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ABSTRACT Analyzing crowded environments has become an increasingly researched topic in computer
vision community, largely due to its myriad practical applications, including enhanced video surveillance
systems and the estimation of crowd density in specific settings. This paper presents a comprehensive
method for progressing the study of crowd dynamics and behavioral analysis, specifically focusing on the
classification of movement patterns. We introduce a specialized neural network-based classifier explicitly
designed for the accurate categorization of various crowd scenes. This classifier fills a unique niche in the
existing literature by offering robust and adaptive classification capabilities. To optimize the performance
of our model, we conduct an in-depth analysis of loss functions commonly employed in multi-class
classification tasks. Our study encompasses four widely used loss functions: Focal Loss, Huber Loss, Cross-
Entropy Loss, and Multi-Margin Loss. Based on empirical findings, we introduce a Joint Loss function that
combines the strengths of Cross-Entropy and Multi-Margin Loss, outperforming existing methods across
key performance metrics such as accuracy, precision, recall, and F1-score. Furthermore, we address the
critical challenge of class imbalance in motion patterns within crowd scenes. To this end, we perform
a comprehensive comparative study of two leading oversampling techniques: the synthetic minority
oversampling technique (SMOTE) and adaptive synthetic sampling (ADASYN). Our results indicate that
ADASYN is superior at enhancing classification performance. This approach not only mitigates the issue of
class imbalance but also provides robust empirical validation for our proposed method. Finally, we subject
our model to a rigorous evaluation using the Collective Motion Database, facilitating a comprehensive
comparison with existing state-of-the-art techniques. This evaluation confirms the effectiveness of our model
and aligns it with established paradigms in the field.

INDEX TERMS Computer vision, crowd analysis, collective behavior, cross-validation, ADASYN,
SMOTE.

I. INTRODUCTION
Technological advances, coupled with sustained growth in
the human population, have heightened the demand for the
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development of efficient automated video surveillance-based
technologies [1], [2]. In the domain of crowd video surveil-
lance, extensive research is currently being conducted across
multiple critical dimensions. Crowd behaviour analysis [3],
[4] examines the movement and interactions within crowds
to improve safety. Crowd density estimation and crowd
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counting [5] are focused on assessing the number of people
and the compactness of a crowd, which have applications
in public safety and event management. Crowd anomaly
detection [6] identifies unusual patterns that may indicate
danger or suspicious activities, while group detection [7]
explores the formation and behavior of smaller groups within
the crowd. These research areas contribute to developing
sophisticated monitoring and management systems with
broad applications in urban planning, law enforcement, and
emergency response.

In most of the leading research areas related to crowd
analysis, the effectiveness of the proposed methods depends
on the characteristics and classification of the crowded
scene being studied. This relationship underscores a subtle
complexity where a method demonstrating robust perfor-
mance in a particular scene may not necessarily replicate
that success when applied to a disparate scenario. This
lack of generalizability becomes particularly pronounced
when the dynamics of the scene undergo a transformation.
The multifaceted nature of crowd behavior, encompassing
variables such as density, movement patterns, and group
interactions, necessitates a comprehensive understanding
and adaptive approach to ensure the applicability of the
methods across various contexts. Therefore, the development
of versatile techniques that can accommodate the diverse and
evolving dynamics of different crowd scenarios remains a
critical and ongoing challenge in the field.

Understanding variations in scene dynamics involves a
study of object motion in crowded environments. These
objects, in the context of crowd analysis, could be automo-
biles or humans. It is possible to spot patterns and trends
that can shed light on the scene’s underlying dynamics by
focusing attention on how objects behave and communicate.
Analyzing historical and current motion patterns allows for
predicting future movements in a given scene, a capability
essential for applications like traffic management, crowd
control, and public safety [8]. Motion patterns in crowded
scenes can be categorized into three primary types: struc-
tured, unstructured, and semi-structured. In structured scenes,
movements are orderly and predictable. For instance, in a
well-regulated traffic system, vehicles adhere to lanes and
obey traffic signals.

Likewise, in controlled public spaces, people tend to follow
designated paths or queues. Such consistency simplifies the
analysis and prediction of future movements. In contrast,
unstructured scenes feature chaotic or random motion
patterns, lacking clear rules for object movement. A bustling
market street, where people and vehicles move freely without
designated paths, serves as an example. The analysis of
unstructured scenes is usually more complex, necessitating
advanced methods to comprehend the underlying dynamics.
Many real-world scenes do not strictly conform to either
structured or unstructured categories but rather exhibit a mix
of both. These are termed semi-structured scenes, displaying
a combination of order and chaos in object movements.

In the area of crowd analysis, identifying the nature of
the scene is crucial for multiple reasons. First, understanding
scene dynamics is pivotal, as different scenes possess unique
underlying dynamics that can be instrumental in predicting
and managing crowd behavior. Second, discerning the type of
scene enables researchers and practitioners to tailor analytical
models that are precisely aligned with the characteristics of
the given scene. Finally, the adaptive management of crowd
scenarios is another critical consideration. Real-world scenes
are often dynamic and may evolve over time; therefore, the
ability to recognize and adapt to these changes is vital for
effective and responsive management. However, identifying
the scene type provides intermediate knowledge that bridges
low-level raw data (such as individual object positions)
and high-level insights (like overall crowd behavior trends).
Continuous monitoring and re-assessment of the scene type
at regular intervals are of paramount significance. Crowds
can transition from stable to unstable states, underscoring
the importance of periodic reassessments to track these
fluctuations. Furthermore, through ongoing evaluation of the
scene, authorities or systems can refine their strategies to
effectively respond to evolving conditions. The practice of
continuous monitoring fosters improved safety measures and
enhanced crowd management, particularly in dynamic or
rapidly changing environments.

In this article, a novel methodology is introduced with
the aim of classifying a specific crowded scene into one
of three distinct classifications: structured, semi-structured,
or unstructured. This categorization is grounded in the
analysis of motion patterns within the scene, which are
manifested in the form of trajectories. The contributions
of this work are manifold and can be summarized as
follows:

• Development of a specialized classifier for crowd
scene categorization: We introduce a robust and
innovative classifier that leverages a fully connected
deep neural network. This classifier is tailored to adeptly
categorize various types of crowd scenes, fulfilling
a distinct niche in the field of crowd dynamics and
behavior analysis.

