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ABSTRACT The latest video standard - Versatile Video Coding Standard (VVC/H.266) has been standard-
ized and officially entered into force. Compared with the High Efficiency Video Coding (HEVC/H.265),
owing to the introduction of the Quad-tree with Nested Multi-type Tree (QTMT) division mode, the encoder
can choose a more detailed division type when dividing the Coding unit (CU), thereby improving the coding
performance. However, when the CU selects the division type, it needs to traverse all possible division types
and compute the Rate-distortion (RD) cost, which greatly enhances the coding complexity. Therefore, this
paper designs a Joint Random Forest Classifier (JRFC) to make decisions on CU partition types, and proposes
fast adaptive CU partition decision algorithm for VVC intra coding combined with our previous work. The
algorithm has the capability to make partition decisions for CUs of diverse sizes (smaller than 32 x 32) and
completely bypass the intricate process of Rate-distortion Optimization (RDO), resulting in a significant
reduction in encoding time. The experimental results demonstrate that, in comparison to the basic approach
utilized in VTM10.0, the algorithm proposed in this paper reduces the encoding time by 57.27% on average,
with only a marginal increase of 1.53% in Bjgntegaard delta bit rate (BDBR).

INDEX TERMS VVC, QTMT, JRFC, feature extraction, fast CU partition algorithm.

I. INTRODUCTION encoding high-definition video. Therefore, the ITU-T Video

In this era of exponential explosion of information, video,
as a carrier of information, has become a part of our daily life
through different channels. So as to decrease the capacity of
data occupied by video during compression and transmission,
and facilitate the storage and transmission of video, video
coding technology has gradually become a more popular
research direction [1].

H.264/AVC [2] stands as a compressed digital video codec
standard advanced by the Joint Video Team (JVT). Embrac-
ing cutting edge video coding technology, it endeavors to
compress video data to its utmost capacity, all the while
assuring unfaltering video quality. However, the H.264/AVC
standard exhibits certain shortcomings when it comes to
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Coding Experts Group (VCEG) and the ISO/IEC Moving
Picture Professional Group (MPEG) established a Video
Coding Joint Collaboration Team JCT -VC, jointly develop a
more efficient video coding standard - H.265/HEVC [3]. This
new standard can more effectively compress high-definition
video data, thereby providing higher-quality video content,
and providing better support for high-definition video appli-
cations. The H.264/AVC and H.265/HEVC standards have
brought significant technological advances in video com-
pression, making efficient encoding of high-resolution video
a reality. However, under current video applications and
industry demands, the performance of these two standards
still has not reached the expected coding efficiency, so con-
tinuous improvement is needed, which also promotes the
establishment of new video coding standards by international
organizations. In July 2020, the Joint Video Experts Team
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FIGURE 1. QTMT division process in VVC.

(JVET) officially released the Versatile Video Coding (VVC)
[4] standard, marking the official launch of a new generation
of video coding standards.

Compared with HEVC, the newly formulated VVC
has more efficient coding performance and broad market
prospects. In VVC, many novel technologies are adopted:
Quad-tree with Nested Multi-type Tree (QTMT) block divi-
sion mode, support for 65 intra prediction modes and so on
[5]. The primary contribution to the enhancement of cod-
ing performance lies in the adoption of a more versatile
and pliable Coding Unit (CU) partition structure known as
QTMT partition. That is, on the foundation of the original
division type of HEVC - Quad-tree (QT) division, Binary-tree
(BT) division and Ternary-tree (TT) division are introduced,
which are subdivided into four types of divisions, namely:
Horizontal Trinomial-tree (HTT), Vertical Trinomial-tree
(VTT), Horizontal Binary-tree (HBT), and Vertical Binary-
tree (VBT), the specific information is reflected in Figure 1.
[6]. Same as HEVC, Rate-distortion Optimization (RDO) is
also used in VVC as the basis for the selection of Coding Tree
Unit (CTU) division types. The prescribed procedure unfolds
as follows: the encoder meticulously navigates through an
array of potential division types, sequentially computing their
Rate-distortion (RD) costs, and ultimately discerns the divi-
sion type endowed with the most meager RD cost, thus
anointing it as the optimal division method for the Coding
Unit (CU) [7]. Whilst RDO possesses the capability to elect
the most exemplary division mode for Coding Units (CUs)
and thereby enhance coding performance, the proliferation
of division types within the Versatile Video Coding (VVC)
standard necessitates the computation of RD costs for every
conceivable division of a CU. This arduous task bestows upon
us an inconceivable magnitude of calculations. The formula
employed to ascertain the RD cost and Sum of Absolute
Difference (SAD) is as follows:

