and 64 RAM). The code is written in
python and the DRL is coded in Pytorch 1.11.0. To evaluate
the performance of the proposed model, we train it on
various instances sizes ranging from n=10, 30, 50, to
100 customer nodes. The training is conducted using the
set of hyper-parameters outlined in Table 3, which were
identified as the optimal settings based on the comprehensive
tests we have conducted. Additionally, we showcase the
influence of hyper-parameters like embedding dimensions
and memory capacity in Figure 3. Choosing an appropriate
embedding dimension is crucial as it directly impacts the
complexity and the expressiveness of the graph representation
as illustrated in Figure 3a. If the embedding dimension is
set too high, the graph representation becomes excessively
intricate, potentially leading to increased computational
complexity. On the other hand, if the embedding dimension is
set too low, the graph representation may lack the necessary
level of detail and fail to capture important characteristics
of the graph data. Having a balanced embedding dimension
ensures a graph representation that is both informative and
able to generalize to unseen data. Based on our experiments,
we have determined that a value of 32 for the embedding
dimension provides a balanced representation that achieves
good performance as illustrated in Figure 3a.
Moreover, we report the influence of the different memory

capacity values in Figure 3b. The model relies on storing past
experiences, and choosing an appropriate memory capacity
is crucial. Increasing the memory capacity allows the agent
to collect more representative samples, enabling it to learn
from a wider range of experiences and potentially improve
its overall performance. However, it is important to consider
the computational abilities of the system when determining
the memory capacity. Setting a memory capacity that is too
large may result in reduced sampling efficiency, as the agent
spends more time revisiting irrelevant or less informative
experiences. On the other hand, setting the memory capacity
too low leads to more frequent updates of stored experiences.
While this ensures that the agent has access to recent
information, it comes at the cost of losing valuable past
experiences. This loss of historical information can hinder the
agent’s ability to generalize effectively and make informed
decisions based on a broader context. Therefore, finding the
optimal memory capacity involves striking a balance between
storing enough past experiences to enable learning from a
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FIGURE 3. Impact of the memory capacity and the embedding dimension parameters on the model performance results.

FIGURE 4. Impact of the batch size and initialization on the model performance.

diverse samples and ensuring efficient computation. Based
on our observations from the graph, we have determined
that a large memory capacity does not significantly affect
the training process. However, it is important to consider
computational limits. For this reason, we have chosen a
memory capacity of 10000 as it is slightly better during
training and it requires less computational resources.

B. IMPACTS OF BATCH SIZE AND INITIALIZATION
METHODS TO STABILIZE TRAINING
To conduct the training, random instances are generated
similar to [13] to be able to compare our results. For each
instance, we generate the vertices coordinates using a uniform
distribution in a region [0,1] x [0,1]. The customers demands
are selected randomly from {0.05, 0.10, 0.15, 0.20} with an
equal probability. The system time, representing the planning
horizon, is set within the range [0,1]. Regarding the time
windows, we generate their centers uniformly in [0,1] and
the length is normally generated with a mean of 0.2 and a
standard deviation of 0.05. It is ensured that the timewindows
always fit within the planning horizon of [0,1]. Similarly, the
test data is generated following the same methodology.

Furthermore, in order to stabilize the training, we chose
to initialize all trainable variables, and for this, we conducted
experiments with various initialization methods. Specifically,

we tested Glorot and Bengio [25] and He et al. initialization
[26], both with uniform and normal distributions. We also
explored the option of not using any initialization. After
evaluating the results, we found that the He-initialization
with a normal distribution produced superior outcomes. The
performance comparison is presented in Figure 4a. In addi-
tion, we performed tests using different loss calculation
methods, including Mean Square Error (MSE) and Huber
[27]. As a result, we decided to utilize Huber as it is better
suited for minimizing distances [27] when following normal
distribution, which was validated by our experiments.