• In-depth analysis of loss functions in multi-class
classification: This paper presents an exhaustive inves-
tigation into the role of the optimization landscape, with
a particular focus on the significance of different loss
functions. We examine four eminent loss functions—
Focal Loss, Huber Loss, Cross-Entropy Loss, andMulti-
Margin Loss—and evaluate their efficacy in multi-class
classification scenarios. Our empirical results demon-
strate that Cross-Entropy andMulti-Margin Loss exhibit
superior performance attributes over their counterparts.
To take advantage of this, we formulate a Joint Loss
function that amalgamates the strengths of these two loss
functions. This approach surpasses existing methods in
key performance indicators such as accuracy, precision,
recall, and F1-score.
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• Comparative study of oversampling techniques in
patternmotion classification: We address the prevalent
issue of class imbalance in the motion patterns observed
within crowd scenes, leveraging advanced oversam-
pling techniques to rectify this challenge. Specifically,
we conduct an exhaustive comparative analysis of two
leading oversampling methods: SMOTE and ADASYN.
These methodologies are rigorously evaluated within
the specialized model of pattern motion classification.
Our empirical analysis unequivocally demonstrates that
ADASYN surpasses SMOTE in enhancing classifica-
tion performance across various metrics. Importantly,
this multifaceted approach serves a dual purpose: it
effectively mitigates the problem of class imbalance and
furnishes compelling empirical evidence that validates
the efficacy of our proposed method.

• Rigorous model evaluation using the collective
motion database: A comprehensive evaluation was
conducted using the Collective Motion Database. This
meticulous assessment validates the effectiveness of our
proposed model and facilitates a detailed comparison
with existing state-of-the-art methodologies based on
collectiveness measures. Through this analysis, we shed
light on the unique aspects of our model and establish
its congruence with established theoretical frameworks
in the domain.

The paper is structured as follows: Section II extensively
reviews relevant literature and prior research. Section III
presents the paper’s core, delving into the methodology used
for crowd scene classification. Section IV details the results
obtained, showcasing the practical application and evaluation
of the proposed method. Concluding remarks and insights
into potential future developments and research directions are
presented in Section V.

II. RELATED WORK
Despite the abundance of research conducted on motion
pattern-based crowd analysis [3], [9], [10], there exists only a
limited body of work specifically targeting the classification
of a scene into the three distinct categories of interest:
structured, semi-structured, and unstructured [7], [11]. Most
existing research has explored various aspects of motion
patterns without delving into the precise categorization
that distinguishes between these three fundamental types
of crowd behavior. In [12], Zhou et al. proposed a novel
descriptor aimed at quantifying the level of collectiveness
within crowded scenes. This descriptor focuses on evaluating
the degree to which individuals within a group engage in
collective motion. The study introduces three distinguished
classifications of collectiveness metrics: those representing
high, moderate, and low levels of collectiveness.

Derived from [3] and [12], an elevated level of col-
lectiveness typifies structured scenes, while scenes with
low collectiveness are commonly observed in unstructured
scenarios. Semi-structured scenes, on the other hand, exhibit

a moderate degree of collectiveness. Following [3], since
the concepts of elevated, moderate, and low collectiveness
correspond respectively with the attributes of (structured,
semi-structured, and unstructured) crowded scenes, we pro-
ceed to compare our method with existing approaches for
classifying crowd scenes that are based on the concept of
collectiveness.

In [12], the term ‘Collective Merging’ was designed to
identify patterns of collective movement amidst random
outlier motions. They conducted rigorous tests to validate
the robustness and efficacy of their proposed collectiveness
metric, initially applying it to systems of self-propelled
particles. Their results indicated a strong correlation with
human intuitions regarding collective movement. Additional
empirical studies involving video footage of walking crowds
and bacterial colonies, underscored the descriptor’s broader
applicability, suggesting its potential utility in both video-
based surveillance and academic research. As an integral
aspect of this study, Zhou et al. presented the Collective
Motion Dataset (CMD) to assess the effectiveness of their
descriptor. We similarly leveraged this extensive dataset to
validate our newly proposed method.

Shao et al. [13] conducted a comprehensive analysis
of the essential and collective characteristics of groups
present across diverse crowd structures. These characteristics
are inspired by socio-psychological research and play a
critical role in understanding crowded scenarios. The authors
introduce a reliable algorithm for detecting groups that are
informed by discovering collective transitions. Adopting a
graph-centric perspective, they develop an extensive array
of visual descriptors that capture various aspects of group
properties, such as geometric configuration, topological
arrangement, and collective intensity. These descriptors prove
to be highly effective for a range of applications, including
monitoring crowd dynamics, categorizing crowd videos, and
retrieving specific crowd videos.

In [14], a novel methodology for measuring collectiveness
was introduced. This approach includes the development of a
point selection technique capable of isolating the most rele-
vant tracked feature points to symbolize individuals within
a crowd. Additionally, a stability descriptor is formulated
to assess the consistency of an individual’s interactions
with others. By concurrently examining both spatial and
temporal indicators within the crowd, the method enables the
quantitative computation of a collectiveness metric rooted in
the topological connections among individuals.

Li et al. [15] studied the measurement and detection
of collective motion dynamics. In contrast to conventional
approaches that overlook the time-dependent nature of crowd
actions, the authors propose using a hidden-state model
to characterize individual movements. They then employ a
probabilistic similarity assessment technique for comparison.
Utilizing the derived similarity metrics, they establish a
structure-orientedmeasure of collective behavior. This allows
for the exploration of topological relationships among
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individuals and provides a means to quantify behavioral
consistency at both the individual and overall scene levels.

In [11], a straightforward approach for classifying
sequences of moving crowds in videos was presented. Key
points identified in the initial frame are monitored throughout
the sequence via the optical flow technique. This eliminates
the need for tracking every point in the frame, focusing
instead on a selected subset. A descriptor is then calculated
based on the directional motion of these tracked points.
Subsequently, histograms of these motion orientations at the
block level are combined to form comprehensive frame-level
features. In [7], a feature vector was introduced that utilizes
the histogram of angular deviations from average trajectory
vectors to categorize crowded scenes as either structured,
semi-structured, or unstructured, depending on overarching
motion patterns. The methodology put forth comprises values
that represent the frequency of each conceivable angular
deviation, ranging from 0 degrees to 180 degrees.

