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ABSTRACT We present a tiny MultiLayer Perceptron (MLP) accelerator named Single Perceptron Linear
Vector Processor (SPLVP) that aims at extending the capabilities of limited resources MCUs, enabling
inference time speedup and main CPU off-load. It is based on a single perceptron hardware unit, enhanced
with an additional accumulation input and scaling features, that is sequentially scheduled to cover all the
nodes of the network. The accelerator supports both linear and Rectified Linear Unit (ReLU) activation
and its firmware can be generated from 8-bit tflite quantized models. We also present a complete
design toolchain that encompasses supervised learning, compilation, assembly, simulation, and device
programming. The hardware support for extra accumulation input and scaling, together with the processor
memory partitioning, are the key features that enable significant speedups. By solving a toy recognition
problem based on image data captured from an infra-red camera, measurements show that the execution
speed of SPLVP at 80MHz outperforms an ARM Cortex-M4 STM32L476 microcontroller by a factor of
9.2 when the same ANN is translated to MCU code using the STM CubeMX-Ai converter at the same clock
frequency. SPLVP is synthesized on a low-cost and gate-count Cyclone 10 LP FPGA resulting in an 18%
logic and 77% memory occupation. The SPLVP assembly code can be directly converted into a VHDL
description that directly hardcodes the ANN. The execution speed of an ANN model for Iris classification,
fully synthesized, improves by a factor of 209 compared to firmware execution on the MCU. To verify
the operation of SPLVP and its design framework, we have designed various tiny Machine Learning (ML)
classifiers, for which we briefly discuss the obtained performance and the preprocessing techniques used.
Across all these classifiers, the obtained speedup compared to the STM32 is 8.3–14.9×.

INDEX TERMS Neural processing unit, multilayer perceptron, single perceptron linear vector processor,
fully connected neural network, FPGA, compiler, design toolchain, MCU, tiny machine learning.

I. INTRODUCTION
Artificial Neural Networks (ANNs) have revolutionized
the way computers can help to solve problems, and are
considered fundamental resources in terms of modeling and
prediction capabilities. They are exponentially becoming
more pervasive: the availability of software libraries devel-
oped by big technology companies and organizations [1],
[2], [3], [4], [5], enables ANN models to be, more or less
automatically, compiled and deployed for a wide variety of
hardware. Such hardware encompasses powerful computing
centers, custom accelerators, or Edge devices in which
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computing problems are partially addressed locally, where
data are produced, and partially deferred and off-loaded in
the cloud. On the low end, microcontrollers are particularly
interesting [6], because ANNs can be potentially brought
to limited hardware resources applications. This emerging
but already vast and consolidated field is known as tiny
Machine Learning (tinyML) [7] and paved the way for
several research problems that are all currently open. Models
developed in the past are indeed complex and require
a very large number of both coefficients (e.g., on the
order of millions for typical image classification problems,
such as ImageNet [8]), and operations, and are typically
trained using numbers represented in floating-point format.
Substantial advantages in terms of hardware footprint, power
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FIGURE 1. a) Generic systolic array of PEs and b) SPLVP architecture. In systolic arrays, the buffers perform local data storage and operation scheduling
and they are interfaced with a central Dynamic Random-Access Memory (DRAM), which is power-hungry. The partial sums, activations, and scalings can
be implemented in the PEs or the output buffer. In SPLVP, the memory is partitioned into dual-port Static Random-Access Memories (SRAMs): partial
sums can be any of the memory output, write-back can be implemented to any memory array element and a single PE concentrator is used to decrease
complexity and save hardware resources. In this work, the toolchain considers as partial sum input the bias memory and implements write-back only to
the bias and data memory, although all memories are wired and supported by the hardware.

consumption, and memory requirements can be obtained
with mixed-precision arithmetic, a fundamental topic when
scalability of ML models becomes indispensable for both
inference and training aspects [9], [10], [11], [12]. However,
TinyML applications are highly resource-constrained and
integer arithmetic implementation can result in even lower
hardware resources and memory footprint compared to
floating-point [13]. For instance, applications involving
environmental sensing, and distributed sensor networks in
general require lightweight ANNs, at most hundred of
KB sized [14]. Current research efforts in microcontroller
applications indeed focus on both model size reduction [15],
and ANN quantization and pruning [16], which can result in
negligible performance degradation.

The execution time of an ANN on a MicroController Unit
(MCU) has to deal with the general-purpose architecture of
their Central Processing Units (CPUs). Without specialized
hardware, an embedded systems designer must sooner or
later deal with the inherent limitations in real-time inference
of ANNs posed by these CPUs. By construction, they
typically do not embed a high level of arithmetic parallelism
and rely on an inappropriate memory access mechanism.
To enable low-power embedded systems to efficiently run
ML models, two approaches are typically possible: i) the
model conversion into optimized MCU machine code, and
ii) the use of ad-hoc SoCs that embed an MCU with a
specialized ML co-processor interfaced to the system bus.
These approaches, however, do not enable the empowering
of existing MCU-based designs targeting low-power sensor
networks with ML capabilities: the converted ML models
still perform with high latency due to their architectural
limitations, and the ML models compiled for ad-hoc
embedded accelerators cannot be directly ported to other
platforms. In addition, the Google Edge Tensor Processing
Unit (TPU) platform, designed to handle large models in

Edge computing applications, needs a USB interface which is
not always available on MCUs. It also requires a significant
power budget [17], making it hard to use in battery-powered
and resource-constrained systems such as a sensor network.
In general, complex accelerators designed to support large
Convolutional Neural Networks (CNNs) typically provide
substantial latency for very small models because the
internal logic is typically underutilized; moreover, they
require interfacing with middle-end processors and operating
systems. For instance, in the MAX78000 SoC, convolutional
and linear filters with input data size of 16× 16 provide
a latency of ∼ 75µs, irrespective of filter size, while a
single two-dimensional convolutional layer with four output
channels requires ∼ 150µs, irrespective of the number of
input channels [18]. Similarly, the Google Edge TPU plat-
form suffers from extreme underutilization of its Processing
Elements (PEs) and inefficient sequential scheduling of
Fully Connected (FC) layers [19]. These aspects outline
that a low-complexity specific solution providing tiny ANN
models hardware acceleration in resource-constrained MCU
applications can be advantageous.

In this paper, we present a tiny accelerator with the
associated ANN design toolchain that fits a low-power and
low-end FPGA, that is powerful enough to outperform a
microcontroller clocked at the same frequency and can
be interfaced with any MCU to provide inference accel-
eration. We name this device Single Perceptron Linear
Vector Processor (SPLVP) given the presence of a single
perceptron in its Arithmetic Logic Unit (ALU), enhanced
with additional accumulation and scaling capabilities. SPLVP
includes a parallel Input/Output (I/O) interface to implement
programming and data streaming from any external MCU.
The SPLVP prototype introduced in Sec. III has been
implemented on a 10CL025 FPGA device and can run
TensorFlow Lite (tflite) models, thanks to a customized
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toolchain detailed in Sec. IV. The unique contributions of this
work can be summarized as follows: i) the accelerator has
very low logic utilization, but this notwithstanding it enables
an average of 9.6× speedup compared to a STM32L4 MCU
clocked at the same frequency, ii) it has an enhanced single
perceptron computing unit that is scheduled to cover all the
nodes of a FC ANN thanks to a specific internal memory
partitioning, while in contrast, typical accelerators implement
a systolic array of PEs (see Fig. 1) [20], [21], iii) it can
be interfaced to any MCU thanks to a specific interface,
whose pins can be directly driven by MCU General Purpose
I/Os (GPIOs), iv) the associated portable toolchain enables
Multi-Layer Perceptron (MLP) network design, compilation,
assembly and simulation directly from TensorFlow (TF)
and tflite though Post-Training Quantization (PTQ), and
v) its assembly code, when considered as an intermediate
representation of the ANN, can be automatically converted
into hardcoded VHDL, thus enabling another order of
magnitude inference latency reduction. Sec. V validates
the processor prototype and the design toolchain using
custom and publicly available datasets and discusses the
performance of the obtained ANN models compared to an
STM32L476 MCU running optimized code generated using
its CUbeMX.Ai tool. There, we further position our work by
comparing the inference performance of the obtained models
with other acceleration solutions targeting power-constrained
systems and the Google Coral platform. We outline further
research steps and potentials in Sec. VI.

II. RELATED WORK
The implementation and deployment of ANNs in micro-
controllers are major research trends. Manufacturers are
releasing software capable of converting ANN models
obtained using ML libraries into optimized machine code for
their MCUs. A well-known example is STM32 CubeMX.Ai,
which processes ANN models in various formats and
outputs the microcontroller network implementation [22].
Semiconductor and software companies are also making
significant efforts to optimize tinyML model execution from
combined software and hardware perspectives. They are
addressing the problem from both a compiler viewpoint [23],
and by devising specific Neural Processing Units (NPUs)
co-processors integrated into Application-Specific Integrated
Circuits (ASICs) with a main CPU core [24]. A clear
example is the MAX78000 microcontroller [25], which
integrates custom hardware accelerators (including other
co-processors), directly connected to the system bus of a stan-
dard CPU core. Another example is given by a class of SoCs
integrating multiple dual-core 64-bit RISC-V processors with
dedicated audio and CNN accelerators [26]. A different
approach regards the use of Single Instruction Multiple
Data (SIMD) processing in the main CPU by enabling up
to eight parallel Multiply And Accumulate (MAC) 8-bit
operations as in the Cortex-M55, for a 20% performance
advantage compared to a Cortex-M4 [27]. Furthermore,

another approach regards a specialized SoC that includes
RISC-V processors and a dedicated FPGA that implements
ad-hoc and reconfigurable accelerators supporting CNNs,
MLPs, and basic operators [28]. These systems are supplied
with their associated dedicated model design, compilation,
and deployment toolchains. The ML models obtained with
these toolchains, however, are platform-specific and cannot
be used with other MCUs.

Deep Neural Network (DNN) FPGA accelerators have
been extensively proposed to solve more or less generic
ANN acceleration problems starting from power budgets
(except rare cases) above 1/10Watt [29]. While their vast
majority speeds up CNNs, interestingly, ANN accelerators
are very diverse in terms of supported quantization, which
can range from int1 to float64 across all power ranges.
The reported data show that the int8 quantization is
very prominent [29]. However, only very few of them are
designed for applications on the Edge, and none of them
are for direct interfacing with MCUs, that are capable of
delivering only a few hundred Million OPerations per second
(MOPs/s) [30]. Based on a recent survey [20], until 2022 very
few non-spiking FPGA accelerators targeting low-power
applications have been published, two of them designed
for CNNs and one for Transformer networks. In addition,
an accelerator targeting tinyML on the Edge has been very
recently proposed [31].
Among the large variety of possible ANN models,

MLPs have been massively researched so far, but this
notwithstanding they still represent a fundamental building
block for the implementation of sophisticated ANNs, and
are effective in low-bandwidth time-series recording from
low-power sensors [30]. MLPs are a FC class of feedforward
ANNs, important in many classification and regression
problems [32]. Recent works show that ANN architectures
based only on MLPs can be considered as a valid alternative
to Vision Transformers and CNNs for image classification
[33]. The idea of accelerating an MLP is not new (see, e.g.,
[34]): many systems have been extensively implemented in
the past years on FPGA for real-time human activity clas-
sification or ElectroCardioGram (ECG) anomaly detection
[35], [36] with hardcoded networks, or as programmable
accelerators through Network on Chips (NoCs) of Reduced
Instruction Set Computer (RISC) cores [37]. The system
in [38] demonstrated synthesis-time configurable and run-
time programmable accelerators, that exhibited significant
speedups on FPGA compared to MicroBlaze and ARM
processors, but without focusing on power consumption nor
MCU interfaceability. Towards a full hardware hardcoding,
other recent works investigate the hardware implementation
of MLPs through their direct FPGA synthesis (see, e.g.,
[39]). The literature shows that feedforward MLP networks
can be also synthesized for ultra-low power ASIC aiming
at accelerating both inference and training, by co-designing
hardware and software to determine bit precision with
approximate computing [40].
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FIGURE 2. Simplified SPLVP architecture, with detail on the memory elements used
to store FC layers coefficients and biases. The additional accumulation input here
considers only bias memory.

Recently, in the context of tinyML, MLPs have been
implemented on MCUs using a C-based framework, and
extensively analyzed across Cortex-M4 and the recent RISC-
V-based Parallel UltraLow Power platform (PULP) [30]. This
analysis showed that an octa-core RI5CY can outperform a
Cortex-M4 in three different applications by a factor 22×,
13.33× and 7.5× (the larger MLP, the better performance).
This work suggests that MLPs are relevant in applications
on the Edge of Internet-of-Things (IoT), where mW-powered
MCUs are the most common computing engines.

The aspects outlined above motivated the development
of this work, that regards the design of a low-complexity
programmable solution to assist existing low-power MCUs
in ML inference tasks, providing significant speedup.