M N
SAD (x,y) = D~ > Ifi m,n) —fiei (m+x,n+ )], (1)

m=1 n=1
where x represents the horizontal component, y represents the

vertical component, and the RD cost criterion is calculated as
follows:

J =SAD (x,y) + A - R, )
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Key technology | Encodingtime | Proportion
CTu 5689.1s 96.54 %
ALF 9245 157 %
CABAC 589s 1.00 %
Other 529s 0.89 %
cTu ALF CABAC | Other TOtaItier:c:ding 28983 100%

FIGURE 2. Statistics chart of encoding complexity. (Take the BQMall
sequence as an example.)

Among them, A represents the lagrangian factor, and R
represents the number of bits required for encoding.

We encode the first 50 frames of the BQMall
sequence under the All Intra (AI) configuration of the
VTM10.0 encoder, and count the encoding time used, the
specific information is reflected in Figure 2. It shows that
among the key technologies of VVC, the CTU division
process takes the most time, with a proportion as high as
96.54%. Therefore, we can conclude that the QTMT tech-
nology provides a flexible division method for CTU division
not only to improve the coding performance, but occupies the
most coding time of VVC.

Following the aforementioned theoretical analysis and
research experiments, it becomes apparent that the advance-
ment of Coding Unit (CU) partition technology not only
amplifies the coding quality, but also bestows upon us a
formidable computational complexity, thereby setting forth
elevated demands on the implementation of coding and
decoding processes. Henceforth, it is imperative to dis-
cover an expeditious algorithm to supplant the laborious
Rate-Distortion Optimization (RDO) process and accelerate
the partitioning of Coding Units (CUs), thereby diminishing
the intricacies entailed in coding and decoding procedures.
In the traditional encoding method, the partition mode of each
CU is first initialized in the block partition mode list, and all
the partition modes that can be tried are written into the list,
and then all the partition modes in the list will be tried in the
actual partition process. It can be seen that this process will
cause a lot of computational complexity. Therefore, in fast
algorithm design, partition methods with low probability
can be predetermined and removed from the initialization
list. In our antecedent endeavor [8], we presented a method
to diminish the encoding time in Versatile Video Coding
(VVC) through a fusion of statistical analysis and the SAE-
CNN. This method adeptly formulates partition decisions for
Coding Units (CUs) of varying dimensions. However, the
previous work can only decide whether to divide the CU, and
the specific division type decision still needs to use the RDO
process of the traditional algorithm, which needs to be further
improved. Henceforth, the present study endeavors to devise
a Joint Random Forest Classifier (JRFC) to undertake the
intricate task of decision-making pertaining to the partition
type of Coding Units (CUs). Through a seamless integration
with our preceding research [8], we culminate in proposing
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a swift and adaptable algorithm for CU partition decision
in the realm of VVC intra coding. The algorithm possesses
the capability to handle Coding Units (CUs) of diverse sizes
resulting from the QTMT structure. It aptly formulates par-
tition decisions for CUs with dimensions below 32 x 32,
thereby bypassing the exhaustive Rate-Distortion Optimiza-
tion (RDO) process, thus engendering a substantial reduction
in encoding time. This approach achieves a commendable
balance between the mitigation of computational complexity
and the compromise in encoding performance.