Similar to [7] and [11], many of the previously discussed
methods calculate a collectiveness value for each individual
frame and then take an average across all frames to determine
the overall crowd collectiveness of a given video. Such per-
frame methodologies tend to yield considerable fluctuations
in the measured collectiveness, owing mainly to the ever-
changing motion patterns of the trajectory’s key points from
one frame to the next. Additionally, these methodologies are
highly sensitive to the initial parameters of their respective
models and are also computationally intensive. In contrast,
we introduce a multi-frame strategy that averages trajectory
data across a predefined set of frames. This allows for the
incorporation of historical motion data and results in a more
stable feature vector for quantifying crowd collectiveness,
offering an improvement over the traditional frame-by-frame
method.

Our method fundamentally diverges from [7] and [11],
as it introduces a refined, fully connected neural network
model aimed at segregating crowds into three well-defined
categories: structured, semi-structured, and unstructured.
This classification hinges on the consistency or randomness
of the movement behaviors displayed by the assembled
entities. In the context of structured crowds, the motion
patterns are coherent and exhibit uniformity, implying that
either the collective crowd or particular subgroups therein
manifest uniform directional and speed attributes. In contrast,
unstructured crowds display a gamut of erratic and variable
movements, leading to a diverse array of both speed and
direction. Semi-structured crowds occupy an intermediate
position between the structured and unstructured classifi-
cations, adding a layer of complexity to the categorization
challenge.

III. CROWD SCENE CLASSIFICATION USING FULLY
CONNECTED DEEP NEURAL NETWORK
This section outlines our comprehensive method of crowd
classification, employing a multi-step process. Fig. 1 illus-
trates the overall block diagram of the proposed method.

The procedure commences with a large collection of real
video clip sequences that capture a variety of crowd scenarios.
These clips are then subjected to trajectory data extraction
via the generalized Kanade-Lucas-Tomasi (gKLT) algorithm,
isolating the movement patterns of individual participants
within the crowd. Following this, the histogram of angular
deviation features (HADF) is computed to quantify motion
patterns.

HADF consolidates separate angular differences into a
unified, coherent representation, thereby shedding light on
overarching patterns in motion. By concentrating solely on
angular features, the proposed method seeks to distill the
complexity of motion within a crowded scene into a form
that can be quantitatively analyzed and visually interpreted.
Computing angular deviations in pairs offer insights into their
directional relationships within a given scene. Furthermore,
compiling these deviations into a histogram captures an
overarching view of movement patterns. This approach aims
to realize the scene’s dynamics by focusing on particular
geometric aspects of motion.

The utilization of the gKLT tracker, the focus on angular
deviations, and the aggregation of this information into a
histogram collectively contribute to a sophisticated picture
of the scene’s motion structure. It’s a strategy that translates
the intricacies of motion within a crowded environment into
tangible data and visual patterns, facilitating both analytical
exploration and practical application. A detailed exploration
of the process for extracting trajectory data and computing
the HADF features is presented in subsection III-A.

Prior to training the model, it is necessary to scale the fea-
ture vectors to ensure they fall within the range of 0 to 1. This
normalization process is crucial for network convergence.
Subsequently, the scaled data is divided using 10-fold cross-
validation, a technique characteristically used to evaluate the
performance of machine learning models. Finally, the dataset
is augmented using the ADASYN method to potentially
rectify issues related to class imbalance. The ultimate goal
of this exhaustive process is to categorize crowds into one
of three distinct classes: structured, unstructured, or semi-
structured.

The classification task falls under the umbrella of super-
vised learning methods, aiming to systematically categorize
data into classes based on labels selected from a prede-
termined list of potential options. This assumes that each
data pattern is assigned to a single label. Classification
can differentiate between two categories, known as binary
classification, or multiple categories, referred to as multiclass
classification. Classification can be employed in diverse
fields where there’s an uneven data distribution, including
anomaly detection [6], [16], [17], object detection [18],
and medical forecasting [19]. Commonly used classification
approaches tend to perform optimally when the pattern
sizes across groups are roughly equal. This is because these
methods aim to maximize accuracy while simultaneously
reducing the error rate. When there’s a balance in sample
sizes, the classifier is less likely to be biased towards a
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FIGURE 1. End-to-end process of the proposed method for crowd scene classification.

particular group, leading to more reliable and consistent
results.

Handling imbalanced data presents a significant challenge.
In situations where the data is skewed, the minority class,
which often represents the category of primary interest, tends
to suffer from higher misclassification costs. This is because
classifiers can become biased towards the majority group,
potentially overlooking or inaccurately classifying instances
from the less-represented category. Ensuring accurate clas-
sification in these circumstances is crucial to avoiding
misleading results [20], [21]. The characteristics of the
dataset can exacerbate the issue of having insufficient training
observations, which in turn can lead to overfitting. When
a model is overfitted, it becomes too closely tailored to
the training data, potentially compromising its ability to
generalize and perform well on new, unseen data [22], [23].
Achieving unbiased classification in the presence of imbal-

anced data can be accomplished by adjusting the distribution
of the minority class. This can be done through various
methods, such as preprocessing techniques or employing
resampling strategies. The methods employed are designed

to achieve a balanced class representation, thereby improving
the model’s predictive accuracy across various categories.
Therefore, to mitigate the impact of highly imbalanced data
and avoid model overfitting, we augmented the proposed
model by recalibrating the minority class distribution using
an ADASYN-based resampling method. This adjustment
enhances the model’s predictive capabilities by rectifying the
class imbalance, resulting in outcomes that are both more
dependable and widely applicable. A detailed explanation of
the ADASYN method is provided in subsection III-B.

A. EXTRACT TRAJECTORIES AND OBTAIN HADF
Relying on the following state-of-the-art studies [7], [12],
[24], the movement patterns of crowds are deemed to display
a noteworthy degree of collective or organized behavior
when a substantial proportion of individuals within the
crowd navigate in a unified direction along a shared path.
This organized motion frequently occurs when participants
coordinate their movements and synchronize their activities,
resulting in a unified and harmonious flow of the crowd
as a collective entity. Capitalizing on this intrinsic aspect

VOLUME 11, 2023 119663



M. S. Mohammed et al.: Motion Pattern-Based Scene Classification

FIGURE 2. An example of a structured scene with its motion patterns. The trajectories elucidate the
movement patterns within the crowd during a specific timeframe.

of crowd dynamics, we present an innovative method for
classifying video clips of crowds into structured, semi-
structured, or unstructured categories. To accomplish this,
we introduce an adaptive synthetic sampling fully connected
neural model (ADASYN-FCNN). The initial step involves
the extraction of individual trajectories from the video data.
Subsequently, we compute the histogram of angular deviation
features (HADF), as described in [7] and [25]. Below,
we outline the process of extracting trajectories and acquiring
HADF features.