III. SINGLE PERCEPTRON LINEAR VECTOR PROCESSOR
A. HIGH-LEVEL ARCHITECTURE AND ASSEMBLY
Fig. 2 shows the conceptual architecture of SPLVP.
We consider ANN acceleration a combined local memory

organization and computing problem. The main idea behind
this processor is to dynamically schedule the execution of
a specialized single perceptron PE of a given parallelism
across a finely partitionedmemory and bywriting back values
directly on it without further hierarchies. Conceptually, this
simple processor inherits the simplicity of a One Instruction
Set Computer (OISC) with absolute memory addressing and
with a simple opcode (com for simplicity). The processor
has four types of memories: the instruction memory I,
the bias memory B, the data memory D, and the weight
memory W. The instruction memory stores the address of the
weight used for computing (in this implementation 11-bit),
the address of the bias memory to be accumulated (11-
bit width as well), the address of the data memory (7-bit),
the options to be considered during executions, the memory
element for write-back, and if required, the divisor used
for scaling the accumulated data to int8. The instruction
memory size is 212 and it is 64-bit wide. The data memory
stores the input layer data and the computed outputs of
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the internal layers, the weight memory stores the weights
of the full MLP, and the bias memory stores biases, and
it is also used as a temporary storage for intermediate
accumations. Since the machine prototype presented here has
a parallelism of eight, for computing efficiency purposes,
both D and Wmemories are implemented using eight separate
SRAMs to permit straightforwardmemorization of the output
in a given column rather than rewriting specific bits of
a larger word. The B memory (11-bit size) has a width
of 32-bit, enough to implement accumulations and directly
add the bias values according to the tflite quantization
specification. To sequentially read the instructions from the
I memory, the machine includes a program counter PC
that can be reset to restart the execution of the program
once the ANN is fully computed. As suggested in Fig. 1,
the architecture is scalable and can be extended to support
a higher perceptron parallelism (that is the number of
simultaneous multiplications and additions executed per
instruction) and larger internal memories, by consequently
adjusting the width of the instructions.

The machine includes a single perceptron unit (box in the
center) that works on eight weights and eight input elements
from the W and D memory, performs their dot product,
has two accumulation inputs, and adds all the elements to
output a single value on a maximum width of 32-bit. The
perceptron also has an internal divider that is used to scale
down the accumulated output to the int8 range, suitable
for storage on the D memory. The machine operates with a
type of processing similar to SIMD because the arithmetic
operation is the same for all the elements of its vector
inputs, but differently from a standard Vector Processing Unit
(VPU) it combines them and outputs only a single value.
SPLVP supports some optional parameters that are directly
applied to the execution unit output, that slightly modify the
computation datapath. A generic assembly line is given in
Lst. 1.

LISTING 1. Single perceptron vector processor generic assembly code.

This single line of code identifies the operation w · d +
b =

∑P−1
i=0 widi + b and specifies to write-back the result

to m(r)(c), where P= 8, d(d_addr) and w(w_addr),
identify the content of D and W memory rows (vectors),
b(b_addr) identifies the content of the B memory at the
specified addresses, r and c are row and column of the
destination memory m which can be any of the D, W or B
memories. For instance, the string d(76)(5) means that
the fifth column of D memory at row 76 is written. If write-
back occurs on memory B, which is organized in 32-bit
words rather than in eight parallel 8-bit memories, then c
must be zero. The destination memory is encoded with a
specific write_back field in the opcode, presented later.
Theoptsfield is a list of options that are additionally applied

to the current computation. The possible options are provided
below.

acc Specifies that the destination memory m is accumu-
lated, i.e., m(r)(c)←

∑P−1
i=0 widi + b+m(r)(c);

relu Applies a Rectified Linear activation Unit (ReLU)
on the obtained single perceptron output. The relu
option, activates a combinational logic at the end of
the datapath to null any negative value;

popin Reads 8× 8-bit data from the input source and
stores it at address d(0). When a popin option
is included in the opcode, the current Input
data from the source (which is 8× 8-bit overall)
is immediately multiplexed to the perceptron to
enable computation without latency and stored at
the next cycle at address d(0);

pushout Writes all the content of d(127) to the sink.
It enforces the redirection of the output of the
perceptron (relative to a particular column c) to
the sink and forwards the remainder columns of
the address d(127);

divv Implements a division by an integer value v
(unsigned 13-bit, therefore enabling division by a
maximum of 213 − 1) after the single perceptron
execution. The div option causes the internal
muxes to divert the data through a datapath which
includes a saturated integer divider that is used
to scale the result. The 13-bit scaling factor is
specified in the instruction opcode. The integer
division is implemented with rounding, that is,
assuming Xd as dividend, XD as divisor and Y

as result, Y =
Xd+sign(Xd )

XD
2

XD
, where the function

sign(x), is 1 for x > 0 and -1 otherwise;
loop Resets the program counter to zero and restart

inference.

As a write-back field is included in the instructions,
together with the other fields r and c, the instruction itself
is used to directly demultiplex the single perceptron output
to the corresponding destination memory w, b, and d (with
truncation if necessary for 8-bit memories). The architecture
supports write-back to any of the D, B, and W memories,
but as we here focus on inference acceleration, the compiler
implements only write-back on D and B memories. The
possibility of writing the W memory, however, would be
fundamental to implementing online training, which is a
useful and only partially explored feature inMLP accelerators
[41]. Observe also that the presence of a specific option acc
to enable accumulation on a particular memory element goes
in favor of the implementation of Recurrent Neural Networks
(RNN), where accumulated values do not need to be reset.

We have chosen to implement ReLU because it requires
low resources, it is energy efficient compared to hyperbolic
tangent [42], and it is a first-to-go choice [43]. We have
investigated the implementation of an approximation of the
hyperbolic tangent tanh(x) in the form of LUTs, by assuming
input and output in the int8 range. Results show that
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FIGURE 3. SPLVP assembly with associated conceptual architecture elements during code execution.

the number of LUTs of tanh(x) depends on the considered
function domain across x, in particular requiring 127, 117,
103, and 94 LUTs, for the intervals [−1, 1], [−2, 2], [−3, 3]
and [−4, 4], respectively. The MAE of our approximation
across all cases is always below 0.26. On the other hand,
ReLU requires only 7 LUTs. In light of these results and its
energy efficiency compared to hyperbolic tangent, we have
considered ReLU as a viable choice for the implementation
of our low-complexity and resources accelerator.

Fig. 3 shows an example of a complete SPLVP assembly
file and illustrates how instructions internally work. Com-
ments start with the character # and the text file is divided
into four regions which identify and declare the content of a
memory element in the architecture. The d: memory region
declares the content of the Dmemory. The b:memory region
declares the content of the bias and accumulation memory.
Accumulators are initialized at zero while biases are constant
values. The w: memory region declares the content of the
weight memory of the ANN and additionally, it defines move
weights. With these special weight values, data can be moved
from one column c of the Dmemory to another, by optionally
adding a constant bias. This edge usage of the perceptron
(although resulting in low resource utilization) enables the
compiler to generate memory-to-memory move operations.
This operation is useful to move results to the last memory
cell d(127) thus enabling output sink write. Move weights

are sparse constant vectors that copy the column value where
the corresponding coefficient is ’1’, and reject the content
of the others where it is ’0’. Finally, the program memory
is defined with the label main: which includes a sequence
of one-instruction assembly lines, previously introduced in
Lst. 1. The program memory sequentially addresses the
content of the other three memories which provide inputs for
the computing unit, and write-back results to one of those.

When an instruction comprises a popin option, the data
arriving from the source (implemented in hardware using
a First-In First-Out, FIFO, memory) is immediately used
for computation and it is implicitly written to d(0). This
operational scheme is different compared to all other options:
when a popin is issued, the source data are immediately
redirected to the perceptron without first reading the input
data from the D memory. For all the other options, instead,
the d inputs of the perceptrons are sequentially read from the
D memory. This functionality enables the vector processor to
complete a single instruction within the same clock cycles,
also in case new data are sourced. At assembly level, the
only semantic constraint that must be ensured is that when a
popin option is used the first operand of the com instruction
is d(0).
As exemplified in Fig. 3, the options in the assembly code

operate on the datapath to route the output of the memories
and enable specific functional units. For instance, for an

VOLUME 11, 2023 119903



M. Crepaldi et al.: 8-bit Single Perceptron Processing Unit for Tiny ML Applications

FIGURE 4. SPLVP 64-bit opcode stored in the I memory. The destination memory m for write-back is encoded using the table given on the right. Options
are encoded directly using 1-bit flags, except from the divider.

option pushout, similar to the popin case, the current
perceptron output is redirected to the output sink, and the full
output vector (comprising overall eight values) is completed
by the other seven values from the same memory row, which
is 127. The multiplexer devoted to redirection indeed accepts
both pushout and the column value c. Consequently, also
in this case, the semantic constraint on the instruction consists
of having, as the last argument (write-back) of the com
instruction, a value of d(127) irrespective of the column c.
Fig. 4 shows the opcode of the vector processor. Instruc-

tions are encoded in a little-endian format and include the
option bits, mostly in the lowest part (bit nine to zero). With
such encoding, the instruction memory I can be seen as a
simple addressing table that stores information on where to
retrieve coefficients, data, and accumulations, how to modify
the datapath, and where to write the results. The opcode
straightforwardly encodes all the information included in the
assembly command given in Lst. 1.

In this work, we have implemented integer arithmetic
PEs. However, the machine could be synthesized using
floating-point formats such as bfloat16, float16, and
TensorFloat32 [44], by implementing the required logic
in the PEs, and by adjusting, in general, memory size. It would
be also possible to maintain memory capacity unvaried and
store intermediate layer results using 8-bit floating point
arithmetic, for instance e5m3 or e4m4 [45]. In particular,
e5m3 can represent normalized float16 numbers with
lower accuracy but enable a small overhead for float32
conversion. Consequently, the bias memory can be used to
directly store floating point accumulations at 32 bit.

B. BLOCK SCHEME AND MCU INTERFACING
Fig. 5 depicts a high-level internal block scheme of SPLVP
with the associated MCU interface. As with an Inter
Integrated Circuit bus (I2C), a Synchronous Peripheral
Interface (SPI), or a Universal Asynchronous Transmit and
Receive (UART) interface (normally available in all MCUs),
the maximum data transfer speed would be limited, we have
developed a custom parallel interface that has overall 28 pins
(16 for input and 12 for output). Observe that low-power
MCUs are available in packages with enough number of
pins to host our interface. For instance, the STM32L4
MCU considered in this work is available in packages
having 72 to 144 pins. With our custom interface, data
can be simply bit-banged directly to the general-purpose
I/O pins of an MCU without necessarily requiring specific

FIGURE 5. SPLVP high-level block scheme with the internal sub-systems
devoted to controlling a custom interface that conveys MCU incoming and
outgoing data.

bus hardware support. This portable and low-complexity
mechanism has the potential advantage of being easily
executed for instance by a Direct Memory Access (DMA)
without burdening the microcontroller CPU. By carefully
planning MCU pin connections, data can be organized in
memory so that it is enough to perform straight DMA
transfers directly on the GPIO peripheral registers. The
interface is specifically designed to i) transfer the program
and data to the SPLVP (to implement programming and
inference), and ii) read computed output from it. It is
split into input and output ports, and it is controlled by
two dedicated sub-systems namedInput Interface and
Output Interface that implement a custom protocol.
Both ports enable high-speed data transfer up to 10Mbytes/s.
In case the SPLVP program does not fit the internal MCU
flash, cheap external serial memories can be used to retrieve
the program at boot time.

We define two operational modes, Programming Mode
and Run Mode. In Programming Mode, the data from
the MCU is used to initialize all the internal memories of the
SPLVP core. In Run Mode, the inference is executed; the
data from the MCU is pushed to the Input FIFO block,
i.e., the source given in Fig.2. The core writes the results to
the Output FIFO which represents the sink. In this imple-
mentation, both FIFOs are eight elements deep, and input and
output data are 64-bit wide. The Controller, based on the
status of the Input Interface (Programming or Run
Mode) and the empty/full status of the FIFOs, coordinates
the SPLVP core and implements fetch and execute phases.
The perceptron execution is normally completed in two clock
cycles, while in the presence of a div option, it is prolonged
by 12 clock cycles. The complete hardware implementation
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FIGURE 6. Complete design toolchain workflow that considers int8 quantized float32 input data for both training and simulation to generate all the
necessary files to operate SPLVP.

of the processor is detailed in Appendix Sec. A and the
interface is detailed in Appendix Sec. B. A detailed digital
simulation encompassing both full hardware and interface is
given in Appendix Sec. C.

IV. TOOLCHAIN
We have designed the complete toolchain of SPLVP using
python3, which enables code portability across different
operating systems. To increase the ease of operation and to
allow the users to smoothly design and run neural network
classifiers on our ML microprocessor we have designed
an ad-hoc utility named build.py. This program reads
a YAML file that includes all the information required
for data pre-processing, supervised learning, compilation to
binary assembly, and simulation of a given FC ANN. As an
alternative implementation method, the toolchain can also
generate a VHDL description of the ANN model. In other
words, the ANN can be hardcoded in hardware without
the need for the SPLVP core itself. This generated code
includes a minimally customized testbench and an sdc file
for synthesis.