It is worth noting that while some hyper-parameters may
not directly influence training results, they can impact the
stabilization of the training. For instance, the batch size can
affect the fluctuations of the loss, as illustrated in Figure 4b.
A larger batch size of 128 can lead to more stable training.
By using a larger batch, the model updates its parameters
based on a more representative samples, which reduces
the impact of individual noisy or outlier samples, leading
to more effective exploration and exploitation, however it
is important to consider the computational abilities of the
system. On the other hand, a smaller batch size of 16 can
lead to more frequent updates, allowing the model to adapt
quickly to recent experiences. Conversely, a larger batch size
may provide a broader view of the environment, allowing
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FIGURE 5. Comparison of average total distance.

TABLE 4. Comparison of average solution time in seconds.

FIGURE 6. Model evaluation example with scenario C30-S4-EV4.

the model to generalize better and make more informed
decisions across a wider range of situations. Based on
our experiments, we have determined that a batch size
of 64 stabilizes the training while maintaining efficient
computational performance.

C. MODEL EVALUATION
In this section, we evaluate the performance of the proposed
model by conducting several comparisons and analysing the
results on both synthetic and real world data.

1) MODEL EVALUATION: SYNTHETIC DATA
The proposed model is evaluated and compared with [13]
as both approaches address the same problem statement.
Additionally, two conventional benchmarking strategies,
VNS/TS [28] andCPLEX are also included in the comparison

FIGURE 7. Example of the model’s decision-making process.

FIGURE 8. Section of the map of Bizerte with location of customers
represented in blue, and charging stations represented in red.

in Figure 5, which results are reported by Lin et al. in [13].
We utilize the same three scenarios as in [13] to compare.
For instance, the first scenario ‘‘C10-S3-EV3’’ with n=14
nodes denotes a graph with 1 depot, 10 customers, 3 charging
stations and 3 EVs available in the fleet. For each scenario,
we conduct 100 test instances, generated as explained in
Section V-B, and we present the mean total distance in
Figure 5 together with the gap between the average and the
minimum value of total distance.

On small instances with 14 nodes, our model is able to
provide better results than the greedy approach by Lin et al.
achieving a lower total distance traveled. Although, when
compared to RLmodels, heuristics still exhibit better solution
quality despite being more time-consuming. However, the
larger the number of nodes, the more heuristics struggle
to provide feasible solutions. In contrast, both RL models
generalize better and are able to report solutions. In this case,
our proposed model outperforms the model developed by
Lin et al. achieving a lower total traveled distance.
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FIGURE 9. Procedure to calculate new real distances optimized by the model.

TABLE 5. Nodes visit order.

FIGURE 10. Analyzing the transformation in fleet behavior with the
implementation of our model in scenario ‘‘C10-S3-EV3’’.

Another crucial aspect to consider is the runtime required
for obtaining solutions. Table 4 showcases the average
solution times in seconds across the 100 instances for
various scenarios. To ensure fair comparisons, we employed
comparable hardware configurations. Notably, our proposed

model demonstrates superior performance compared to
existing approaches. For instance, when solving the ‘‘C100-
S12-EV12’’ scenario, the reinforcement learning model
presented by Lin et al. [13] took 7.89 seconds, the model
presented by Qiu et al. [14] took 5.92 seconds, whereas our
approach achieved the same outcome in just 1.04 second.
This substantial time reduction is attributed to the simplicity
of our model architecture which achieves better results
with fewer complexities. For instance, both RL models
[13], [14] incorporate an Attention Mechanism, which
inherently demandsmore processing time, despite the parallel
computing used in the model proposed by Qiu et al. [14].

To illustrate an example of the proposed model behaviour,
we report in figure 6 the evaluation of scenario ‘‘C30-
S4-EV4’’. The visit order of nodes, along with their
corresponding time windows (tw), is presented in Table 5.
The model is able to visit all customers within their respected
time windows using all the available EVs in the fleet. The
number of EVs in solution is proposed and optimized by the
model, whichmeans less number of EVswill not be enough to
respect customers demands and time window, and more will
be excessive and leads to unnecessary energy consumption.
Each colour represents an EV, the customers are represented
in red dots, CS are in blue triangles and the depot is a black
star.