Il. PREPARATION WORKS

A. FAST ALGORITHMS FOR PREVIOUS STANDARDS

Prior to the formulation of VVC, research predominantly
focused on the preceding standard, HEVC. Numerous expe-
ditious algorithms leveraging machine learning techniques
were proposed for HEVC, aiming to expedite CU partition-
ing and mitigate computational complexity. Zhang et al. [9]
proposed a Convolutional Neural Network (CNN)-based
algorithm for determining the partitioning of coding units
(CUs). Treated CNN as a classifier, the algorithm inputs a
CU of size 64 64, and finally obtains a sequence consisting of
21 flag bit information. This sequence represents the overall
division trend of CU, and three division schemes are proposed
to make decisions on CU division. Xu et al. [10] first pro-
posed a pre-partition depth prediction based on Quantization
Parameter (QP) and texture complexity, and designed a NN
classifier to transform the CU division decision into a binary
classification issue to speed up the inter coding process.
In [11], a Support Vector Machine (SVM) based HEVC
intra prediction complexity reduction algorithm is proposed.
By using an SVM classifier, the variance and low frequency
AC coefficients components are selected as feature inputs to
quickly determine the CU size. In [12], the matter of deter-
mining the depth of coding units (CUs) is approached as a
hierarchical decision problem with three layers. An algorithm
for CU depth decision is proposed, wherein the authors devise
a classifier with three distinct output outcomes, aiming to
mitigate the risk of misprediction and enhance the accu-
racy of predictions. Zhang et al. [13] proposed an enhanced
RMD process that groups the 35 predicted modes based on
their phase angles, thereby reducing the number of candidate
modes.

The above-mentioned fast algorithm of HEVC based
on machine learning shows good performance of reducing
complexity in the actual coding process. However, since
VVC introduces more division types in block division, the
algorithm proposed for HEVC cannot be used well to accel-
erate the CU division process of VVC.

B. FAST ALGORITHMS FOR VVC

With the completion of the VVC standardization work,
although VVC showed better coding performance, it also
led to a substantial increase in coding time. Therefore,
researchers began to explore the VVC fast CU partition
algorithm that reduces coding complexity. Methods for
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streamlining the coding tree unit (CTU) partitioning in VVC
can typically be classified into two overarching categories:
heuristic approaches and data-driven methodologies.

For data-driven approaches, in [14], a compelling
algorithm founded up-on Convolutional Neural Networks
(CNN) is brought forth, purposed to mitigate the complexity
entailed in VVC intra-coding. The algorithm sends 64 64
CUs as input to CNN, and outputs 480 prediction vectors
representing the probability of boundary division. Guided
by the output vectors, the encoder possesses the acumen
to circumvent the intricate process of Rate-Distortion Opti-
mization (RDO) and seamlessly proceed with the division
of Coding Units (CUs). Li et al. [15] ingeniously devised
a multi-phased exit CNN model, harnessing the principle
of early termination to expedite the process of Coding Unit
(CU) partitioning. Additionally, they put forth a method of
multi-threshold decision, ingeniously tailored to enhance the
predictive capabilities of the model. In [16], an intricacy
mitigation algorithm, hinged upon Convolutional Neural
Networks (CNN) and Random Forest Classifier (RFC),
is introduced. This algorithm artfully amalgamates the pre-
dictive powers of CNN and RFC to discern the depth and
division type of a 32 x 32 Coding Unit (CU). This discernment
empowers the algorithm to circumvent the arduous process
of RDO, effectively reducing encoding time. Jing et al. [17]
combined traditional methods and deep learning methods,
and proposed a technique to simplify VVC intra prediction
through gradient analysis and multi-feature fusion CNN.