Fig. 6 shows a compact view of the complete toolchain
flow. The toolchain is invoked by running python3
build.py model.yaml. The YAML file lets the user
link pre- and post-build scripts, that can be used to run
data pre- and postprocessing or enable custom learning
results visualization. Once the model is deployed in a final
application, the pre-build script preprocessing needs to be
implemented on the host MCU as well and applied to
the real-time sensor data. Some examples of preprocessing
encompass data normalization, offset correction, and subsam-
pling. The goal of the preprocessing step (which is mandatory
in ANN [46] and impacts the overall computing time), is the
generation of training and test data quantized in an int8
format. In our toolchain indeed, we assume that input data

for the supervised learning is already quantized at 8-bit, but
represented using float32 numbers. We have chosen this
approach (and not using full float32 data) because input
data from various sensors (for instance keyboard text output)
in microcontroller applications, is inherently quantized (text
can be directly converted into an ASCII representation). Our
goal is the implementation of a solution that can efficiently
run in limited resources MCU as an external component
add-on.

The high-level build.py utility generates the command
line arguments to all the sub-utilities, named sl.py,
compile.py, asm.py, sim.py, and clsynth.py.
These implement supervised learning, quantized tflite
model compilation, assembly, simulation, and direct logic
synthesis, respectively. The implementation details of the
compiler, assembler, and simulator, with an example of direct
VHDL synthesis, are reported in Appendix Sec. D, E, and F,
respectively.

A. SUPERVISED LEARNING INTERFACE
sl.py is responsible for the execution of the supervised
learning on the preprocessed data generated by the pre-build
scripts, and for network quantization. To reduce the memory
bandwidth and the computational cost of ANNs, two types of
quantization approaches exist: PTQ and Quantization Aware
Training (QAT) [47]. The compiler implements PTQ using
the available tflite methods. sl.py is parametrized
by the shape and activation functions of all the network layers,
the loss function to be minimized, the maximum number of
epochs used for training, the optimizer, and the loss limit.
This last parameter is related to the network accuracy and is
defined as the loss threshold belowwhich supervised learning
can be interrupted. In this work, we have used both Mean
Absolute Error (MAE) and Mean Square Error (MSE) loss
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functions. Supervised learning is implemented by training
the neural network assuming float32 weights (randomly
initialized), in particular, the preprocessed inputs at 8-bit are
converted into a float32 value. We do not normalize the
input data with min-max or other common techniques at
training time, rather we use data as is, to directly emulate
a sensor output. The utility also permits the execution of
an inference simulation on the obtained model and permits
the extraction of Scalable Vector Graphics (SVG) simulation
plots. After the float32 model learning is completed, the
network is fully quantized into an int8 representation using
the tflite stack. The obtained network is exported as a
tflite file (in Fig. 6, named model.tflite), which
is a flatbuffer representation of the network itself including
quantized weights and bias values.

B. COMPILER
The tflitemodel file is compiled to generate an assembly
file for SPLVP. The SPLVP compiler is based on the
tflite 8-bit quantization specification [48], and the
relative paper given in [49]. The quantization specification
provides information on the way each operator in the model is
represented, which ones are supported, and the corresponding
tensor specifications. The operator’s input and output tensors
are quantized assuming a given scale factor and zero, which
are fundamental to define integer quantization, in this case,
fromfloat32 toint8 and vice versa. In our work, we used
classifiers that are based only on FC layers. According to
the specifications, the TF’s FULLY_CONNECTED operator’s
input, output, and weights tensors types are int8, while the
bias tensors datatype is int32. To maintain compatibility,
we store the operator’s intermediate and final dot product
results as int32 numbers. The compiler must enforce
write-back on the B memory, which is the only one that is
organized into 32-bit rows. Thecompile.py program takes
as input the generated tflite model and converts it into
SPLVP assembly. According to the tflite specifications,
at the input and output layers data needs to be manually
quantized and de-quantized, thus involving the use of floating
point operations. To keepMCU constraints as low as possible,
in our implementationwe do not consider the input and output
scaling and zeros: we feed the network directly with the
preprocessed inputs becausewe assume that scaling and zeros
tend to be one and zero, respectively. compile.py accesses
directly the flatbuffer file, extracts the tensors graphs and
operators in the model, their weights, biases, scaling factors,
and generates an internal representation of the operators’
graph by assuming a single perceptron unit. It outputs a
single asm file that includes all the instructions and the ANN
data including intra-tensor scaling that is implemented using
division.

C. ASSEMBLER AND PROGRAMMER
At this point of the flow, the assembly file needs to be
translated into a binary machine code that can be directly
downloaded to the SPLVP core. Moreover, it can be also

useful to translate some of the testing input data as binary
inputs to be streamed to SPLVP through its input interface,
so that the operation of the system can be verified after
programming. For these purposes, asm.py considers as
input the compiled asm file, and optionally an input testing
CSV file, to generate i) a firmware binary file to be streamed
on the processor I/O interface (named bistream.bin),
ii) the snapshots in a MIF format of the internal memory
of the device useful to run simulations (named, i.mif,
b.mif, d0.mif–d7.mif, and w0.mif–w7.mif), and
iii) a frozen binary file containing input data taken from
the testing CSV file (named frozen.bin). asm.py
receives, as command line arguments, the input files and
the output directory for binary data generation from the
YAML description, and an autostart option to include a
toggling instruction from programming to run mode at the
end of the program, in the firmware binary file. This way
the device is immediately ready to accept input data and run
inference.

The bin files generated by the assembler are now
ready to be transferred to the SPLVP core running on
the FPGA evaluation board. For this purpose, we used a
commercial MicroPython board that runs a firmware that
drives the SPLVP interface signals, routed over a custom
piggyback Printed Circuit Board (PCB). This programmer
board sequentially streams groups of two bytes from the
bitstream.bin file without modifications (data is read as
is from the file) to the accelerator through its input interface.

D. SIMULATOR
Using the generated MIF files, SPLVP can be then simulated
against the mixed float32/int8 inference of tflite.
The simulator module sim.py considers as inputs a
directory where the MIF files are stored, a test input CSV
file, and finally thetflitemodel.sim.py uses a hardware
model core.py where all the components of the processor,
i.e., the PE, internal memories, input and output FIFOs
are modeled. The simulator first runs a software inference
based on host tflite implementation, and next it runs
again the same inference on the emulated SPLVP hardware.
In particular, it loads the MIF files, pours the memory
snapshots into the hardware model, and then feeds the input
FIFO memory with data from the input CSV file every time
a popin operation is required. When the input CSV file
entries are over, the processor execution is stopped and both
tflite and SPLVP outputs are stored in a CSV file, then
simulation data is visualized. Optionally the simulator can
save the obtained plot in an SVG file.

After the simulation is completed and both tflite/
SPLVP inference outputs are saved on disk, the toolchain can
optionally launch specific post-build scripts to compute, for
instance, the accuracy of the inference on the simulated data
or other useful parameters. These scripts, which are executed
as the last steps in the design flow, are indicated in the YAML
project file using a specific key.
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E. NEURAL NETWORK DIRECT SYNTHESIS
It is also useful to hardcode MLPs on FPGA for real-time
acceleration applications, where very low latency is a
mandatory requirement [35], [36]. For this reason, we have
implemented a functionality in our toolchain to directly
translate the asm file into a synthesizable VHDL description,
through a specific clsynth.py tool. Such VHDL descrip-
tion represents a logic synthesis of the ANN, and it is obtained
by assuming that the assembly is an intermediate represen-
tation (see Appendix Sec. D3). All the layer operations of
the ANN are translated into combinational logic. The data
from the input FIFO is stored into an 8-byte shift register
with depth based on the size of the ANN input layer, and a
single 8-byte register is used to sample the network output.
The description considers two clocks, clk and clk_out
that feed the shift register and the output register, respectively.
To enable a correct synthesis and verification of the hardware
the tool generates a Synopsys Design Constraints (SDC)
file that assumes a clk to clk_out delay of 1µs, and
a testbench specifically designed to stimulate the hardware
model with the input test CSV data, the same file used to
implement the frozen dataset for hardware verification. The
testbench is customized based on the number of inputs of
the ANN, that are unrolled using a pipeline of registers. The
generated output files are stored in a synth subdirectory in
the project folder, and they can be opened by a synthesis tool,
in our specific case Intel Quartus Lite 20.1, to synthesize the
quantized ANN. The same toolchain can then be used for
the design of the ANN model, for the code generation for
SPLVP, and thanks to this automatic synthesis functionality,
for further speeding up inference time on FPGAwhen latency
requirements are very critical.

V. MEASUREMENTS AND VALIDATION
This section demonstrates the real-world applicability of our
solution along with its design toolchain. Moreover, it presents
synthesis results and performance figures of SPLVP. Our
validation phase considered several open source datasets from
[50], except in one case (the fingers recognition task in
Sec. V-B), where the dataset has been manually collected
using custom interfaces and electronic modules. The goal of
all the examples presented in this section is to prove that
SPLVP can be used in real ML applications. Here, we do
not focus, as the primary objective, on the study of the best
ANN to solve these problems and improve the state-of-the-art
ML techniques. For all the considered problems, we designed
customMLPs assuming a binary coding for the output values.
Such representation is discussed and detailed in Sec. V-B.
The number of hidden layers and the network topologies have
been determined based on a heuristic approach and on the
necessity of testing themachine features.We have verified the
operation of build.py on both MacOS Ventura 13.3 and
CentOS Linux 7. We have observed slight variations in the
tflite inference (typically ± 1 variation) depending on
the version of TF, in particular 2.12.2 (MacOS) and 2.6.0
(CentOS Linux).

A. SPLVP SYNTHESIS
Including input and output interfaces, SPLVP has been
synthesized on a 10CL025YU256I7G FPGA device of a
Cyclone 10 LP Evaluation Board. The accelerator requires
18% of the logic cells (4513 Adaptive Look-Up Tables,
ALUTs, out of 24624, for 4140 LUT-only logic cells),
it comprises 373 registers, 33 pins (that is 22% of the
available ones), 6% of the embedded 9-bit multipliers (8 out
of 132) and requires 1 built-in Phase Locked Loop (PLL)
out of 4. The internal memories occupy 77% of the overall
device availability. The design has been synthesized to match
the STM32L476 maximum clock frequency of 80MHz,
hence enabling a fair comparison. The maximum frequency
achievable in the Cyclone 10 LP device is 84.56MHz. The
synthesized object has been converted into a .jic JTAG
Indirect Configuration file (JIC) and written in the internal
flash memory of the evaluation board so that the FPGA is
automatically configured at system startup. The project is
organized into five VHDL files, a VHDL constant definition
file, and one SDC file. The VHDL files comprise the
description of the entity and architectures of i) the top-level
hierarchy, ii) the instruction decoder, iii) the single perceptron
(including ReLU, accumulation, and scaling functionality),
iv) the input interface, and v) the output interface. All the
processor constants, e.g., opcode bit positions and memory
width definitions are contained in a VHDL definition file.
The memories and the PLL are based on proprietary FPGA
IPs. By assuming the same memory capacity of the present
prototype, increasing the perceptron parallelismPwould only
lead to an increase in the number of Digital Signal Processing
(DSP) elements and multiplexers devoted to routing the
perceptron output. The absolute addresses in the instruction
memory I would simply identify a larger number of parallel
W and D memory groups, in this case not limited to eight.

B. PHYSICAL PROGRAMMER AND FINGERS
RECOGNITION
To verify the operation of SPLVP, we have developed
a proof-of-concept module using a commercial MicroPy-
thon V1.1 module, that can be directly connected to
the Cyclone 10 LP Evaluation Board and program the
SPLVP. Contextually, we have developed a toy recognition
application in which a commercial AMG8833 Infra-Red (IR)
camera image (8× 8 pixels, 12-bit per pixel, 10 frames per
second) is used to detect three features, i.e., the presence
of one or two fingers in front of it and additionally, their
absence. Fig. 7 shows the complete setup used to build the
dataset and implement this recognition task, which includes
the programmer’s proof-of-concept. The IR camera is read
using another Micropython module named camera reader,
(see A⃝) that is connected to a personal computer using a
USB cable. The personal computer, B⃝, that runs the model
builder introduced in Sec. IV, includes a specific interface
for the IR camera named cif.py. The camera interface
is used to collect raw data, indicated as p, used for the
supervised learning of the model and its testing. The camera
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FIGURE 7. Experimental setup block scheme for both dataset acquisition and inference using the IR camera, including programmer and
camera reader. The goal of this recognition task is the detection of three conditions, two given by hand gestures and the third given by
their absence.

output is preprocessed by cif.py (to obtain pS ) using
the formula indicated in C⃝. First, the raw data is divided
by 212−8 to rescale pixel depth to 8-bit, it is multiplied
by a gain G, and finally, it is added to an offset O.
These scalings have been implemented to increase image
contrast and permit the visualization of fingers at nominal
body temperature. For each pixel, the number of operations
required for preprocessing are then i) a binary shift, ii) a
multiplication, and iii) an addition, for an overall overhead of
approximately 64× 3= 192 operations. These preprocessing
operations need to be executed before sending data to SPLVP
and therefore constitute an overhead that needs to be handled
by an MCU.