• Step 1. In the initial phase of processing an input video
featuring a crowd, capturing the crowd’s movement is
paramount. To accomplish this, we employ the gKLT
tracker, a robust and computationally efficient algorithm
for feature tracking, as proposed by Zhou et al. [12].
This tracker identifies and follows key points, specif-
ically corner features, across successive video frames.
However, certain variables like occlusion and variations
in lighting can result in the generation of errant
trajectories characterized by either minimal length or
predominantly zero displacement values. To mitigate
the impact of such noise, trajectories that do not meet
specific empirical thresholds are systematically filtered
out. Let V = {f1, f2, . . . , fn} be the set of video frames.
For each video frame fi, identify a set of features Ci =

{ci1 , ci2 , . . . , cim}. Then, use the gKLT tracker to track
these features across frames.

Ti = gKLT (Ci, fi, fi+1) (1)

where Ti is the set of trajectories for frame fi to fi+1. Let
τlength is an empirical threshold for minimal trajectory
length. Then, remove all trajectories that do not meet the
following criteria.

T i = {t ∈ Ti | length(t) ≥ τlength} (2)

The outcome comprises a collection of refined tra-
jectories (as shown in Fig. 2), denoted as T̄ =

{T 1,T 2, . . . , T̄n−1}, adeptly depicting the movement
patterns within the crowd video while effectively
attenuating the influences stemming from disruptive
elements like occlusions and fluctuations in lighting
conditions.

• Step 2. In the analysis of object movements within a
given scene, a sequence of two-dimensional coordinates
across consecutive frames serves as a crucial data
set. This sequence, known as a trajectory, traces the
spatial path of a key-point associated with the object.
To effectively ascertain the crowd’s movement direction
using this trajectory data, an initial step involves the
calculation of the mean displacement for each frame
within each trajectory.
Following this, the mean angular orientation, denoted as
θti, for each trajectory is extracted from the previously
computed mean displacement vector. This is achieved
by projecting this mean vector onto a unit vector aligned
with the horizontal (x−axis), as outlined in [25]. In each
unique trajectory, the derived average angular orienta-
tion effectively captures the directional tendencies of the
path’s movement over a designated time interval. When
the bulk of these averaged vectors within a given scene
converge towards a common directional focus, the scene
is categorized as being structured.
On the other hand, if the vectors display a lack of
directional consistency and are dispersed in multiple
directions, the scene is identified as unstructured.
As a result, an in-depth analysis of the orientation
value distribution yields a well-defined perspective on
the dominant movement patterns exhibited by objects
in a specific context. This analytical strategy offers
a comprehensive view into collective behaviors and
directional proclivities, thus serving as an essential
asset for evaluating the global dynamics within the
scene [7].

• Step 3. Utilizing the orientation values obtained in
Step 2, the angular difference or deviation matrix is
computed, denoted as Adev. This square matrix has
entries [i, j] that represent the angular deviation between
the i-th and j-th angles in the data set. The angular
difference D between any two angles a and b is
determined by the formula: D(a, b) = min(2π −

|a − b|, |a − b|). This formulation acknowledges
the cyclical nature of angular measurements, ensuring
that D(a, b) = D(b, a) and D(a, b) falls within the
range of [0, π].
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• Step 4. Deriving a histogram from the Adev for each
crowd scene acts as a potent instrument for elucidating
the global relationships among trajectory vectors, espe-
cially concerning their angular orientations. A histogram
featuring a marked peak close to zero degrees of angular
deviation suggests that the majority of trajectory vectors
are aligning in a consistent direction. In other words, this
clustering near a zero-angle deviation in the histogram
essentially indicates that the movement directionality
within the scene is largely organized.

Fig. 3 displays three scene examples, each representing
structured, semi-structured, and unstructured environments,
respectively. Each scene is accompanied by its histogram of
angular orientation and deviation matrix. For the structured
scene, the histogram is highly peaked around specific angles,
indicating that the crowd in this scene is primarily oriented
in particular directions. This is characteristic of structured
crowds, where people tend to face the same or similar
directions. For the semi-structured scene, the histogram has
multiple peaks but is less sharply peaked than in the structured
scene. This suggests that while there are predominant
directions, there is also some variability in the crowd’s
orientation. This is typical of semi-structured crowds, where
people generally face a few common directions, though not
as uniformly as in structured crowds. For the unstructured
scene, the histogram is more evenly distributed, indicating
a greater variety of orientations. This is indicative of an
unstructured crowd, where people are oriented in various
directions without any clear pattern.

B. PATTERN AUGMENTATION
ADASYN [26] is an advanced oversampling technique
designed to address the class imbalance in machine learning
datasets, particularly for classification tasks. Class imbal-
ance occurs when the number of instances in one class
significantly outweighs the instances in another class, which
can lead to biased model performance. ADASYN aims
to alleviate the impact of class imbalance by generating
synthetic samples for the minority class while focusing on
regions where the class distribution is dense.

Unlike traditional oversampling techniques that gener-
ate synthetic samples uniformly across the feature space,
ADASYN adapts its synthetic sample generation based on
the distribution of the data. Here’s a step-by-step explanation
of how ADASYN works: Given training data patterns
HADFtraining = {xi, yi}mi=1, where xi is a pattern vector with
n-dimensional columns and m is the number of patterns,
in our case, the n = 180, and yi ∈ {0, 1, 2} for the three
defined classes {(0): Unstructured, (1): Semi-structured, (2):
Structured}. Moreover, choose the ω and k , where ω is the
desired level of class balance, and k is the number of nearest
neighbors.

1) Let nmaj and nmin denote the number of patterns of
the majority and minority classes, respectively. Next,
compute G, a quantity that signifies the difference

between the quantity of patterns in the majority class
and the quantity of patterns in the minority class,
weighted by the parameter ω that belongs to the
interval [0,1], as in Eq. (3):

G = (nmaj − nmin) × ω (3)

2) Extract the minority setM , where M ∈ {x}nmini .
3) Compute the Euclidean distance between the vector xi

and all the components of M to acquire the k−nearest
neighbors of xi. Let Eik indicates the set of the obtained
k−nearest neighbors.

d(xi, xj) =

√∑
l=1

(xi,l − xj,l)2 (4)

where xi,l and xj,l are the l−th components of the points
xi and xj, respectively.

4) Obtain the ratio ai, based on ρi, which refers to
the number of patterns in the k−nearest neighbors’
area of xi.

ai =
ρi

k
, i = {1, . . . .nmin} (5)

Then, normalize ai to âi using Eq. (6), where∑nmin
i=1 âi = 1.