For heuristic approaches, Chen et al. [ 18] used distributions
representing human visual perceptual information as input
features for machine learning. A fast MTT decision based on
machine learning random forest model is proposed to quickly
select partitions for intra coding. Zhang et al. [19] proposed
an expeditious algorithm for Coding Unit (CU) partition
and intra mode decision, wherein they intricately crafted a
Random Forest Classifier (RFC) model to discern the optimal
CU division type. Moreover, they judiciously optimized the
intra prediction mode by leveraging the distinctive attributes
of texture regions. Fu et al. [20] suggested a CU vertical
division skipping algorithm using Bayesian decision, and
took the sub- CU partition type and intra prediction mode
as features to reduce the computational complexity. In [21],
an RFC-based fast CU partitioning algorithm is proposed,
which firstly divides CUs into three categories: “‘simple”,
“complex”, and ““fuzzy”, according to the contrast of texture
complexity. Then two classifiers are designed for different
CU categories to speed up the division process. In [22]
and [23], RFC-based fast QTBT partitioning decisions are
proposed, and a classifier is designed to decide whether
the encoder should do QT or BT partitioning for CUs.
At the same time, the authors introduce RD error to evaluate
the impact of misclassification on coding efficiency. While
the aforementioned expedited algorithms exhibit a measure
of efficacy in mitigating coding complexity, their impact
on performance remains somewhat inconspicuous, failing to
strike an effective equilibrium between complexity reduction
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and encoding performance cost. Zhao et al. [24] proposed a
method to speed up the CU partition decision by training two
SVM models. More reliable correlation features are selected
based on the maximum ratio of standard deviation (SD) and
edge point ratio (EPR) in sub-CUs.

C. MOTIVATION

In the past work [8] we proposed a VVC intra prediction
technology, we use pre-decision and SAE-CNN to predict
whether the coding unit is divided, which can reduce part
of the RDO, so as to achieve the purpose of reducing the
encoding time. Since the original block can reflect the char-
acteristics of the block to a certain extent, many current
algorithms use the original block as the input of CNN to speed
up CU division. However, compared with the original block,
the residual block (the CU that has been divided at least once)
can better reflect the texture details of the image and the CU
division trend. Therefore, if the residual coding unit is used
as the input of CNN to make the division decision, more
accurate prediction effect will be obtained and the prediction
accuracy will be improved. It is precisely this motivation that
we proposed in our past work.

But the scheme proposed in [8] can decide whether to
partition CUs of different sizes, but does not fully consider
its partition type decision. The core idea of the traditional
heuristic fast algorithm is to manually select some features
and manually set the corresponding discriminant criteria to
predict the partition mode of the CU. However, according to
the analysis, it can be seen that the block division structure
of VVC is relatively complex, and there are many factors
affecting CU division, and it is difficult to bring accurate pre-
diction results by manually setting the discrimination criteria.
Machine learning algorithm is an algorithm that automati-
cally learns useful information from data. Due to its strong
learning ability and generalization ability, it is widely used
in various fields and promotes the development of various
fields. Therefore, in order to improve the previous work and
further judge the division category of CU, this paper proposes
a fast CU division decision algorithm based on random forest,
and uses random forest classifier to predict the division mode
of CU.

Ill. PROPOSED ALGORITHM

A. JOINT RANDOM FOREST CLASSIFIER

The core idea of the traditional heuristic fast algorithm is to
manually select some features and manually set the corre-
sponding discrimination criteria to predict the CU division
mode. However, according to the analysis, it can be seen that
the block division structure of VVC is relatively complex
and there are many factors that affect CU division. Manu-
ally setting the discrimination criteria is difficult to achieve
accurate prediction results. Machine learning algorithm is
an algorithm that automatically learns useful information
from data. Manually extracted features are helpful for further
research. Its strong learning ability and generalization ability
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FIGURE 3. Diagram of joint random forest classifier framework.

are widely used in various fields. As can be seen from Table 3,
the classification accuracy of the model proposed in this arti-
cle is above 90%, and the classification results can accurately
reflect the final division of coding units. (The accuracy of the
RFC models in [16] and [17] is also above 90%) Therefore,
the RFC acceleration algorithm proposed in this article has a
certain degree of reliability.

Due to the superior performance of RFC in classifi-
cation, this paper models the CU division type selection
issue as a classification problem, and designs a JRFC
to make decisions on the CU partition type. The biggest
highlight of JRFC is that it consists of five indepen-
dent binary RFCs: RFgr, RFypr, RFypr, RFyrr, RFyT
and each classifier runs independently. Among them,
RF; represents the independent binary -classifier, and
i € (QT,HBT, VBT ,HTT, VTT) denotes the type of divi-
sion that the classifier can make decisions. The algorithm
flow is: input a luminance CU (the CU can be any size below
32 x 32), and perform appropriate feature extraction on the
CU. The proposed algorithm does not process CUs with a
size greater than 32 x 32, and encodes them according to
the traditional process. Then, the extracted feature sequences
are sent to five independent binary RFCs, and finally a
sequence consisting of five data is output. According to the
output sequence, the final classification result of JRFC can
be obtained. The encoder divides the CU according to the
classification result. Thus, the decision process of the division
type of the CU is completed. The JRFC framework proposed
in this paper is shown in Figure 3.