Once the MLP is designed using the model builder, the
programmer device can be used to program SPLVP. The
programmer is another Micropython board that is directly
connected to both the input and output interface of SPLVP
using the onboard GPIOs. The input interface is connected
to pins A0–A7 for the low byte and C0–C7 for the high
byte. The output interface is connected to pins B15–B6 and
B1–B0, where B0 is FIFO_FULL. The programmer is
connected to the personal computer using another USB
port and operates as a Virtual Communication Port (VCP)
and Mass Storage Controller (MSC). Programming is
achieved by transferring the bitstream.bin file content
through the SPLVP input interface using Micropython
scripts that implement a software version of the protocol.

bitstream.bin can be transferred to the programmer by
simply copying it from the computer to its mass storage
device. After SPLVP programming, the core goes into run
mode and the programmer can be used to test the processor
or send frozen binary inputs to verify its functionality. In this
specific recognition application, the programmer waits for
new data pS on the VCP (that are transmitted from the
computer by cif.py) and directly applies them as input
to SPLVP by implementing the input interface protocol. The
camera interface, indeed, bridges the data from theAMG8833
camera reader to the programmer by opening two separate
VCPs and directly forwards the camera output to SPLVP,
thus enabling real-time recognition. This specific proof-of-
concept implementation requires the PC, but the IR camera
can be directly accessed by the same MCU that is interfaced
with SPLVP.

With cif.py we have created a dataset for the three
conditions exemplified in Fig. 7. The training dataset
comprises 1071 entries, where the first 445 entries are relative
to an absence of hands in front of the camera, the next
400 are relative to one finger and the remainder are relative
to two fingers in front of it. Typically, in MLPs the number
of outputs corresponds to the number of features to be
detected (in this case three), and typically after FC layers a
softmax layer is used to extract the probability of each feature.
Although softmax is fundamental in Transformers and can
be approximated [51], it is a very computationally expensive
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FIGURE 8. Mixed float32/int8 inference of tflite versus int8-only SPLVP simulation of the developed MLP model for the IR Camera.

operator that makes little sense in our context. As our goal
focuses on maintaining the minimum number of resources to
run MLPs we decided to avoid the use of softmax layers in
our models.

To additionally keep the hardware and software resources
of MCUs low we use binary coding on the classes to be
detected, assuming a big logical margin. In binary coding,
classes are encoded as ordinals, the corresponding values
are converted into binary code, and finally the digits of
such binary code are split into separate columns. Here,
we practically implement the digits ’0’ and ’1’ using
the integer outputs of SPLVP. In literature, binary coding
has been demonstrated to provide the same performance
as one-hot encoding (typically used in combination with
softmax layers) in the study of [52], although it is not
exhaustive. With binary coding, the last layer size can be
indeed two, and the three features of the present example
can be encoded as integer values as 0–0, 100–0, and
100–100, where 0 corresponds to a logical ’0’ and 100
to a logical ’1’. The logical margin here is 100, and it is
defined as the separation between logical ’0’ and logical ’1’
values in the integer domain. Enforcing logical margin has
two main advantages, that is the possibility of i) controlling
the robustness of the output values, similar to noise margin
in logic gates, and ii) ensuring a degree of freedom for
controlling the ratio between the input/output scaling factors
of the quantized network. As the MLP output is still an
ensemble of integer numbers, while logically they need to
be converted to Boolean values, a discrimination threshold of
50 can be applied. Such threshold comparison requires that
the downstream MCU runs, ideally, only compare assembly
instructions on the outputs calculated by SPLVP, therefore
impacting very little on CPU time. Observe that even in the
commercial Google Coral platform, some of the operations
can be still executed on the main CPU [53].
Using the model builder, we have designed an MLP

comprising six layers overall, having sizes 60, 60, 60, 4, 3,
and 2, where the first two layers have a ReLU activation
function and all the others have linear activation functions.
We have chosen to stack multiple linear layers to test the
operation of SPLVP in the presence of multiple scalings
between one layer and another (div option). However, being

all linear, these can be collapsed into a single one. We have
demonstrated that three layers of size 60, 60, and 2, where
only the last one has linear activation, are enough to solve the
problem. We have used an Adam optimizer, a fixed number
of epochs of 300 for training (leaving the final accuracy target
unspecified), and a MAE loss function. After 300 epochs,
the obtained residual loss is below 0.5. The input layer is a
flattened vector of 64 elements one byte each, represented in
an int8 format, whose input testing and training data are
contained in the generated CSV files.

Fig. 8 shows a simulation of SPLVP inference against
tflite assuming the same input dataset, obtained using
our simulator sim.py, that was invoked with the model
builder. As the model has been compiled to provide only
two outputs we present only Output (0) and Output
(1), the two MLP active output values (all the others
are zero) that correspond to the least significant bytes of
the SPLVP output. Results show that the SPLVP inference
is very close to those of tflite, although this last one
results from a mixed float32/int8 computing. For some
inputs with two fingers, in both cases, the model outputs
exhibit a variation compared to the expected values of
100–100. The use of a large separation between the integer
values, and therefore the possibility of using a final threshold
comparison, helps in the mitigation of these spurs and at the
same time relaxes the accuracy requirements of theMLP. The
number of parameters of themodel is 11487.When compiled,
the model occupies 73% of the weight memory, 23% of the
data memory, 15% of the bias/accumulation memory, and
44% of the instruction memory. To run a complete inference
round (single 64-bit input frame), the 80MHz-clocked
processor takes 73.35µ s, which corresponds to the execution
of 1800 instructions. These instructions comprise, inter alia,
div options with longer execution time compared to the
standard perceptron unit operations, and move instructions
with no data parallelism.

Fig. 9(a) shows a photo of the measurement setup
presented in Fig. 7, including both the programmer and
camera reader, and depicts the logical conditions for which
detection can be achieved on the two SPLVP outputs, i.e.,
Output (0) and Output (1). The figure provides also
details on the SPLVP hardware output printed by cif.py
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FIGURE 9. a) Experimental setup comprising the programmer, the Cyclone 10 LP Evaluation Board that runs SPLVP, and the camera reader board for
interfacing the AMG8833 infrared camera (top). Three detection conditions correspond to the absence, or presence of one or two fingers in front of the
camera, with detail on the SPLVP output (bottom). b, c, and d) Output of cif.py while bridging in real-time the output of the camera and SPLVP in the
three conditions, with a graphical representation of the corresponding infrared image.

during inference. Fig. 9(b–d) shows screenshots of the output
of cif.py during the real-time inference executed by
SPLVP while the AMG8833 camera is streaming data at
10 fps. As shown in the screenshots, the output data of SPLVP
is consistent with the training values, thus providing on
its least significant bytes, the integer outputs in the range
enforced during training. Observe that in the case of two
fingers, the integer values reach∼ 120, above the set-point of
100 enforced during training. This notwithstanding, this out-
put classification is still correct because it is required only that
outputs are both above the threshold value (which is here 50).

C. OTHER CLASSIFIERS
This section briefly details the design of a classifier for the
Iris dataset [54] (for which we report its VHDL synthesis
results in Sec. V-C2), and schematically summarizes all the
classifiers used to validate our processor.

1) IRIS MODEL
Fig. 10(a) shows the scheme for the generation of both
training and testing datasets, starting from the attributes and
classes in the original archive iris.data. The first four
columns of the file are attributes and the last column is the
class in ASCII format. Data must be preprocessed to comply
with our toolchain and processor: attributes and classes must
be converted into an int8 format. To this end, a script called
by build.py before supervised learning, implements the
preprocessing steps given in Tab. 2. Thanks to the particular

numerical values in this dataset, the first and the fourth
columns of the normalized attributes become always 127
and -127. This result is advantageous in terms of computing
resources because supervised learning can actively operate
only on the other two remaining non-constant attributes, that
are sepal width and petal length, that vary across a fixed
range.

Because in the original file, the classes are clustered,
to build the training and testing sets, we consider chunks of
20 rows, where the first four are used for training, while the
remainder are used for testing. Observe that in contrast to
what is normally done in typical applications, here we do
not normalize the complete dataset, but just one input at a
time.While the normalization of a complete dataset can result
in global scaling constants (that can be calculated once and
in turn applied to new data), here we rely on a minimum
preprocessing overhead on a hypothetical MCU. This way,
preprocessing requires a limited number of subtractions and
integer divisions on a very small number of attributes, which
is still a viable choice for resource-constrained hardware.
Compared to other ML models that consider 70% of the
dataset for training [55], our network was trained with∼ 80%
of it, leading to 100% accuracy. Fig. 10(b) shows a graph of
theMLP designed using themodel builder. The network com-
prises three layers of size 16, 8, and 2, with the first two hav-
ing ReLU activation, and the last one having linear activation.

Fig. 11 shows inference outputs for both SPLVP and
tflite using the training dataset generated according to
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FIGURE 10. Designed neural network for Iris classification (right) with detail on dataset generation, inference, and output data convention
(left).

FIGURE 11. Mixed float32/int8 inference of tflite versus int8-only SPLVP simulation of the designed FC model given
in Fig. 10. The SPLVP outputs do not overlap with the tflite ones due to integer approximation in the division and to
non-saturation of the 32-bit accumulators.

FIGURE 12. ModelSim Intel FPGA Starter Edition simulation of the MLP hardware description generated by clsynth.py, obtained with the
autogenerated testbench that considers the same testing dataset used in Fig. 11.

what is presented in Fig. 10(a). The tflite outputs differ
compared to those of SPLVP due to the following reasons:
i) the implementation of scaling using an integer division
instead of a fixed point multiplication and shift, ii) the
non-application of the input scaling factor and the associated
output scaling adjustment and iii) the consequent saturation
of the 32-bit accumulators that may occur. To verify the

performance of the obtained model, we have implemented
a post-build script that compares the predicted outputs with
the expected values, and the resulting accuracy is 100%.
This result, which is consistent with the accuracy obtained
with other ML classifiers [56] (above 96%), demonstrates
that detection is robust and performance is not significantly
impacted by quantization and numerical approximations.

VOLUME 11, 2023 119911



M. Crepaldi et al.: 8-bit Single Perceptron Processing Unit for Tiny ML Applications

TABLE 1. Dataset information and parameters used by the toolchain for supervised learning for different classification problems used to test the
operation of SPLVP.

2) IRIS MODEL VHDL SYNTHESIS
Considering the limited size of the Iris model, we have val-
idated the logic synthesis tool clsynth.py by generating
an associated VHDL description (which includes testbench
and SDC file) and by synthesizing it using Quartus Prime
20.1 on the same Cyclone 10 LP device family of SPLVP.
Fig. 12 shows a simulation of the VHDLmodel obtained with
ModeSim Intel FPGA Starter Edition 2020.1. The simulator
runs the testbench generated by clsynth.py and reads
the same testing dataset used in previous simulations. The
testbench generates both clocks (clk and clk_out) in
impulsive mode as they are needed only to i) feed the input
shift register and ii) sample the computed output, respectively.

The obtained output values correspond to those given in the
graphical view of Fig. 11. The delay between the last positive
edge of clk and clk_out needs to match the timing
constraints, that we enforced to 1µs. The time required for
a complete hardware synthesis on a 3.6GHz Intel Xeon CPU
E5-1650 v4 running CentOS 7, is four minutes and 35 s.
The synthesized model fits a 10CL120Y device, in particular
requiring 50185 logic elements (42% occupation), 144 regis-
ters, and 204 fabric 9-bit multipliers. The synthesized VHDL
model has a worst-case propagation delay of∼ 445 ns, which
is ∼ 14× faster compared to SPLVP inference on the same
model. However, the required hardware resources are by far
greater compared to SPLVP (see Sec. V-A).
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TABLE 2. Parameters and preprocessing for different classification problems used to test the operation of SPLVP, including state-of-the-art performance
references.

3) CLASSIFIERS SUMMARY
Tab. 1 and 2 summarize the datasets with associated classifier
parameters, training details, and references for the problems
we have solved using SPLVP. The referenced documents
present classifiers with diverse ML structures for which
we report the acronyms as provided in the respective
publications. SPLVP and its associated toolchain, support
only FC networks. These models, together with the finger
detection classifiers of Sec. V-B are used to assess the
performance of SPLVP against the STM32L4 MCU. Tab. 3

shows the memory occupation breakdown on SPLVP of each
model, with correspondingbitstream.bin programming
file size. This binary file includes the interface pin values
(including clocking) to be bit-banged on the input interface.

D. SPLVP PERFORMANCE AND COMPARISONS
1) L4-SERIES STM32
To compare the inference performance of SPLVP against
a commercial microcontroller, we have considered an
STM32L476 Nucleo Evaluation Board [67] and we have
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TABLE 3. Memory occupation of the various classifiers on the SPLVP internal memory, with indicated capacity and corresponding programming file size
(bitstream.bin) in Bytes.