âi =
ai∑nmin
i=1 âi

(6)

5) Compute the synthetic patterns gi required for each
minority class pattern based on the following Eq. (7)
below:

gi = âi × G (7)

6) Randomly select gi synthetic patterns denoted xij, (j =
1, . . . , gi) from Eik with replacement.

7) For a given xij, j = {1, . . . gi}, synthesize a new
pattern based on Eq. (8), where ϕ is selected uniformly
between 0 and 1 for each xk .

xs = xi + ϕ(xi − xij) (8)

C. FULLY CONNECTED DEEP NEURAL NETWORK
The proposed neural network architecture, termed FCNN
(Fully Connected Neural Network), encompasses a struc-
tured hierarchy of layers designed for effective motion
pattern classification. Comprising an initial input layer with
180 neurons, the network seamlessly progresses through
hidden layers tailored to capture intricate data patterns.
The excessive hidden layers may lead to prolonged training
time and overfitting. To achieve an optimal balance, our
FCNN model is composed of four hidden layers. The
first hidden layer, with 512 neurons, utilizes the Rectified
Linear Unit (ReLU) activation and dropout regularization to
enhance model generalization. Subsequently, the 256-neuron
layer employs batch normalization for stable training, fol-
lowed by a 128-neuron layer incorporating further dropout.
A 64-neuron layer contributes to dimensionality reduction
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FIGURE 3. The top row displays a structured scene, the middle row features a semi-structured scene, and the bottom row portrays an unstructured
scene, each accompanied by histograms illustrating its angular orientation and deviation matrix. The histogram of the deviation matrix is overlaid with a
Kernel Density Estimation (KDE) curve. The KDE curve offers a smooth approximation of the data’s probability density function.

before culminating in a 3-neuron output layer, supporting
classification into three predefined classes. These layers,
alongside dropout and batch normalization, synergistically
facilitate robust classification performance while mitigating
overfitting.

Fig. 4 visualizes the architecture of the proposed FCNN
model. This graph represents how data flows through the
model’s layers. The neuron in each layer are connected to
each other neurons by weight and bias as shown in Fig. 4.
This process can be expressed as follows:

y = σ (
n∑
i=1

wixi + bi) (9)

where xi represent the input vectors, y represents the output of
the neuron, wi and bi denote the weight of each input and bias
of the neuron, respectively, and σ represents the activation
function, whichmakes the neuron generate nonlinear outputs.
These processes primarily serve to adjust the weights of the
neural network. The neural network weights and biases are
assigned initial values during the network initialization phase.
During training, the weights of each neuron are then adjusted
based on predicted differences, which allows for iterative

refinement of the network’s performance.

w̄ = w− α
∂loss
∂w

(10)

where w̄ represents the updatedweight,α denotes the learning
rate, and loss represents the loss function. During training,
the neural network carries out a backward computation
for each forward computation. Finally, the weights are
adjusted to attain optimal values that minimize the differences
between the predicted and actual values. FCNNs offer several
advantages compared to other deep learning architectures
like CNNs, RNNs, ResNets, and Transformers. FCNNs are
simpler to understand and implement, making them easier to
debug and interpret. They can be more parameter-efficient
in scenarios where every input feature is relevant to every
output class. FCNNs are highly flexible, capable of handling
various data types, and unconstrained by input shapes. They
generally require fewer computational resources, particularly
when the architecture is not very deep. Additionally, FCNNs
consider the global context of the data, as each node in a layer
is connected to every node in the subsequent layer, unlike the
local context considered in convolutional layers.
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FIGURE 4. The architecture of the proposed FCNN model is visualized using Torchviz. The model takes as
input a tensor with a batch size of 64 and an input dimension of 180. It consists of one input layer, four
hidden layers, and one output layer, each with varying numbers of neurons. In this diagram, the term ‘fcx’
denotes a fully connected layer, where ‘x’ identifies the layer number. The numbers in brackets indicate the
dimensions of the output and input, respectively.
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D. REGULARIZATION TECHNIQUES
The model incorporates vital regularization techniques to
enhance its learning capacity and mitigate overfitting.
Employing dropout after the first and third hidden layers, with
a dropout rate of 0.5, strategically introduces randomness
by temporarily deactivating neurons during training, thereby
promoting robust feature learning and preventing excessive
reliance on any specific neurons. Furthermore, batch normal-
ization is seamlessly integrated after the second hidden layer,
ensuring stabilized activations and facilitating smoother
convergence during training. These regularization strategies
collectively reinforce the model’s ability to generalize well to
unseen data while maintaining an optimal trade-off between
complexity and generalization performance.

E. LOSS FUNCTION FOR MULTICLASSIFICATION
1) FOCAL LOSS (LF )
The LF is a specialized loss function designed to address
class imbalance in binary and multi-class classification tasks.
It was introduced in the paper [27]. The LF aims to give
more emphasis to hard-to-classify patterns during training,
thereby mitigating the impact of the dominant class in
imbalanced datasets. It does so by downweighting the losses
assigned to well-classified examples. The LF is defined as
follows [27]:

LF (p̂y) = −ωt (1 − p̂y)γ log(p̂y) (11)

where y ∈ {0, . . . ,C − 1} denotes an integer class label (C is
the number of the classes), py is the estimated probability over
theC , andωt is a weighting factor for each class (typically set
to 1 for binary classification but can be a vector formulti-class
classification). γ is a focusing parameter that determines
the extent to which higher-confidence correct predictions
influence the overall loss. As γ increases, the weight given
to easily-classifiable examples diminishes.

2) MULTI-CLASS MARGIN LOSS (LMCM)
The LMCM is a loss function designed to increase the margin
between predicted scores for the true class and other classes.
It uses hinge loss with a power exponent to emphasize loss
for larger differences and allows for class-specific weighting.
The loss is computed element-wise for each sample and
then summed and normalized to obtain a scalar loss value.
The loss encourages the model to have higher confidence
in the correct class prediction while considering weighted
and margin-adjusted score differences. It is defined as
follows [28]:

LMCM (x, y) =

∑
i max(0,w[y] × (m− x[y] + x[i]))k

N
(12)

where x and y are the sample and the true label, respectively.
w[y] is a weight associated with the true class label, and m is
a margin value. x[y] is the predicted score for the true class y.
N is the number of samples in the batch.