B. FEATURE SELECTION

For a classifier, whether it is SVM or RFC, the most important
step is the selection of features. Selecting appropriate fea-
tures as the nodes of the decision tree can better complete
the subsequent RFC training process, improve the prediction
accuracy, and obtain better performance. In this work, for
the proposed JRFC and its implemented functions, we select
features from the following aspects, including QP, texture
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TABLE 1. Table of partition types for CUs of different sizes.

Partition Type (%)
r QT HBT VBT HTT VTT NOT
22 2616 2025 20.10 793 694 18.62
27 1730 2238 16.86 7.48 478 31.20
32 1287 2166 1541 7.76 514 37.19
37 931 2207 1606 721 419 41.16

complexity, gradient information, sub-CUs complexity dif-
ference and block information.

QP: We select VVC standard video sequences with dif-
ferent texture complexity and different resolutions (Drums,
Tango, RollerCoaster, BasketballDrive), and encode them
under the AI configuration of the latest encoder version
VTM10.0, and obtain the selection of CU division types of
various sizes under different QP value encoding environ-
ments, and the percentage of each division type selected by
CUs under different QP value coding is counted. For details,
refer to Table 1.

From Table 1, we can see that with the increase of QP,
the proportion of CU’s “QT split” gradually decreases (from
26.16% t0 9.31%), while the proportion of “Not split™ grad-
ually increases (from 18.62% to 41.16%), and the rest of the
division types are roughly unchanged. This shows that the
difference of the QP value during encoding is closely related
to the CU division, and affects the selection of the CU division
type to a certain degree. Therefore, we choose the QP value
as one of the features.

Texture Complexity: Texture complexity reflects the com-
plexity of information contained in a CU, and is usually
used as an important feature when using a classifier to make
CU partition decisions. In general, the higher the texture
complexity is, the more detailed the CU will be divided, such
as QT division. The lower the texture complexity is, the CU
will perform rough division, such as TT, BT division, or even
no division. Therefore, taking texture complexity as an input
feature is of great significance to improving the prediction
accuracy of RFC and reducing encoding time. Below we
discuss several common eigenvalues for measuring texture
complexity, and explore the best features suitable for the
JRFC proposed in this paper as feature inputs.

In previous studies, people usually use the variance (Var)
of the pixel values contained in the CU to measure the texture
complexity of a CU. As shown in Eq. (3):

Var——ZZ[P(l »= (

i=1 j=1

Zme

llj—

3
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FIGURE 4. Texture complexity comparison map of CUs with the same
variance.

where P (i, j) represents the pixel value on the (i, j) coordinate
within the CU; W indicates the width of the CU, and similarly
H indicates the height.

Although the variance can well embody the texture infor-
mation of the global CU, it cannot clearly embody the partial
features of the CU. As shown in Figure 4, many CUs with
the same variance have great differences in their local texture
complexity. Therefore, variance cannot be used as a measure
of complexity in this paper. People further proposed another
feature to measure the complexity of CU texture — the mean
of absolute difference between pixels (Pyapp(i, j)). The cal-
culation formula is shown in Eq. (4):

Puapp(i, j)
|[P(i,j) = P(i—1,j— D|+ |PG,j) — PG, j— 1)
_ L +IPG)) — PG+ 1,j — DI+ |PG,j) — PG+ 1, )]
T 8| HIPG ) — PG+ 1, j+ D+ |PG,j) — PG, j+ 1)
+|P(i,j) — PG — 1,j+ D|+ P, j) — PG — 1, )|
“4)

where P (i, j) indicates the pixel value on the (i, j) coordinate
within the CU.