FIGURE 13. Comparative plot of the execution time for the classifiers previously presented when the tflite model is run on the STM32L4 MCU (IC,
90 nm process) and SPLVP (FPGA, 60 nm process), with associated speedup.

converted the tflite models obtained for the previously
presented problems using STM CubeMX-Ai. This pro-
prietary tool converts generic ANNs modeled in various
software toolchains (for instance TF or PyTorch) into object
files that can be directly linked to other compiled code
and executed by STM32 microcontrollers. We have then
generated a mainfile which calls the translated ANN code and
toggles a GPIO immediately before and after the execution of
the neural network. We applied the same testing inputs used
for inference in the comparative plots given in the previous
sections. The actual STM32 execution time is then compared
with those obtained from SPLVP simulations. To verify the
correctness of the simulations provided by the hardware
model in core.py we have extracted measurements of the
active computation time of the SPLVP through the reading
of an additional pin (corresponding to the negated of the
empty signal of the input FIFO), we have routed at synthesis
time. An example measurement is given in Sec. V-D2.
As simulations and measurements match, the execution time
ofcore.py can be used to assess the hardware performance.
Fig. 13 compares the execution performance of an

STM32L476 that runs the MLPs converted using the STM
CubeMX.Ai utility. We have considered an STM32L476
ARMmicrocontroller (90 nm process) because its main CPU
can be clocked at 80MHz, that is the same clock frequency
used for our SPLVP design. The speedup achieved with

SPLVP is a function of the particular MLP type because
the number of scalings (that require the internal integer
divider) is a function of the number of outputs of each
layer. Indeed, the Iris model that only requires 26 divisions
performs significantly faster compared to the STM32. The
average speedup across the models is ∼9.6×. Compared
to STM32, when the Iris model is directly implemented in
hardware on an FPGA (hence, the model is converted into a
VHDL description and then synthesized using Quartus), the
speed up reaches 209×.

2) HARDWARE INFERENCE SPEED MEASUREMENT
Fig. 14 shows an example measurement of the input FIFO
empty signal which, according to the programmer operation,
directly quantifies the single input inference time of SPLVP.
As previously introduced, the programmer can stream frozen
data generated by the assembler, in particular the content
of the file frozen.bin. In this experiment, we program
the device with the compiled Wireless classifier model,
we send one input to the SPLVP and we check the
output DRDY to retrieve inference. As the proof-of-concept
programmer board runs a non-optimized Python code, that
reads the content of frozen.bin from an external SD
card filesystem and sequentially toggles the values of the
GPIOs connected to the interfaces, the programmer requires
∼100ms to send data to SPLVP and read the result. It can
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FIGURE 14. Example of physical measurement of the SPLVP internal starvation output of Fig. 16 during inference of the Wireless model. The
measured inference time is ∼50 µs. The proof-of-concept programmer board is limiting the overall throughput because its Python code runs
significantly slower compared to SPLVP. The programmer indeed needs ∼100 ms time to retrieve inference data from flash and drive the GPIOs to write
and read the interfaces.

be demonstrated, for instance using bare-metal firmware,
that the MCU can implement this GPIO toggling task
significantly faster. This notwithstanding, SPLVP, which
recovers execution immediately after a new 8× 8-bit data is
written on the input FIFO, completes inference in 50.1µs.
Observe that the Wireless Localization model we have
designed using the model builder has an input layer of size
seven, therefore from the execution viewpoint, writing a row
of eight bytes to the input FIFO is enough to trigger program
execution. After inference is finished, the program counter
is reset, and as the first instruction has a popin option, the
SPLVP controller remains frozen in the fetch state F, until an
input FIFO entry (eight bytes) is not filled with new data.

3) POWER CONSUMPTION
We have estimated the power consumed by the FPGA chip by
running a gate-level VHDL simulation of the SPLVP when
it is programmed with the Iris model and by assuming the
same dataset previously introduced for testing the model.
To this end, the simulation output is then converted into
a VCD file and used to extract signal activities for use
in the Quartus Prime power estimator. The obtained static
and dynamic power consumption of the 10CL025 FPGA
is 248mW. We have considered this approach because a
physical measurement of the consumed current in the board
as done in [68] includes the consumption of all the on-board
chips of the evaluation board.

4) GOOGLE CORAL EDGE TPU AND CPU
To further position our development, we have decided to
compare the obtained inference performance with the Google
Coral development board [69], which is not conceived for low
powerMCU-based devices. The system is conceived to speed
up inference in Edge devices with intensive use of ANN,
with millions of coefficients. The Dev Board embeds an Edge
TPU with a host CPU that runs a Linux operating system.
In terms of toolchains the Dev Board comprises tflite,
which can be simply invoked as done in our simulator to
run both quantized models on the CPU and the TPU. Code

generation for the Edge TPU is obtained through a proprietary
compiler, that is based on a quantized tflite model input
and generates another tflite model tailored to the TPU
hardware.We have loaded oursim.py in the Dev Board sys-
tem and we have run inference for all the models of Fig. 13,
using both the 64-bit ARM CPU core and the Edge TPU.

Fig. 15 shows the inference performance obtained in
both cases. It is clear that both computing architectures
(including in the count the underlying operating system, and
the associated tflite software library as well), cannot
reach the inference time of SPLVP because they are designed
to manage high complexity ANNs with several orders of
magnitudes larger number of coefficients. Simply put, the
models used in this test are too small to justify the associated
overhead required by these complex systems to operate. This
result, however, further justifies the relevance of our work,
as for applications requiring very low hardware resources,
such systems, although providing orders of magnitude higher
computational powers compared to our hardware, cannot be
used to obtain the same performance. It is noteworthy that the
onboard CPU performance is significantly better compared
to the Edge TPU. This can be easily explained by the larger
overhead required by the host CPU to load inputs on the
TPU and retrieve them using the Linux operating system,
which is by far larger compared to the active inference time
needed by our models. Moreover, the TPU is designed to
aggressively accelerate matrix multiplications, and we expect
that if its hardware acceleration units are not fully used,
data is filled with zeros, therefore hindering its capabilities.
This fact is more evident for the Iris model, where the
6.25µs active computation time does not justify the use of
more complex hardware. The Edge TPU of course provides
significant performance speedups when the ANN model is
large and complex and can be hosted completely inside the
device’s internal memory. The metric provided herein refers
to measurements with the same input test datasets described
previously. In the case of larger datasets the inference time
per single input decreases in both cases, still stabilizing
across values of a few hundredµs. The performance obtained
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FIGURE 15. Comparative plot of the execution time for the problems previously presented when the tflite models are run on a Google Coral Dev
Board CPU, and on the Edge TPU.

with the 400MHz quad-core NXP iMX8 Cortex A53 CPU
of the Coral Dev Board is significantly higher compared
to the STM32L476, however, we can observe an overhead
baseline that hides the real active inference performance.
In the STM32 (and in the SPLVP) case, the inference time is
directly proportional to the size of the ANN model, while for
the Coral CPU, similar to the Edge TPU, this does not apply.
We conclude that these high-performance solutions cannot
be effectively used in very limited hardware applications
with miniature-sized ANN, due to the hardware and software
architectural overhead they require.

5) OPERATIONS PER SECOND
A common metric used to quantify computing performance
in neural processors is the number of operations completed
in a second, abbreviated in OP/s. This parameter is typically
reported as peak performance as the real utilization of the
hardware depends on the size and the topology of ANN used
for inference. This and the related OPs/W metric, however,
provided as they are without specifying the underlying
hypotheses are considered harmful [70]. Thanks to our
core.py hardwaremodel used insim.py, we can compute
the exact number of operations run by the CPUwhile running
the developed ANN models. Tab. 4 reports the real OP/s
used for inference in the seven cases, obtained by referring
to the real number of active operations according to the
presence of weights equal to zero. To run a single perceptron
without options, the number of operations is eight 8-bit
multiplications, seven additions (up to 20-bit), and another
32-bit addition for accumulation, overall 16. By including the
acc, relu and div options, the device can perform up to
19 operations, but the integer divider requires a larger number
of clock cycles compared to standard execution. The peak
OP/s of our architecture is indeed 760MOP/s (1.52GOP/s if
the perceptron were executed in one 80MHz clock cycle),
but the presence of move instructions and integer division for
scaling that both depend on the topology of the network, leads
to lower OP/s. This result is consistent with other accelerators

TABLE 4. Throughput of SPLVP while running the devised MLP models
accounting for a reduced active datapath when weights are equal to zero
and the exact number of operations per instruction options.

that in general cannot always exploit their peak performance
capabilities, because these depend on the ANN topology they
run. Notwithstanding the effective throughput is significantly
lower compared to high-end accelerators, it is enough to
outperform the MCUs.

6) OTHER ACCELERATORS
It was not possible to directly use the obtained tflite
quantized files with the MAX78000 toolchain because its
tflite support is deprecated and limited. However, when
similar models are executed using such MCU integrating
multiple convolutional engines, we can expect the same
latency baseline of Google Coral, although lower in magni-
tude. Recent works in the literature show that theMAX78000
base execution units typically require two-dimensional inputs
and in case less computing resources are required, data is
filled with zeros, thus resulting in a latency baseline mostly
independent from the operation size (for instance, a network
with 4 input channels, 3× 3 kernel size, padding of one, and
4 to 64 output channels, leads to a constant baseline latency of
∼ 150µs, by far larger than SPLVP) [18]. The MLP models
investigated in this work have a small size (the biggest Avila
model counts 270 neurons). For such model sizes, PULP Mr.
Wolf (Multi-RI5CY) in [30], although working in fixed point,
provides a maximum speedup of 8× compared to the Cortex-
M4, while SPLVP exhibits slightly higher performance.

To provide a more thorough comparison with the RISC-
V-based platform presented in [30], we have considered
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TABLE 5. Inference time comparison of SPLVP with respect to PULP Mr. Wolf where MLPs are implemented using the FANN-on-MCU toolkit.

TABLE 6. Inference time comparison of SPLVP with respect to MLPCP in [38] when synthesized with eight concurrent processing-elements (best case).

TABLE 7. Inference time comparison of SPLVP with respect to CNN-MLPA in [71] when synthesized for MLP operations, and for different number of PEs.

the reported case C which refers to an MLP with layer
sizes 7, 6, and 5, and we have compared the execution
time of SPVLP with PULP Mr. Wolf with code generated
from the Fast Artificial Neural Network (FANN) toolkit.
Tab. 5 shows the obtained inference speed. SPLVP does
not support sigmoid activation functions, which we have
substituted here with ReLU. Our tiny accelerator outperforms
both IBEX and a Single-RI5CY, while it provides almost the
same performance as the octa-core Multi-RI5CY. Observe,
however, that the RI5CY architectures require a non-recurrent
extra latency of 1–1.3ms for initialization, that however
becomes not significant with an increasing number of
inferences. On the other hand, SPLVP does not require
initialization because the inference is executed while an
upstreamMCU is writing data to the input FIFO. Given these
results, we conclude that our tiny SPLVP is a meaningful
solution in applications requiring small-sized MLPs and
avoiding the replacement of the MCUs with other more
sophisticated architectures.

Tab. 6 compares the inference time of SPLVP with
the programmable MLP Co-Processor (MLPCP) in [38],
which is clocked at 100MHz. Each PE comprises a MAC
unit, an activation function, an accumulation register, and
a separate controller. The significant speedup obtained by
SPLVP can be attributed to the machine computing core
and the machine’s internal memory partitioning. The PE of
MLPCP, although fully concurrent, do not provide the same
performance as our SPLVP computing unit that sums in a
single clock cycle eight computed values with the previous
accumulated value without requiring additional scheduling.
Furthermore, MLPCP requires external AXI lite and AXI4

stream buses to operate, which are not usually available in
MCUs.

Tab. 7 compares the inference time of SPLVP with
the programmable CNN-MLP Accelerator (CNN-MLPA)
in [71], which can be synthesized using Xilinx Vivado
High-Level Synthesis (HLS) to support MLP operations in
floating point format (with selectable precision). The system
runs at 100MHz and each PE comprises similar sub-blocks
as in MLPCP [38]. To operate with MLPs, the system has
been synthesized using ReLU activation functions. For such
very small models, the impact of increasing the number of
PEs in CNN-MLPA is not significant because they remain
underutilized, as the inference time only slightly decreases,
while the hardware resources increase linearly. This fact,
further emphasizes the usefulness of SPLVP. In the vast
majority of cases (that is, except for 16 PEs), SPLVP provides
better performance. Similar to MLPCP, this system requires
an AXI bus to operate.