In general, the model prioritizes nodes with approaching
time windows, ensuring that visits are made within the
specified time constraints. However, there are instances
where the system time is significantly less than the end of
the time windows, so the model prioritizes minimizing the
traveled distance. We can observe an instance of the model’s
decision-making process and the sequence of actions it took
by examining the green EV in Figure 7. During step 1,
the model’s attention was directed toward the farthest node
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FIGURE 11. Analyzing the transformation in fleet behavior with the implementation of our model in scenario
‘‘C30-S4-EV4’’.

with the most urgent time window, which was set to close
at 0.33. Subsequently, in step 2, the model faced a choice
among three nearby nodes, each with time windows closing
at approximately the same times: 0.65, 0.63, and 0.65. In this
scenario, the model gave priority to the nearest node. Another
example of the model behavior in the case of the blue EV.
Starting from node 4, our model prioritizes visiting node 5,
despite its time window ending at 1, because it is closer in
proximity (can be observed in Figure 6). Next, the model
visits node 6 with time window ending at 0.68 as there is
still sufficient system time available. This trade-off allows
the model to balance the urgency of time windows with the
overall efficiency of the routing solution.

2) MODEL EVALUATION: REAL WORLD DATA
To evaluate the performance of our proposed model in real
world settings, we utilized real-world data obtained from
a public utility fleet company situated in Bizerte, Tunisia.
To calculate the actual distance traveled between the com-
pany’s different customers’ locations, we followed a step-by-
step process as illustrated in Figure 9. Firstly, we extracted
real-world nodes coordinates from the company’s GPS data
and computed the distances between these nodes utilizing the
Google Maps API. Secondly, we normalized these distances
using the Min-Max Scaler method. The resultant normalized
adjacency distance matrix served as input for our model to
generate a solution. Lastly, leveraging the solution generated
by the model, we recomputed the real distances values
between nodes using Google Maps API.

In this section, we implemented two scenarios, ‘‘C10-
S3-EV3’’ and ‘‘C30-S4-EV4,’’ using the company’s orig-
inal GPS data collected on March 16th and 17th, 2023,
respectively. Figure 8 provides a visual representation of
the ‘‘C30-S4-EV4’’ scenario, where blue circles denote
customer locations, and red circles mark the charging
stations. First, in Figure 10 we compare the fleet’s behavior
and outcomes before and after applying our model to scenario
‘‘C10-S3-EV3.’’ Initially, the fleet covered a total distance
of 36.427 kilometers. However, following our model’s
optimization, this distance was reduced to 25.112 kilometers,

representing a significant reduction of more than 31%.
Second, in Figure 11 we analyze the outcomes for scenario
‘‘C30-S4-EV4’’. Initially, the fleet traveled a total distance
of 205.147 kilometers. With the aid of our model, this
distance was reduced to 106.897 kilometers, representing a
remarkable gain of over 50% in distance efficiency.

VI. CONCLUSION
The EVRPTW is a crucial challenge that needs to be
addressed for the successful adoption of EVs in fleets.
In this paper we developed an RL framework capable of
solving EVRPTW. RL algorithms, such as DDQN, offer a
promising solution to the EVRPTW problem by allowing
the EV fleet to learn optimal routing policies through trial
and error. Additionally, incorporating graph-based modeling
enhances navigation and optimization techniques, leading
to more accurate and realistic modeling of the EVRP. The
model is not only able to reduce the total traveled distance,
but also to respect constraints like the capacity and the
limited number of available vehicles, all while meeting
the time window of the different customers. The model,
characterized by streamlined complexity, is compared to state
of the art solutions and exhibits better results in terms of
time efficiency and minimized traveled distance. Although
the results for small instances may not be optimal when
compared to heuristics, the model is very promising in real
world application particularly for large-size fleets where
existing methods may not suffice. For instance, several
components of the graph like demands, time windows or
charging services availability, can change instantly. In this
case, by making small adjustments, RL models have an
efficient problem-solving ability that enables EV operators
to quickly adapt and address the challenges posed by the
stochastic nature of the EVPRTW.

However, there are several areas where further improve-
ments can be made to enhance the model’s performances.
Utilizing real-world data for training could make it more
applicable to real-world scenarios. Also, incorporating
energy consumption considerations into the model and
suggesting charging stations that utilize renewable energies
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represents a promising direction for future research. By con-
tinuously upgrading and refining the model, we can further
enhance its effectiveness and contribute to the sustainable
adoption of electric vehicles in fleet operations.
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