On top of the existing features used to measure texture
complexity, we conduct a more in-depth exploration, aiming
to find features that can more exactly reflect the texture
complexity of CU. First, the variance can roughly reflect
the complexity information of a CU. We multiply the CU
variance and the average of the absolute differences between
pixels to obtain the relative texture complexity. The formula
is shown in Eq. (5):

RPC(i, )) = Puapp(i,j) x Var &)

where RPC denotes the relative texture complexity; (i, j)
represents the coordinate information of each pixel contained
in the CU.

Next, on the basis of the original variance formula,
we replace the pixel value in the formula with RFC to obtain
the final feature used in this article to measure the CU texture
complexity (TC). The formula is shown in Eq. (6):

TC =

i=1 j=1

x | RPC (i, j) —

ZZRPC(z ill ®

11]—
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FIGURE 5. Soble operator convolution kernels in four directions.
(a) Horizontal direction; (b) Vertical direction; (c) 45° direction; (d) 135°
direction.

where H indicates the height of the CU, W indicates the
width; (i, j) indicates the position of each pixel of the CU.

Compared with Var, TC replaces the pixel value in the
original formula with on the basis of Var, so that TC can more
exactly reflect the texture complexity of CU. In [20], a sim-
ilar calculation method was also applied to the acceleration
algorithm of HEVC and proved to be effective. To sum up,
we finally choose TC as the feature input to measure the CU
texture complexity.

Gradient Information: The gradient information reflects
the change rate of image pixels, and is also closely related
to the choice of CU partition type. Therefore, in this paper,
we select 8 gradient values as features, namely: horizontal
gradient (Grad,), vertical gradient (Grady), 45-degree direc-
tional gradient (Gradsso), 135-degree directional gradient
(Grad3s°), average gradient (Grad,,g), maximum gradi-
ent (Gradpgy) and gradient ratio (Ratioxy, Ratiosss 13s0,).
We use the Sobel operator to convolve the target CU to get
the gradient information we want. The calculation formula
is shown in Eq. (7). It should be noted that the gradient
information here is calculated on the global CU, not the sub-
CUs.

W H

Grad, =D > P*S,,0€ {x,y,45°, 135} (7)
i=1 j=1

1
Gradg,, = 2 ZGrado, o € {x,y,45°, 135%} 8)

Gradpyax = argmax(Grad,), o € {x,y, 45°,135°} (9)

Grad,
Ratioxy = —— (10)
Grad,
. Gradyse
Ratiogse 1350 = Gradise (11)

where P denotes the pixel array of the global CU; Sp,0 €
{x,y,45°, 135°}, denotes the convolution kernel of the Sobel
operator in four directions, as shown in Figure 5; W indicates
the width of the CU, and similarly H indicates the height.
Sub-CUs Complexity Difference: In order to achieve a
better classification effect, we consider the complexity dif-
ference of sub-CUs as feature input as well. Here we use
the average of the TC differences of the sub-CUs to describe
the complexity difference of sub-CUs for each possible par-
tition type. STCQT, STCygr, STCyT, STCHTT, STCyYTT, are
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calculated, the formula is as follows:

( 4
1 __
STCor = ; Z;‘ (TC; — TCor)*
=
12
STCupr = 3 ZI:(TCi — TCypr)?
=
12
STCypr = 3 Z(TCi — TCypr)* (12)

-
1l >
STCyrr = 5 z (TC; — TCHTT)2

i=1

3
1 _
STCyrr = 3 E (TC; — TCyrr)?

i=1

where STC;, 1 € (QT, HBT, VBT, HTT, VTT), represents the
complexity difference of sub-CUs under different partition
types; TC; indicates the texture complexity of the i -th sub-
CUs after being divided, which is calculated by Eq. (6); TC
denotes the average texture complexity of all sub-CUs after
being divided.

Block Information: Because there are some prescribed
division restrictions in the QTMT scheme, for example: HBT
division in the second sub-CU of HTT division is disabled
to prevent overlapping with two binary tree divisions; The
VBT division in the second sub-CU of the VIT division
is disabled to prevent overlapping with the two binary tree
divisions; When the first sub-CU of the VBT partition is
further divided into HTT, the HTT partition in the second
sub-CU is disabled to prevent overlapping with binary tree
and ternary tree partitions. Therefore, in order to prevent the
occurrence of the above situation from causing coding errors,
we also take the CU size as the feature input of the classifier.