Tab. 8 compares SPLVP against low-end FPGA pro-
grammable accelerators that target embedded applications,
and have comparable arithmetic. For our comparison, we con-
sider architectures that enable inference of non-hardcoded
MLP topologies, that can be defined at compilation and
programming time. We do not consider the MLP FPGA
accelerators that operate on fixed network topologies (for
instance, [35], [36]) because the logic resources they require
is a function of the implemented MLP size (the larger MLP
and arithmetic representation, the larger logic resources).
The number of specialized programmable FPGA accelerators
targeting our application domain is not substantial because so
far tinyML efforts are concentrated on the execution of ANN
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models directly on MCUs and the development of standalone
ASIC or SoCs, that can be aggressively optimized for power
consumption. From the comparison, it is evident that SPLVP
is the smallest stand-alone low-end FPGA accelerator avail-
able in the literature. None of the reported work addresses the
problem of MCU interfacing, which is here solved thanks to
an ad-hoc 28-pin interface. The accelerators in [31] and [72]
provide a configuration and data interface, but no specific
solution for MCU interfacing is disclosed. Moreover, the
accelerator in [73], which consumes 1.77W, needs to be
interfaced with an ARM processor and a DDR3 controller
with an AXI4 bus (that can have a size 32–1024-bit). The
maximum throughput achievable with SPLVP is limited
by the low number of computing elements it integrates
(8 multipliers overall in the proposed implementation), and
by the requirement of two clock cycles for a single perceptron
execution. SPLVP, however, is a scalable architecture that can
be parallelized, or its perceptron parallelism can be expanded.
The reported solutions are implemented in different FPGA
technology processes which impact power efficiency and
clock frequency. Moreover, these accelerators provide a
very diverse number of computing elements and different
memory sizes. For these reasons, we have elaborated a further
parameter to standardize performance evaluation and better
position our design. We define a quantity named Operational
Density (OD), as OD = Ocyc/r , where Ocyc is the number of
operations executed per accelerator cycle and r is the count
of the 4-input LUTs and DSP blocks normalized with Logic
Array Blocks (LAB) of a Stratix-III FPGA, by accounting for
the relative ratios reported in [74] in Tab. 2. This quantity is
irrespective of the memory utilization, which we assume has
little impact on the associated additional logic. While DSP
blocks occupy significant resources, registers can be excluded
from the count as they are significantly smaller compared to
LUTs [74]. This number quantifies the density of the design
as a single operation cost in terms of FPGA resources and
can be a useful metric in resource-constrained applications,
where throughput is not necessarily the main aspect to be
considered. According to this metric, SPLVP is the best
one among the listed FPGA accelerators. The accelerator
in [73] has a comparable figure of merit, indicating a high
utilization of the available hardware resources, but consumes
considerably higher power, and thus cannot be applied to
embedded systems on the Edge.

Compared to MLPCP of Tab. 6, when synthesized using
LUTs and eight PEs, SPLVP achieves lower resource
occupation. On the considered Xilinx ZynQ 7000 SoC
(XC7Z020 device), MLPCP requires 8.2% BRAM, 7.7%
DSP, 2.9% registers, and 4.9%LUTs [38], which corresponds
to about 11, 17, 3085 and 2606, BRAMs, DSPs, registers
and LUTs. Assuming that eight MACs are executed at each
cycle (one multiplication and one accumulation per PE), the
estimated OD is 40·10−3, which is still lower compared
to SPLVP. CNN-MLPA of Tab. 7, requires 18218 LUTs,
6 DSPs, 11670 registers, and 222 BRAMs, for an estimated

OD of 6·10−3, where the number of operations has been
calculated as throughput divided by the clock frequency
reported in Tab. 4 in [71]. SPLVP provides the lowest
resource usage. We conclude that SPLVP is the lowest
resource occupation programmable MLP accelerator that can
significantly outperform an STM32Cortex-M4 clocked at the
same frequency.

VI. DISCUSSION AND CONCLUSION
We demonstrated that tinyML acceleration is a meaning-
ful problem for low-complexity and low-power devices.
We designed the SPLVP accelerator to be easily connected to
any microcontroller. Even with limited resource utilization,
it proved to increase the reference MCU inference perfor-
mance by a factor of 10×. The SPLVP prototype and its
associated toolchain can be still improved in different areas.
Thanks to its flexible memory architecture the accelerator
can be extended to support online training and other type
of feedforward networks. We have demonstrated successful
applicability toMLPs through a series of test cases. However,
the PE of SPLVP can be also used as is without hardware
modifications to implement CNNs, thanks to the application
of Toepliz matrices [75] and operation order rescheduling.
The CNN support can be further optimized at the instruction
level by considering conditional loop options to repeat the
application of kernels on the same memory regions.

Given its low resource count, SPLVP can be synthe-
sized also in other low-end and low-power FPGAs that
can provide lower power consumption compared to the
platform presented in this work. To obtain significant power
consumption reduction, which is not possible so far using
an FPGA platform, the processor can be synthesized on
ASIC as a standalone chip or alongside an on-chip MCU,
and scaled by extending the addressable memory space to
support larger networks. Moreover, the implementation of
SPVLP using mixed-precision floating-point arithmetic can
be investigated. Other optimizations that regard both the
supervised learning interface and the hardware itself, can
be achieved by enforcing power-of-two scaling factors at
training time, thus avoiding a hardware integer divider. Other
further research work can focus on the implementation of a
more aggressive quantization scheme, which can be applied a
posteriori on the obtained assembly representation so that the
hardcoded VHDL description can be synthesized with a min-
imum number of resources. Moreover, such direct hardware
synthesis can be further optimized by plugging in gate-level
descriptions of multipliers, adders, and dividers, so that the
synthesizer can further descend in the hierarchy and perform
an aggressive simplification of what is not needed.

APPENDIX
A. DETAILED HARDWARE ARCHITECTURE
Fig. 16 shows in detail the SPLVP microarchitecture imple-
mented on the low-power FPGA. In the figure, signal naming
is associated with each component, hence, we will consider
in the description that follows a subset of the depicted signals
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TABLE 8. Comparison of SPLVP with state-of-the-art Low/Middle-End FPGA programmable accelerators for Low-Power, tinyML and Edge applications.

without losing generality. During our initial development
steps, we implemented SPLVP assuming different memory
capacity starting from a minimum of 8-bit. This allowed
programs to address up to 255 memory locations for D, B,
W, and I. However, from the results of practical applications
presented here, we have expanded device memory allowing
the execution of larger MLPs. Although the functional units
implementation remain unvaried, the hardware implemen-
tation of SPLVP changes because the synthesizer infers
pipeline stages in the memory blocks that are a function of
memory capacity and routing. Memories implementation is
typically derived from a built-in Intellectual Property (IP)
of the manufacturer. Up to an 8-bit address, the number of
pipeline stages on eachmemory was inferred to one, while for
larger memory instances it shifted to two. To solve this issue,
we have designed the clocking sub-circuit (top left side of
the figure) to generate synchronized clocks, onemain clock at
80MHz, clk, and another at twice the frequency, clk_mem.
Timing-driven synthesis succeeds by simply posing multi-
cycle constraints.

The clocking circuit generates also the reset signal rst for
all the sequential logic in the processor. The raw clocks c0
and c1 are derived from a built-in fabric PLL, which con-
siders the on-board 50MHz oscillator output as a reference
for frequency synthesis. The Reset Logic gates these raw
clocks until the PLL has reached a steady state by counting for

a sufficient number of cycles (resulting in a 1.3ms delay) after
the locked signal is asserted. Once this signal is active for
the first time it can indeed still toggle before stabilizing. The
data incoming from the input interface [Input Finite
State Machine (FSM)] – herein referred as data8 –
is routed to the proper functional unit depending on the
current operational mode. During programming, the Input
Finite State Machine activates the prog signal, and
data is routed to the Programming Path given in the
figure. The interface generates all the addresses required to
fill the internal memories. These, are all dual ports RAMs
implemented using manufacturer IPs (except for I memory
which is a single port RAM), to easily handle the particular
datapath reconfiguration required for the options popin and
pushout. These dual port RAMs comprise two inputs and
output ports named a and b. Programming is implemented
using port a. For instance, the firmware in I and B is
uploaded using the signals i_address_programming
or b_address_a_programming. The programming flag
prog controls several multiplexers to drive all memo-
ries’ write enable signals wren with the corresponding
values generated by the interface. During normal opera-
tion, prog is set to zero therefore leaving the datapath
configured in normal execution mode. The prog signal
also causes the processor controller to be held in reset
(until the programming procedure finishes). The system can
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FIGURE 16. SPLVP detailed hardware architecture including input and output FIFO memories and input/output FSM.

be brought in programming mode anytime, even during
program execution, based on the commands received by
the Input Finite State Machine (FSM). During
programming all memories of SPLVP can be selected and
incrementally written. The input interface indeed enables the
selection of the target memory to be sequentially written,
always starting from address 0× 000.

When programming is finished and the input interface is
configured to implement normal operation (compute or run
mode), prog toggles to zero. When the signal prog toggles
to an active state, the Controller immediately moves
to the reset state R. This transition to programming mode
is encoded in every active state of the controller, i.e., F, E
and Division Wait states. The datapath is reconfigured
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to address each memory with the pointer specified in the
opcode (stored in the instruction memory) and to route the
single perceptron arithmetic unit output to the data ports.
The program_counter is generated by the controller as
soon as it leaves its reset state R and enters the fetch phase F.
On the left side of the figure, the program_counter is
used to address the I memory, whose content is available at
the next clk cycle (corresponding to two clk_mem cycles).
The opcode outputted on q is passed to the Instruction
Decoder which generates d_addr, w_addr, b_addr,
column (that isc in Lst. 1),next_addr (that isr in Lst. 1),
the write-back code write_back which identifies where
the perceptron output needs to be saved to, and all the option
flags encoded as a single signal each, i.e., loop, popin,
pushout, accum_flag (for option acc), relu_flag
(for option relu), and a division flag div_flag with
corresponding integer divider. These signals are passed
to the Controller for control execution and to the Write
Back Decoder that activates the corresponding wren
signal at port b of the corresponding memory to store the
output of the single perceptron accumulator_out_alu,
with truncation in case of 8-bit memory target. To activate the
correct wren signal the Write Back Decoder needs to
receive both column and write_back code. For instance,
if write-back occurs on d(8)(5), the decoder activates
d_wren_a_vpu[5] and keeps all the others to zero, and
similarly for the other memories. The Controller coor-
dinates the execution of each instruction which is typically
completed in two clock cycles, (fetch F and execute E).
However, the implementation of the division (i.e., the fetched
instruction includes a div option) requires 12 clock cycles
of delay due to physical hardware implementation of the
integer divider of the FPGA. The Controller in this
case leaves fetch to run a sequence of Division Wait
states before entering again the execute state E. As shown
in the top right diagram of Fig. 16, when division occurs
fetch is prolonged by 12 clock cycles, where Tclk is
12.5 ns= 1/fclk. All the other instructions are completed
in 25 ns.

In run mode, data sink and sources are implemented
using FIFO memories, in the diagram named FIFO_IN[]
and FIFO_OUT[]. These, are written and read based on
the external microcontroller activity and their operation is
strongly related topopin andpushout options. During run
mode, the input interface atomically writes all the incoming
data rows (8× 8-bit wide) in the FIFO_IN[] and SPLVP
pops data out of it every time a popin option is present in the
program. By referring to the FIFO Path in the figure, the
Controller stops execution if two particular conditions
occur: i) FIFO_IN[] is empty or ii) FIFO_OUT[] is full.
The Controller stops execution and remains frozen in
either F or E states when one of the above conditions is true
and restores execution when both become false again. If one
of the above conditions is met during a Division Wait
state, the controller moves to F and waits there for the above
conditions to become false.

B. INPUT AND OUTPUT INTERFACES
The interfaces are implemented using FSMs. Fig. 17 details
the operation of the input interface that implements both
programming and writing of input data during inference
(Programming Mode/Run Mode). The interface wires
(that are physically connected to the microcontroller) com-
prise a high byte DATA that carries data on a single int8
byte, and a low byte which comprises control signals.
We have chosen to implement mode, data, and target memory
write transitions using specific bits and by associating a clock
to each one. For instance, the mode is selected using the
MODE input, but it is validated by positive edge transitions
on its corresponding MOD_CLK. The target is selected by
driving pins TGTh and TGTl and by validating them through
positive edge transitions on TGT_CLK. The same logic
applies when data is pushed in the processor, through an
associated CR_CLK (column and row clock). The ROW pin
indicates the reaching of the last 8th column, and it is used
to implement address increment. The input interface provides
all signals as inputs, except for FIFO_FULLwhich is output.
During Programming Mode, the MODE signal is

brought high by an external device, and it is validated with
a positive edge of MOD_CLK. Next, data can be written in
the internal memories. To do this, the target data memory is
selected using TGTh/TGTl, which can assume four values
(0×0–0×3 for D, W, B, and Imemories, respectively). After
the target memory selection is validated with a TGT_CLK
transition, the interface resets its internal address counters
to write the specified internal memory. The CR_CLK is now
used to transfer the data in the high byte of the interface
(herein referred to DATA) to the target memory (sequentially,
column one to column eight). When the last column is
transmitted (that can be the 8th, or the 4th for the B memory
as its width is 4 bytes), the ROW signal is also asserted to
enable address increment at the next cycle. This process is
iterated for each target memory of the processor by setting
the TGTh/TGTl signals accordingly.

After programming is finished, the input interface can
be brought into Run Mode by setting the MODE signal to
zero and by validating it using MOD_CLK. In Run Mode,
a target memory does not need to be set because input
data needs to be written to INPUT_FIFO. Similar to the
Programming Mode, data can be sequentially presented
at the DATA input of the interface, and ROW can be asserted to
indicate the reaching of the 8th column (input data parallelism
is 64-bit). During data streaming the input interface can
assert the FIFO_FULL signal to inform an external system
that the FIFO_IN[] is full. The streaming must then be
suspended until the FIFO_FULL signal is de-asserted. From
an implementation viewpoint, this signal shall be checked
after a complete 64-bit data input is fully transferred, and
when CR_CLK is deasserted. The signal FIFO_FULL is
asserted by the device only at the first byte of new data and
not in the middle of a transfer. The data streaming speed
(ideally 40Mbyte/s) is limited by the implementation of
the input interface state machine, for a maximum speed of
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FIGURE 17. Conceptual input interface operation while receiving data from an external device for both programming and running ANN inference.