3) CATEGORICAL CROSS ENTROPY LOSS (LCCE )
The LCCE is an essential loss function commonly used in
multiclass classification. It is critical for training algorithms
to produce accurate class probability estimates. Calculated
by comparing predicted probabilities with actual class labels,
each value in the resulting loss vector corresponds to
the cross-entropy loss for a single sample. The function
effectively balances prediction accuracy across classes while
penalizing errors. Its primary strength is its ability to handle
multiple categories, directing the model to allocate higher
probabilities to the correct classes. Through the use of the
softmax function, LCCE converts raw output scores into valid
class probabilities, aiding in stable optimization and conver-
gence during training. The loss function is instrumental in
elevating the performance of machine learning classifiers in
multiclass settings. The LCCE is defined as follows [29]:

LCCE (x, y)={l1, . . . , lN }
T , ln=−

C∑
c=1

yn,c×log(pn,c) (13)

pn,c=
exn,c∑C
i=1 e

xn,i
(14)

where N is the number of patterns, ln refers to the cross-
entropy loss for the nth pattern, C is the number of classes.
yn,c is the true label (ground truth) of the nth pattern for class
c. pn,c is the predicted probability of the nth pattern belonging
to class c. xn,c is the raw score (logit) for the nth sample in
class c. e is the base of the natural logarithm.

∑C
i=1 e

xn,i is
the sum of exponential raw scores for the nth sample over all
classes.

4) HUBER LOSS (LH)
It’s generally used for regression but can be adapted for multi-
class classification [30]. It’s less sensitive to outliers because
it’s quadratic for small values and linear for large values.
In multiclass classification, the LH can be used as a custom
loss function. The LH is defined as follows:

LH (yp, yt ) =

{
0.5 × (yt − yp)2

∣∣yt − yp
∣∣ ≤ δ

δ ×
∣∣yt − yp

∣∣ − 0.5 × δ2
∣∣yt − yp

∣∣ > δ

(15)

where yt and yp are the true and predicted values, respectively.
In regression tasks, the goal is to predict a continuous target
variable, such as a person’s age, the price of a house, or a
temperature value. The LH in this context aims to combine the
properties of both theMean Squared Error (MSE) loss and the
Mean Absolute Error (MAE) loss. It behaves quadratically
(like MSE) for small errors and linearly (like MAE) for larger
errors.

In multiclass classification tasks, the goal is to classify
an input into one of several possible classes. For example,
the task may involve categorizing an animal based on
its attributes. While the LH can be adapted to handle
multiclass classification, the method of implementation
varies due to the distinct nature of multiclass problems. In this
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context, it becomes essential to factor in the existence of
multiple classes, necessitating adjustments to the predicted
probabilities.

A standard approach for employing LH in multiclass
scenarios involves converting the raw prediction scores into
probabilities via a softmax function. Subsequently, the loss
is computed by contrasting these predicted probabilities with
the actual class labels. This calculation takes into account the
characteristics of categorical cross-entropy loss. The softmax
function first converts raw scores into positive values through
exponentiation and then normalizes these by dividing them
by the sum of all the exponentiated values. This step ensures
that the final probabilities sum to 1, making them apt for
representing class probabilities. The softmax transformation
is commonly used in multiclass classification tasks to convert
model outputs into a probability distribution over the classes,
making it easier to interpret and use for making predictions.

LH (yp, yt ) =

{
max(0, 1 − ypyt )2 ypyt > −1
−4ypyt Otherwise

(16)

5) JOINT LOSS (CATEGORICAL CROSS ENTROPY LOSS +

MULTI-CLASS MARGIN LOSS) (LCCE+MCM)
Experimentally, in the data of this study, Categorical Cross-
Entropy and Multi-Class Margin Losses yielded the best
performance results. Consequently, we combined these losses
LCCE+MCM by linearly scaling them with their respective
weight coefficients. The weights α and δ determine the
balance between the two losses. We can adjust these weights
based on the desired importance of each loss component.
However, choosing appropriate weight values is critical
to ensuring that both losses contribute effectively to the
learning process. If one loss is significantly larger than the
other, it may dominate the training, potentially affecting
the convergence and the learning behavior of the model.

LCCE+MCM = α × LCCE + δ × LMCM (17)

A detailed study of the chosen values of α and δ in our
experiments is provided in subsection IV-E.

IV. EXPERIMENTS
To comprehensively assess the competency of the proposed
method, specifically its ability to classify a particular scene
as structured, semi-structured, or unstructured, a methodical
evaluation process was conducted. This involved using the
collective motion database (CMD), a publicly accessible
database, to train the classifier using the proposed model.
Details on the CMD dataset are in subsection IV-A. The
essence of this evaluative procedure lies not merely in evalu-
ating the effectiveness of our model but also in comparing it
with state-of-the-art approaches in the domain of crowd scene
classification. These cutting-edge methodologies, notable for
their reliance on the quantification of collectiveness within
the scene, provided a benchmark against which our model
could be critically examined.

A. DATASET
The CMD, put forth by [16], serves as the benchmark to
assess the efficacy of our proposed method. Comprising
413 distinct crowd video clips, this dataset offers one hundred
frames per clip. Additionally, it includes ground truth labels
for every clip, falling under the classification scheme of
{0, 1, 2}. Examples of the CMD dataset are shown in Fig. 5.

• Unstructured scenes (Label 0): These comprise the
majority of the scenes, with a total of 216 instances.
This category may represent scenes where there’s no
clear pattern or organization, such as a busymarket street
where people and vehicles move freely without specific
paths.

• Semi-structured scenes (Label 1): There are
107 instances of semi-structured scenes, falling in
between the other two categories. These scenes might
contain some rules or patterns governing movement, but
these may not be consistently followed.

• Structured scenes (Label 2): The structured category
represents the most orderly scenes, with 90 instances.
These scenes could include well-organized traffic sys-
tems or controlled public spaces where movement
follows specific paths or rules.

As shown in Fig. 6, the data indicate that unstructured scenes
are the most common, making up more than half of the
total scenes. This suggests a need for more sophisticated
analysis techniques capable of handling the complexity of
unstructured environments. There is a noticeable imbalance
between the categories, with structured scenes being the least
represented. This could have implications for modeling and
classification tasks, as the imbalance might lead to biased
predictions towards the majority class (unstructured).