C. MODEL TRAINING

The data samples used to train JRFC are basically same as
those used to train SAE-CNN in our previous work [8]. The
difference from constructing the SAE-CNN dataset is that we
no longer categorize the training set according to the size of
the CU. Instead, only all CUs that will be divided are selected,
the 17 features (as shown in Table 2). described above are
extracted from each CU as input, and the division type of the
CU is marked, classified according to the QP value (in order
to reduce the training complexity, we select four common QP
values, namely QP=22, 27, 32, 37), and finally 4 data sets are
formed.

In terms of training scheme, we do not directly train the
proposed JRFC, but use grid search to train each independent
binary RFC, and then compose the trained RFC into JRFC
to complete the training process. Specifically, first select the
data to set with a QP value of 22 to train RF g7, and set
the training parameter n_cgimarors to 100 to achieve the best
prediction effect. RF or is then trained on datasets with QP
values of 27, 32, and 37, respectively, with the parameters
kept the same. By analogy, the training of the remaining
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TABLE 2. The 17 features.

Feature Extraction

QP

/

Texture
Complexity

TC

Gradient

. Grad, .
Information x

Grady,. Grads-. Gradyzses Gradg,g. Gradpgy . Ratioy, . Ratio,c.

135°

Sub-CUs
Complexity
Difference

STCypr~ STCypr+ STCyrr STCyrr~ STCor

Block
Information

W. H

TABLE 3. Joint RFC performance test table.

Prediction Accuracy (%)

Sequence QP-22 QP=27 QP=32 QP=37 Average (%)
Catrobot 89.76 92.32 90.31 95.87 92.07
Kimono 88.24 91.86 89.97 92.65 90.68
FourPeople 90.14 92.43 91.56 90.36 91.12

4 binary RFCs is completed. That is to say, we need to
use 4 QP datasets to train 5 binary RFCs respectively, and a
total of 20 binary classifiers need to be trained to form JRFC.
Furthermore, we set a threshold (0.9) to binarize the output
sequence of JRFC to avoid misclassification and improve the
accuracy of CU partition type decision.

After completing the training process of the joint RFC,
we use 3 VVC standard test sequences except the training
samples to test the prediction accuracy of the JRFC model
in terms of CU partition type decision under different QPs
values. Please refer to Table 3 for the test results. According
to the data in the table, we can clearly see that the average
prediction accuracy of JRFC is above 90%, for different
sequences. And in the same sequence, with different QPs
values, the prediction accuracy remains roughly the same,
with the highest being 95.87% and the lowest being 88.24%
(within the allowable range). Therefore, we can conclude that
the JRFC proposed in this paper has excellent classification
performance and can be applied to make decisions on the CU
partition type to speed up the CU partition process.

D. OVERALL ALGORITHM
Step 1) Input a luma CU, calculate the entropy value of the
CU residual block and the QP value of the current encoder.

Step 2) Find the corresponding marked result in the
pre-decision dictionary for the value obtained in step 1. If it
is marked as “Split”, skip step 3 and proceed directly to
step 4 to complete the division decision-making process; If
it is marked as “Non_split”, the division decision procedure
of the present CU can be ended in advance; If it is marked as
“Uncertain’, go to step 3.

Step 3) The residual block of the CU marked as “Uncer-
tain” in step 2 is used as input, and sent to SAE-CNN to
output the probability of dividing and not dividing the CU,
and determine whether to partition the CU according to the
probability. If the output result is “Split”, go to step 4,
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select the appropriate division type, and complete the division
decision-making process; If the output result is ““Non_split”,
step 4 is skipped, and the division decision procedure of the
present CU is ended in advance.