FIGURE 18. Conceptual output interface operation, that is used to extract last layer outputs from the processor to an external system.

1
Tmin

= 10MHz, thus resulting in a throughput of 10Mbyte/s.
Considering the maximum clock frequency of common
low-power microcontrollers (for example the STM32L476
used in our comparison measurements that runs at 80MHz)
and that some clock cycles are required to drive the GPIO
signals, we believe that the speed of our interface is
adequate, and does not represent a bottleneck. GPIOs data
registers indeed typically group multiple pins, hence a single
instruction can set or read several pins.

Fig. 18 details the signal timing of the output interface
of SPLVP. The output interface is used to read the output
data from the processor as soon it becomes available. The
interface has one input, READ_CLK, which is used, similar
to CR_CLK, to pop each byte out from the output FIFO. Data
is presented on the DATA output port. An external system
needs to assert positive edges on CR_CLK every time it is
ready to accept a new byte. The last byte (corresponding to

the 8th column of d(127)), is indicated by the device by
asserting the ROW signal. Control flow is implemented by
two separate signals, FIFO_FULL and DRDY (data ready).
When FIFO_FULL is asserted, data is available for reading,
but it indicates that the processor cannot calculate further
results because the FIFO_OUT[] needs to be flushed first.
The signal DRDY, instead, indicates the presence of new
data on the FIFO_OUT[]. The downstream logic shall not
assert the READ_CLK as long as DRDY is not asserted.
On the other hand, FIFO_FULL is activated by SPLVP
only in connection with the first byte of a new transfer,
therefore making a single 64-bit data atomically identifiable
and thus avoiding interruptions in the middle of an 8-byte
transfer.

The assembler tool can generate both a binary program
file to be used for programming the internal SRAMs, and a
frozen binary file that can be used to stream a fixed sequence
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FIGURE 19. Gate-level post-synthesis simulation of SPLVP obtained using ModelSim Intel FPGA Starter Edition while running the Iris
model of Sec. V-C1, during both programming and run mode, depicting a correct Decimal Output. The signal prog which toggles when
Run Mode is set, is included in the Output Interface Bus, but it is not shown.
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of inputs for testing purposes. The content of these files
represents the direct encoding of the signaling introduced
in Fig. 17 in a binary format, including clocking as well,
that is simply implemented by duplicating each data entry,
with zero-to-one and one-to-zero transitions on CR_CLK,
TGT_CLK and MOD_CLK. This way, the content of the
binary files can be simply streamed across the pins of a
microcontroller.

C. DIGITAL SYSTEM-LEVEL SIMULATION
Fig. 19 shows a gate-level simulation of the complete
SPLVP, after synthesis. In this simulation, we have tested
the complete operation of the system, including input and
output interfaces and we have included a particular signal
starvation in an available pin to measure the active
computation time of SPLVP. We have considered the Iris
model of Sec. V-C1 as a test case, and we directly applied the
program code and the inputs generated by our toolchain as
presented in Sec. IV. This is done, in particular, by directly
streaming the binary files generated by the assembler with
a custom testbench that emulates a system connected to the
microprocessor. Not to waste simulation time, the SPLVP
description here includes a reset logic that simply counts for
a few cycles to permit the PLL model to lock. The simulation
starts at t = 0 s with signal nrst low, and the testbench
performs another reset cycle to make sure all internal logic
is correctly initialized. After 8µs, the testbench opens the
programming file bitstream.bin containing the SPLVP
firmware and streams it directly on the input interface at the
maximum speed possible. Using a 20MHz clock, we obtain
10Mbyte/s of effective throughput (each of the 16 input
interface bits is updated every 50 ns, but CR_CLK needs
two transitions per byte transfer). During programming, all
target memories are updated using the signals TGTh, TGTl,
and TGT_CLK. As shown, the last one that is written is
instruction memory. After the last instruction memory byte
is transmitted, the system is immediately set in Run Mode
by de-asserting the MODE signal and by enforcing a double
edge transition on MOD_CLK.

Similar to programming, during Run Mode the testbench
streams input data from the frozen file frozen.bin
directly on the input interface at maximum speed. After the
ROW signal is asserted, eight bytes are fully transmitted to the
input interface, and the testbench needs to wait for a further
100 ns to check if the FIFO_FULL signal is active. If this
condition occurs, it indicates there is no room for further
data in the input FIFO, and the testbench needs to wait until
FIFO_FULL is de-asserted to continue streaming. At the
output interface, after the first eight bytes are transmitted,
the testing signal starvation has a glitch, that would
indicate that the input FIFO is empty. However, this glitch
is present simply because the signal is not sampled by the
main clock, and does not impact the functional behavior of
the machine. When eight bytes are completely transmitted,
starvation is asserted and within the streaming of the
9th byte, signal DRDY goes high at the output interface to

indicate that eight new bytes are available to be retrieved. The
testbench, which checks every 50 ns the value of this signal,
can now toggle the READ_CLK to sequentially acquire the
eight bytes d(127)(0)–d(127)(7) that correspond to
the eight outputs of the ANN model. Immediately after data
is retrieved, the FIFO_FULL signal at the input interface is
asserted, to indicate that the processor cannot continue execu-
tion. As previously introduced, the testbench stops streaming
new input data. Within∼ 6µs, a new vector is made available
at the output interface, and the testbench after reading it
permits SPLVP to continue execution. Consequently, the
FIFO_FULL signal at the input interface is de-asserted.
Execution continues periodically every ∼ 6µs, that is the
inference time of the model reported in Sec. V-D. The signal
starvation is never deasserted to indicate that the SPLVP
is continuously running without interruptions thanks to the
responsiveness of the testbench in the implementation of data
streaming and output reading.

D. COMPILER IMPLEMENTATION
1) QUANTIZATION AND EXECUTION MODEL
This section provides a high-level overview of the operation
of the compiler with an example FC classifier with three
layers. The goal of the compiler is to provide compatibility
with tflite with a low number of approximations.
Fig. 20(a) shows a logical execution model of an example

FC ANN having three layers, Dense0–Dense2, with N0= 4,
N1= 3, and N2= 4 outputs, respectively, where the input
layer has size 4. Overall this example model has three
operators, each with a given input and output scale factor.
According to the specification, the TF quantization scheme
is an affine mapping of quantized integer values q to real
numbers r , according to the equation r = S(q − Z ), where
S and Z are some constants, that in this context are named
scale factor and zero, respectively. This mapping applies to
each operator’s input and output, in our case the layers of
the neural network. In this example, we can then identify the
quantities ri and qi, ∀i ∈ [0, 3], wherewe define i as level. The
Q and Q−1 formulas given in the figure can be used anytime
to pass from a real (float32) representation to int8 for
a given level. The quantized tflite model is made (by
the TF software library) such that the output scale factor of
one operator corresponds to the input scale factor of the next
one. This way inference execution can avoid the reconversion
of each operator’s quantized output into its real counterpart,
at least for the internal layers. To achieve inference using the
tflite methods, it is required that input data is manually
quantized before feeding it at the input of the first layer
and the inference output is required to be reconverted back
to real numbers at the output of the last layer (refer to
tflite input and tflite output in the figure). This
conversion and re-conversion process implies that inference
on a quantized tflite model, when considered from an
input data perspective, is a mixed integer/float one as scaling
is in general a real number [13].
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FIGURE 20. Conceptual workflow of the compiler on a tflite model translation to SPVLP assuming for simplicity a perceptron with parallelism P = 2
(a) and relative compiled output representation (b), as a function of on the internal quantized model parameters.

We assume that supervised learning is achieved with input
data already pre-quantized in the int8 range. We have
chosen here to directly apply the quantized inputs to the
network, therefore avoiding this first conversion step (refer
to SPLVP input and SPLVP output in the figure). This way
the output of the ANN may not exactly correspond to the
output of tflite, but this way we can avoid the need for a
floating-point arithmetic logic unit in the microcontroller to
be accelerated. It is worth observing that the SPLVP output
difference compared to thetflite output can be considered
negligible, if training is made such as S0 approximates one,
and Z0 approximates zero as much as possible. As shown
in Fig. 20(a), in each operator, biases are int32 numbers,
and consequently, intermediate accumulations need to be
memorized in an int32 format because biases are applied
directly to the dot multiplication output. According to the
quantization specifications in [49], the scaling factors of
weights and bias tensors are inter-related by construction
through the input scaling factors, in particular Sbj = Swj Sj,
where Sbj is the bias scale factor, Sj is the input scaling factor
and Swj is the weights scale factor, at the operator jth.
After the accumulations in the int32 range and the

application of bias and activation function are all completed,
the final output needs to be rescaled back to int8. To do
this, in [49] the authors propose to multiply these values
by a quantity (corresponding to the inverse of Dj in our
scheme) that can be easily split into a first fixed point
multiplication of a number in the range [0.5, 1] and a second
2n division. This last one, in turn, can be easily implemented
in hardware using a barrel shifter. However, as our goal is
computing using only integer arithmetic, we have chosen to
rescale accumulations using the SPLVP integer divider where

the divisor approximates the real quantity Dj. This solution
introduces a further variation on SPLVP inference compared
to the original tflite model, but as demonstrated in
our tests this is not significant. The divisors depicted in
Fig. 20(b) are calculated for each operator using both the
input and the weights scale factor Sj and Swj , except for
the last layer in which the divisor is computed differently.
This exception is done to recover the variation introduced
by avoiding the first quantization step at the input layer.
The last layer rescaling factor D2 is indeed multiplied by
S0/S3. This way, even if the input layer scaling factor
is not one, we can partially recover its effect by scaling
the output values. For zeros, we assume they are small
and hence that they do not significantly impact accuracy.
Observe that this is an approximation and this technique
does not lead to the same accuracy obtained with the mixed
tflite inference, compared to the original float32
model. Observe, however, that S0 cannot be very small by
construction because we directly apply fake int8 quantized
data to our supervised learning interface when training the
float32 model. Finally, the quantization specification in
[49] requires saturated arithmetic, and this constraint is
implicitly met by the saturation features of the integer divider
of SPLVP. We do not, however, implement saturation for
int32 numbers becausewe assume this condition is unlikely
to happen. Fig. 20(b) shows a graphical representation of
the execution of the inference assuming a single perceptron
capable of handling two weights at a time (parallelism P= 2)
that we have considered in this example. In general, given
a jth dense operator, the number of required perceptron
executions nj can be calculated with the formula given in the
figure.
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FIGURE 21. Workflow for the execution of the Iris MLP classifier (see Sec. V-C1) and for the direct translation of the ANN into a combinational VHDL
description, assuming that inputs are stored in dedicated registers.

2) OPERATION SCHEDULING
To describe the internal operations of the compiler, we first
summarize the technical operations necessary to decode the
flatbuffer input. Next, we consider an example MLP and we
detail the conceptual execution of its operations by assuming
the single perceptron unit with parallelism P= 8 of our
physical implementation.

The operations performed by compile.py after reading
the tflitefile as input can be summarized as follows. First,
the tflite flatbuffer is loaded using the standard tflite
interpreter that returns a list of dictionaries where each one
refers to a tensor, and not necessarily an operator (layer)

used in the multilayer perceptron. Depending on the type of
activation functions, the version of TF, and in general the
structure of the neural network, information on each operator
can be fragmented and needs to be reconstructed, so that
each layer in the network has all the parameters of Fig. 20
defined and stored in an internal descriptor. For instance,
signatures and activation functions may be represented with
different entries, but in any case, they need to be associated
with the same layer. A possible approach to rearrange
these entries consists of parsing the names of each tensor
(which typically embeds a hierarchical tree relationship),
but some input and output scaling information may be
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impossible to reconstruct. The standard tflite interface
used for inference can be used to extract internal information
on the ANN, but data needs to be completed with other
information that is typically not accessible using the standard
methods. To complete the compiler’s internal descriptors we
then wrote an internal flat_buffer_helper module
that considers the complete information on the flatbuffer
file and reconstructs the graph of the network with fused
activation functions. During this first step, compile.py
stops execution and outputs errors if unknown tensors are
present in the network.

The next operation of the compiler is the sequential
processing of all the layers in the ANN structure to convert
the tflite structure to an intermediate representation.
This way, the ANN can be described in terms of a single
perceptron unit operation scheduling, to be executed in a
single forward pass. The compiler here works only for a
single ANN subgraph (in complex networks many subgraphs
are possible), so we always expect that the multilayer
perceptron has a single input layer and a single output layer.
The tool starts from the input layer and groups the inputs
in zero-padded chunks of size eight, then it schedules one
inference for each chunk. The number of chunks obtained this
way is indeed the number of popin options used in the code
because the input FIFO of our hardware has a parallelism of
eight as well. Observe that this chunking operation is scalable
and can be applied for different sizes as it only requires
that both the PE and the input FIFO data parallelism match.
As we have decided that the maximum output parallelism the
compiler can handle is eight (the hardware, however, does not
pose limitations), the output layer is not divided into chunks.
compile.py raises an error if the number of outputs of the
tflite ANN exceeds this limit.