B. FINDINGS AND ANALYSIS
A comparative analysis of the F1-score across different
machine learning models and three types of data structure
combinations is presented in Fig. 7. While ensemble methods
such as adaptive boosting (AdaBoost), random forest (RF),
and eXtreme gradient boosting (XGBoost) [7] generally
outperform earlier models by Zhou et al. [12], Shao et al.
[13], and Li et al. [15], they excel primarily in specific data
structure combinations. Additionally, the ν-support vector
machine (ν-SVM) [7] and multi-layer perceptron (MLP)
exhibited performance almost comparable to XGBoost.
In contrast, FCNN, SMOTE-FCNN, and ADASYN-FCNN
consistently achieve high F1-scores across all types of data
structures, establishing them as more versatile solutions.

Moreover, SMOTE-FCNN and ADASYN-FCNN are
uniquely designed to handle imbalanced datasets, offering
robust performance across a wide range of real-world
scenarios. Due to their consistently high F1-score across
various data structures, these models, along with FCNN,
also exhibit superior generalization capabilities. Additionally,
these models offer greater adaptability to different data types
and structures. Unlike ensemble methods, which rely on
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FIGURE 5. The CMD is a challenging dataset because it consists of 413 video clips with a variety of motions, varied perspective views, occlusions, and
tracking noise. The CMD video clips are categorized into structured, semi-structured, and unstructured crowd scenes.

FIGURE 6. Distribution of different types of crowd scenes in CMD dataset.

pre-defined strategies, FCNN and its variants can be easily
fine-tuned for specific tasks.

Fig. 8 presents the confusion matrix for the multiclassi-
fication of motion patterns into structured, semi-structured,
and unstructured categories. The matrix serves as an eval-
uative tool for the performance of our ADASYN-FCNN
classification model in discriminating among these distinct
data types. In the matrix, rows correspond to actual labels,
while columns represent predicted labels. A preponderance
of values along the diagonal line indicates high accuracy
in the model’s predictions. The elevated values along the
diagonal of the matrix corroborate the model’s exceptional
accuracy, affirming its robustness and reliability across
diverse data categories. Notably, the sparse off-diagonal
elements signify a reduced incidence of false positives and
negatives, a crucial benefit in contexts where the ramifi-
cations of misclassification are considerable. Moreover, the
balanced allocation of diagonal elements substantiates the
model’s ability for impartial class discrimination, effectively
differentiating between unstructured, semi-structured, and
structured data categories. This equilibrated performance
underscores the model’s robustness and indicates its aptitude
for strong generalization, rendering the ADASYN-FCNN

TABLE 1. Summary of multiclassification performance for FCNN and
augmented patterns models.

model exceptionally suitable for managing diverse and
imbalanced datasets in real-world applications.

C. COMPARATIVE ANALYSIS OF ADASYN-FCNN AND
SMOTE-FCNN METHODS
In this section, two of the most popular data balancing
techniques, SMOTE and ADASYN, are compared for the
purpose of motion pattern-based crowd scene classification.
Table 1 provides a detailed analysis of the performance
metrics of FCNN and its augmented patternmodels, SMOTE-
FCNN and ADASYN-FCNN, in a multiclassification task.
ADASYN-FCNN outperforms both FCNN and SMOTE-
FCNN, demonstrating its superior ability to correctly classify
instances across multiple classes. In general, the FCNN
architecture can model complex relationships in the data.
The synergistic combination of FCNN with SMOTE or
ADASYNprovides amore fine-grained understanding of fea-
ture interactions, leading to higher performance. Moreover,
FCNNs are known for their ability to learn useful feature
representations. When combined with SMOTE or ADASYN,
which adds variability to the data, the model might capture a
richer set of features, leading to higher accuracy, precision,
and recall.

In addition, our models were evaluated using robust tech-
niques like cross-validation, which strengthens the case that
ADASYN-FCNN’s high scores are indicative of the model’s
generalizability. The superior performance of ADASYN-
FCNN compared to SMOTE-FCNN can be attributed to
several key methodological differences between the two
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FIGURE 7. Evaluating F1-score performance: a comparative analysis of machine learning algorithms across
diverse data structures for binary classification. The reported outcomes of methods by Zhou et al. [12],
Shao et al. [13], and Li et al. [15] are sourced from [7].

oversampling techniques. Unlike SMOTE, which uniformly
generates synthetic samples for each minority class instance,
ADASYN dynamically adjusts the number of synthetic
samples based on the local difficulty of classification for each
minority instance. This targeted approach enables ADASYN
to concentrate on instances that are more challenging to
classify, thereby enhancing the model’s overall effectiveness.
Additionally, as described in subsection III-B, ADASYN
employs a k-Nearest Neighbors algorithm to generate syn-
thetic samples in proximity to minority instances that are
commonly misclassified. This localized strategy results in a
model that is both precise and context-sensitive, which likely
accounts for its elevated performance metrics. Furthermore,
the adaptive and localized nature of ADASYN’s synthetic
sample generation leads to a more balanced representation
of minority classes in the feature space, mitigating the risk
of model overgeneralization that is often associated with
SMOTE. Lastly, ADASYN’s adaptive capabilities make it
particularly adept at handling noisy data, as its flexible
sample generation is sensitive to the complexities inherent in
the data distribution.

Table 2 showcases the performance metrics of three dis-
tinct models: FCNN, SMOTE-FCNN, and ADASYN-FCNN,
evaluated across three different data structure combinations.
Each of themodels demonstrates commendable performance,
with accuracy and F1-score predominantly surpassing the
0.90 mark. Among them, ADASYN-FCNN emerges as
the most exemplary, excelling across all data structure
combinations and performance metrics. It notably attains
an F1-score of 0.99 in the semi-structured | unstructured
categories. While all models exhibit strong performance, the
ADASYN-FCNN distinguishes itself as the most robust and
effective choice among them.

D. COMPARATIVE ANALYSIS OF DIFFERENT
LOSS FUNCTIONS
The choice of a loss function plays a crucial role in training a
machine learning model, particularly for multiclassification
tasks. It serves as the objective function that the optimization
algorithm seeks to minimize, thereby directly influencing the
model’s ability to generalize well to unseen data. Different
loss functions capture different types of errors and imbalances
in the data, making the choice of an appropriate loss
function crucial for achieving high performance in a given
application.