After input rearrangement, the compiler executes the
operation scheduling that is exemplified in the workflow of
Fig. 21. Let us consider the MLP given in Fig. 21(a), which
we have used to solve the classification problem of the Iris
dataset. The ANN has an input layer of size eight, two hidden
layers of size 16 and eight with ReLU activation function,
and an output layer of size two with linear activation. The
objective of the compiler is to sequentially schedule the
computing unit named Execution Unit (that includes an
accumulation acc input as well) in the graph to perform a
feedforward pass starting from the input layer to the output
layer. As shown in the graph, both input and output layers
are zero-padded, that is, the non-used inputs and outputs are
zero. For simplicity, we here refer to a simple perceptron
computing unit, while the hardware counterpart includes also
the integer divider and the ReLU arithmetic logic.

Computation can be graphically represented as a sequence
of passes per layer as shown in Fig. 21(b). If we refer
to the Hidden Layer 1, the single perceptron can be
sequentially applied following the arrow to cover all the nodes
of the hidden layer, by enforcing acc= 0. In this example,
the size of this first layer is larger than the input layer,
therefore the single perceptron is applied only once per node,

by using multiple times the input layer. Observe that in this
forward pass, the order with which nodes are computed is
not important because the computing unit is linear. When the
computing of this first layer is over (that is the system has
eventually applied the relu option and scaling), the results
can then be used as inputs for the second layer Hidden
Layer 2. In this case, however, the parallelism of the input
data is larger than the one of the output, and therefore the
computing unit needs to be scheduled more than once per
output node. The acc input is zero for the first accumulation,
but it is the previous accumulated value for the second one.
After the application of the activation function and scaling
for each node, finally, the output layer is processed in a
similar way compared to Hidden Layer 1 using a linear
activation function.

The operations outlined above need to be executed in
our single perceptron-based accelerator by exploiting its
internal architecture and hardware units. Fig. 21(c) shows
the same ANN executed according to the high-level scheme
of Fig. 21(b), on SPLVP. This plot shows the execution
timeline of the forward pass. It details, for each step, the
logic utilization of memories, the associated data types, and
the options used in the assembly instruction. From left to
right, inputs are presented in an int8 format from the input
FIFO and are contextually stored in the D memory at address
d(0). To run the computation of the first hidden layer, all
inputs are taken in parallel by the perceptron (four inputs are
zero-padded) in the order given in the figure, from 1 to 16,
with no accumulation (acc option is absent). The results
are stored in the B memory as all the accumulations are
32-bit integers. Here, we have chosen to implement the
activation function directly during this accumulation pass
(relu option). However, relu could have been computed
in the next step as well, because it is simply implemented by
checking the data sign, which in any case remains unchanged
after an unsigned division. After accumulation, the hidden
layer outputs must be rescaled to int8 and therefore the
single perceptron is executed once again tomove accumulator
values from the B memory to the D memory by sequentially
applying move weights. These, are simply sparse weights
vectors with ‘1’s in the positions that need to be copied
from source to destination and ’0’s otherwise. During this
operation rescaling is executed with the div option (the
divisor is not made explicit for the sake of brevity) so that
the accumulated data is normalized in the int8 range.
The computation of the second hidden layer is performed

similarly compared to the first one, with a difference in
the accumulation process. During the first accumulation
pass the B memory is overwritten with acc= 0, in the
order given in steps 1–8. For the second pass, the previous
accumulation is used as acc input, and data is rewritten
in the same B memory locations by applying the activation
function. For this second step, indeed the options used
in the assembly are acc and relu, and this last one
finally applies activation. It is noteworthy to observe that
using such computation flow and by assuming that data is
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LISTING 2. Example SPLVP assembly of a layer with size two with ReLU activation function and integer scaling 47.

LISTING 3. Synthesized VHDL description corresponding to the assembly code given in Lst. 2. The popin option is intrinsically embedded in the values
of the input data.

otherwise stored in different memory locations, the network
can be considered combinational, even in the presence of
accumulation. This fact is useful to automatically convert
the MLP into synthesizable code. Exactly as for the first
hidden layer, move weights here are applied to write the D
memory again and scale the accumulations to int8 (div
option). The last output layer is executed similarly to the
previous ones and the output result is stored in the Bmemory
by executing twice the computing unit (marked as 1 and 2).
Finally, the accumulations are scaled down and moved to the
D memory space using the move weights (unused outputs are
zero-padded). As a final mandatory step for the execution
of the MLP, the output layer data needs to be stored at
memory address d(127), and a pushout option is issued
to write the output FIFO. Contextually, a loop option is
used to restart the program counter and therefore execute the
MLP with new data from the input FIFO. Observe that the
internal D and B accumulated values do not need to be reset
because they are overwritten thanks to the absence of the acc
option during the first accumulation stages. This strategy is
useful for the implementation of feedforward MLP, although
keeping accumulation active may be useful to implement

Recurrent Neural Networks (RNNs). These, however, are not
part of this work.

3) DIRECT LOGIC SYNTHESIS
All the assembly com instructions can be directly mapped
one by one to implement a synthesizable VHDL description
of the network, hence avoiding the use of the SPLVP
core. Such a VHDL network simply needs to receive input
data in the same order given by the model to implement
inference. Fig. 21(d) shows a high-level scheme of the VHDL
description. Because the accumulator steps can be unrolled
as shown in Fig. 21(c), assuming data is all saved in different
memory locations every time the computing unit is applied,
the ANN assembly can be seen as a Direct Acyclic Graph
(DAG). In the depicted example, the generic shift register
used to feed the combinational logic network is made of
only one register because the input layer has a size four, and
the MLP requires a single input to complete the inference.
In our proof-of-concept converter, we have mapped each
node as an Integer, whose implemented number of bits,
is synthesizer-dependent. The Quartus synthesizer considers
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integers at 32-bit, but in general integer mapping impacts
the inference accuracy. To overcome this issue, signals
can be declared using the VHDL numeric_std library
in an arbitrary number of bits, thus providing a fully
disclosed mapping. Our choice goes in favor of further area
optimization that may be required while deploying the neural
network. Constraining the accumulations (for instance at
16-bit relying on the synthesizer), contributes to the reduction
of circuit area, provided that simulations show that accuracy
constraints are still met.

The eight-byte data received from the SPLVP input FIFO
can be sequentially fed to a shift register having parallelism
64-bit and depth ⌈ nI8 ⌉, where nI is the size of the input
layer. For ease of implementation and timing analysis,
in our description, we enforce two different clocks clk
and clk_out for feeding the input data and acquiring
the output data. clk_out is used to sample the MLP
output using a single dedicated register of size 64-bit
(i.e., 8× 8-bit), as the compiler supports only eight parallel
outputs. With these assumptions, the timing analyzer of the
FPGA synthesis tool can efficiently compute propagation
delay using multicycle path and false path constraints.
By default, the SDC code is generated assuming 50MHz
and 1MHz frequency for clk and clk_out, respectively.
Providing data to the hardware unit through a register
pipeline has the advantage of maintaining a low number
of pins and the same entity declaration irrespective of the
complexity of the internal ANN graph. The VHDL testbench
automatically generated by clsynth.py implements the
feeding of the internal pipeline whose depth is based on the
input test data parallelism, and hence needs to be customized
at compile time because it depends on the ANN model.
Furthermore, it instantiates the component whose entity is
given in Fig. 21(d). At runtime, it reads the CSV files
associated with the testing inputs at build time, converts them
into input logic signals, applies them in the correct order, and
saves output data from the output register to another CSVfile.

Lst. 2 shows a snippet of the assembly code of Fig. 3,
implementing a perceptron with size two, ReLU activation
function, and integer scaling 47. The code has been
synthesized with csynth.py, and the corresponding output
is shown in Lst. 3 (we do not show the entire code here
for the sake of brevity). Lines 1–4 of Lst. 2 are mapped
to lines 1–4 of Lst. 3, while lines 5 and 6 are mapped
to lines 5–6 and 7–8, respectively. The referred ANN has
an input layer of size eight. Our tool statically mangles
the memory names of the assembly, using the following
convention. d(x)(y) memory for x ̸= 0 is mapped to
data_x_y, while for x= 0, it is mapped as data_0_y_w,
where w identifies the shift register depth where input data
is written. In this example, we have only eight inputs, and
therefore the synthesized shift register is simply a register.
The eight values ofd(0) are thenmapped todata_0_0_0–
data_0_7_0. The input signals of Fig. 21(d) are simply
sampled on clk positive edges and stored in these signals.
A generic weight w(x) is encoded as weight_x_c, where

c ranges from 0 to 7. The accumulators b(x)(0) are
mapped to accum_x_stage_z where z is a number that
starts from zero and it is sequentially incremented every time
a new write on the same accumulator occurs in the assembly.
With these defined signals accumulation can be identified
as a unique signal in the VHDL code, thus permitting a
DAG description of the network. For the same reason, after
rescaling (given by the presence of adiv option in the assem-
bly), a suffix _div is appended to the data memory names
to maintain uniqueness in the signal naming. Given such a
naming convention, the translation of the assembly code is
straightforward, and the network can be easily generated.
When an acc option is used, for instance, it is sufficient that
an accum_x_stage_i+1 considers accum_x_stage_i
as input. When a relu option is present, csynth.py uses a
when/else conditional statement to implement the greater
than zero comparisons. With rescaling, in the same way,
a conditional statement is used to implement rounding in the
division based on the sign of the dividend. After rescaling, the
final values data_2_0 and data_2_1 are declared with a
conditional statement to clamp the output value in the range
[−128, 127] thus implementing int8 saturation.

E. ASSEMBLER IMPLEMENTATION
The assembler tool asm.py reads a text file with extension
.asm and generates i) the firmware binary file suitable for
direct streaming across the input interface for programming
the processor, ii) an optional frozen binary file to stream fixed
data to the input interface for testing purposes and iii) the
MIF file snapshot of the memory. Internally it comprises
a tokenizer, a multi-pass parser, and a code generator. The
parser checks the syntax of the assembly file, and detects
the presence of errors, for example memory cells other
than d(0) in the presence of popin options. Both the
bitstream file and the frozen input file include a dump of the
logical values of the pins of the input interface. Generating
a binary file ready to be bit-banged simplifies the testing
of the interface and allows an MCU to easily implement
programming. The MIF files, instead just include all the
content of the D, W, B, and I memories ready to be loaded by
the simulator. These files are used to populate the memory
models of the physical hardware emulator in core.py.

F. SIMULATOR IMPLEMENTATION
Fig. 22 shows a high-level flow chart of the operation of
sim.py. Its execution is customizable using specific com-
mand line arguments. In its standard flow, it runs inference for
both a quantized tflite model (using the locally installed
TF library) and for the corresponding compiled version for
SPLVP to obtain performance comparison. At program start,
after command line argument parsing, theMIF files including
the processor internal memory snapshot are read and the
internal device memory of the hardware model in core.py
is virtually programmed. Next, the simulator opens the CSV
file containing the input testing data to be used for inference.
The file can be specified by the user at the command line
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FIGURE 22. High-level flow chart of the simulator which performs a comparative tflite versus SPLVP MLP inference. Inference is ran using TF in one
case and a Python hardware model in the other.

or it can be automatically retrieved by build.py from the
YAML description. Using the standard Python interface of
tflite, the quantized TF model is read and loaded, and
it is ready to be used for inference. The simulation here is
executed for all rows of the CSV file (overall Ninput). Each
row must be a vector of the same parallelism of the first
input layer of the MLP. For all rows of the CSV files, data
is quantized using the input scaling factor and zeros (Sin and
Zin) that are extracted by the tflite interface dictionary.
After data is quantized using these constants, the interpreter
is invoked, the inference is run and the interpreter output is
converted back to real values using output scaling and zeros
(Sout and Zout), which are also available from the standard
methods of tflite. A vector named out_tflite is
populated with the obtained output data. This operation is
repeated for all entries of the CSV files until all data is used.

Next, the simulator runs SPLVP inference on the same
CSV data. During simulation, sim.py does not manually
quantize the input data as in the previous case of tflite
but it passes CSV rows as they are to the processor model
core.py. The simulator feeds the processor FIFO_IN[]
with new data until it is full and then it emulates a hardware
clock cycle. If the input FIFO is full the simulation continues
execution to flush it, until a new result is present in the
FIFO_OUT memory. When a new result is available, the
output FIFO is read and data is appended in a vector,
here named out_splvp. The iteration is repeated until
all the data is applied to the processor and all data from
FIFO_IN are used. These processes of feedingFIFO_IN[]
and reading data from FIFO_OUT[], emulate the operation
of an external MCU and the SPLVP I/O interfaces. The
complementary read and write FIFO operations are executed
instead by the program options popin and pushout.
Finally, the simulator generates plots of both results (i.e.,

out_tflite and out_splvp) and saves both inference
outputs in a CSV file. The generated graphical data is saved
in an SVG file. As core.py strictly matches the processor
hardware implementation, the simulator is also capable of

outputting the number of clock cycles required to run the
inference, either for a single input or for all the CSVfile rows.
This active execution time is used to compare the inference
speed of a givenANNmodel when executed on SPLVP versus
an STM32L476 microcontroller in Sec. V-D.
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