Based on Table 3, MultiMargin Loss outperforms other
loss functions like Focal Loss, Huber Loss, and CrossEntropy
Loss across all the key performance metrics. The superior
performance ofMultiMargin Loss in multiclassification tasks
can be attributed to several key features. Firstly, it is designed
to effectively handle class imbalances, a common challenge
in such tasks, as evidenced by its outstanding performance
across all key metrics. Secondly, its focus on maximizing
the margin between classes leads to better-defined decision
boundaries, contributing to the model’s high precision and
recall rates. This margin maximization also enables the
model to generalize better to unseen data. Additionally,
MultiMargin Loss is less sensitive to outliers, providing a
more robust performance in datasets with noisy or extreme
values. Finally, it often converges faster than other loss func-
tions, offering both computational efficiency and superior
performance.

In our research, we introduce a loss function termed ‘Joint
Loss,’ which combines the strengths of both CrossEntropy
Loss and MultiMargin Loss. The empirical results indicate
that Joint Loss achieves unparalleled performance, register-
ing an accuracy of 93.97%, a precision of 94.81%, a recall of
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FIGURE 8. Confusion matrix for the classification of structured, semi-structured, and unstructured motion
patterns.

TABLE 2. Evaluation of FCNN, SMOTE-FCNN, and ADASYN-FCNN models in binary classification contexts: A stands for accuracy, P for precision, R for
recall, and F1 for F1-score.

TABLE 3. Evaluation of loss functions based on ADASYN-FCNN in terms
of accuracy, precision, recall, and F1-score.

93.97%, and an F1-score of 94.16%. These metrics surpass
those achieved by either CrossEntropy Loss or MultiMargin
Loss individually, epitomizing the best of both. By amal-
gamating CrossEntropy Loss, known for its effectiveness in
probability estimation, with MultiMargin Loss, renowned for
its robustness to class imbalance and margin maximization,
Joint Loss capitalizes on the complementary advantages. This
hybrid approach results in better-defined decision boundaries
and improved generalization to unseen data. Additionally, the
lessened sensitivity to outliers and faster convergence rates
characteristic of MultiMargin Loss are preserved in this Joint
Loss formulation.

E. STUDY α AND δ VALUES FOR THE JOINT LOSS
To evaluate the performance of the model under various con-
figurations of the Joint Loss function LCCE+MCM , a heatmap
was generated. The heatmap serves as an empirical guide
to selecting optimal values of α and δ for balancing the
Categorical Cross-Entropy and Multi-Class Margin Losses
in the Joint Loss function. By performing that, the model’s
performance can be fine-tuned, as reflected by the F1-score.
As shown in Fig. 9, extensive empirical evaluation indicated
that the model achieves optimal performance with α = 0.10
and δ = 0.50, yielding the highest F1-score of 0.95. This
suggests that the model benefits from a lower emphasis on the
Categorical Cross-Entropy Loss and a moderate emphasis on
the Multi-Class Margin Loss when combined into the Joint
Loss function LCCE+MCM . Therefore, in our experiments,
we fixed the values of α and δ at these levels.

F. COMPARATIVE ANALYSIS USING 10-FOLD
CROSS-VALIDATION
Utilizing cross-validation in machine learning algorithms
is essential for achieving dependable, trustworthy, and
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FIGURE 9. F1-score heatmap across various α and δ values for the Joint Loss.

TABLE 4. Evaluation of multiclassification models with and without 10-fold cross-validation.

broadly applicable outcomes, especially when dealing with
an uneven class distribution. Segmenting the initial dataset
into various subgroups for both training and validation, cross-
validation minimizes the likelihood of model overfitting and
allows for an exhaustive assessment of the model’s efficacy
across diverse data points. This technique is crucial when
confronting class imbalances, a frequent challenge that can
distort the model’s predictive precision. When combined
with stratified sampling, cross-validation guarantees that
each subset contains a balanced representation of all classes,
thereby enabling a well-rounded and sturdy evaluation. It also
facilitates the use of various resampling techniques across
different folds, enhancing the model’s generalization capa-
bilities on imbalanced datasets. As a result, cross-validation
acts as both a robust evaluation technique and an effective tool
for mitigating challenges posed by class imbalance, thereby
validating the model’s true predictive power.

Table 4 highlights the substantial influence of 10-fold
cross-validation on model performance. Notably, this impact

extends to diverse models such as Adaptive Boosting
(ADboost), Random Forest (RF), ν-Support Vector Machines
(ν-SVM), ExtremeGradient Boosting (XGBoost), Multilayer
Perceptron (MLP), and ADASYN-FCNN, as evidenced
by their consistent performance improvement across all
key metrics. Each model exhibits improved performance
metrics when cross-validation is applied, underscoring the
added robustness provided by this evaluation technique.
ADASYN-FCNN stands out for its consistent and reli-
able performance, excelling with and without the use of
cross-validation.

V. CONCLUSION
In this study, we introduce a streamlined fully connected
neural network designed to classify crowds into three distinct
categories: structured, semi-structured, and unstructured.
This classification is predicated on the uniformity or
variability of the movement patterns exhibited by the
assembled objects. For crowds deemed to be structured, the
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observed motion is both coherent and uniform, signifying
that either the entire crowd or specific segments within it
display consistent directional and velocity characteristics.
On the contrary, unstructured crowds demonstrate incon-
sistent and unstable motion, leading to a diverse array of
velocities and trajectories. Semi-structured crowds introduce
a heightened level of complexity, occupying an intermediate
position between structured and unstructured categories, thus
introducing challenges when attempting to classify them into
distinct categories.

Through trajectory-based scene classification, it offers
valuable insights into the crowd’s inherent dynamics, offering
a foundation for multiple applications, including crowd
control, urban planning, public safety, and the formulation
of tailored strategies for surveillance and interference.
In essence, the approach offers a sophisticated tool for
understanding and responding to the complexities of crowded
environments, contributing to both theoretical knowledge and
practical applications in the field of crowd analysis.

This study lays the groundwork for several promising
avenues for future research and practical applications in
crowd analysis. Future work could delve into more granular
sub-categorizations of crowd behaviors to better capture the
wide range of dynamics observed. Additionally, the model
could be tailored for specific scenarios such as sporting
events, protests, or concerts, where crowd characteristics may
differ.

The integration of human expertise through a human-
in-the-loop system could further refine the model’s classifi-
cations, particularly in ambiguous or high-stakes situations.
Collaborative efforts with professionals in urban planning,
psychology, and law enforcement could translate these
theoretical models into actionable strategies for effective
crowd management and public safety. Lastly, the potential
for integrating the FCNN model into an Internet of Things
(IoT) framework could offer real-time, sensor-based crowd
management solutions. These future directions strive to
both deepen theoretical understanding and create practical
solutions that are ready for implementation in the field of
crowd analysis.
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