Step 4) The feature of the CU whose result is “Split” in
step 3 is extracted as input, and sent to JRFC for division
type decision, and the optimal division type of the CU can be
obtained according to the output result, thereby completing
the CU division decision process.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENT
The comprehensive experiment is conducted within the Al
(All Intra) configured environment of the most recent encoder
version, VIM10.0, of the VVC standard. And the con-
struction and training process of JRFC as well as each
encoding run on Intel Core i5-8500 CPU@3.00GHz pro-
cessor on x64-based Window 10 operating system. We have
carefully chosen 19 VVC standard test sequences encompass-
ing diverse resolutions and a wide range of video information.
These sequences are categorized into six distinct groups:
Al (4K), A2 (4K), B (1920 x 1080), C (832 x 480), D
(416 x 240), and E (1280 x 720). They constitute our com-
prehensive test set, which we employ to evaluate the efficacy
of the proposed expeditious approach outlined in this study.
We conducted an extensive evaluation of the test set within the
coding environment, employing varying QP values (22, 27,
32, 37). It is worth noting that the construction and training
of SAE-CNN and JRFC are considered offline processes,
and thus, the time spent on these procedures is not factored
into the encoding time calculations. Furthermore, in order to
ensure the utmost efficacy and impartiality of the method, the
sequences employed in the test set are entirely distinct from
those utilized in the training set.

Here, we choose two criteria to measure the performance of
the proposed algorithm, Bjgntegaard Delta Bit Rate (BDBR)
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TABLE 4. Performance of the proposed algorithm.

Sequence [16] [17] [18] [24] Proposed

BDBR (%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS (%)
Tango2 126 69.45 / / 1.35 35.29 1.74 51.43 1.52 58.22
FoodMarket4 / / / / 1.30 41.76 1.24 4732 1.71 55.43
Al Campfire 1.87 51.08 1.02 34.80 0.85 4433 137 56.37 1.64 58.79
Drums 0.50 53.77 / / / / / / 1.33 56.61
ToddlerFountain 0.37 36.89 / / / / / / 1.20 57.20
CatRobot 0.85 44.74 1.06 3871 1.38 39.38 2.04 51.94 1.70 59.04
DaylightRoad2 0.75 45.58 / / 0.93 40.56 1.42 58.61 1.55 54.17
A2 ParkRunning3 / / / / 0.60 4233 1.07 55.93 1.16 58.07
RollerCoaster 1.39 56.48 / / / / / / 1.82 57.27
TrafficFlow 121 53.41 / ! / / / / 1.49 56.39
ParkScene 0.35 32.09 / / 0.96 4228 1.45 58.73 1.29 60.07
BasketballDrive 0.55 55.09 / / 1.61 40.32 1.76 53.34 1.40 59.21
BQTerrace 0.55 33.12 0.97 33.89 1.06 41.00 123 55.37 1.58 61.54
b Cactus 0.63 37.53 1.05 35.86 127 4131 2.07 51.37 1.41 53.75
Kimono 0.41 53.00 113 38.56 1.13 41.15 131 54.68 1.26 5438
MarketPlace / / 0.87 34.12 / / / / 1.58 57.24
BasketballDrill 1.05 29.90 1.25 38.40 1.86 40.85 1.60 53.92 1.88 59.07
PartyScene 0.13 28.03 116 34.83 1.00 .17 0.87 52.74 1.32 60.02
¢ RaceHorsesC 0.63 32.28 0.89 37.69 0.71 42.03 1.25 51.07 1.78 5237
BQMall 0.58 30.77 / / 127 40.01 1.87 53.39 1.81 55.20
BlowingBubbles 0.12 22.08 1.08 3475 0.95 38.34 1.57 51.33 1.46 49.69
BasketballPass 0.52 27.03 / / 1.53 40.46 1.53 53.96 1.73 62.34
BQSquare 0.21 19.17 0.94 38.93 0.72 40.19 0.93 54.78 133 58.81
RaceHorses 0.09 23.59 1.34 36.03 0.73 40.61 1.14 55.79 1.17 59.94
FourPeople 0.86 27.99 1.05 37.66 1.65 39.73 2.19 55.21 1.62 57.11
E KristenAndSara 0.86 35.70 0.97 37.62 0.42 38.66 1.88 55.46 2.07 56.53
Johnny 1.06 41.05 / / 1.80 39.80 237 56.43 1.50 57.94
Average 0.63 39.16 1.06 36.56 1.14 40.57 1.54 54.05 1.53 57.27

to measure the encoding quality; TS to measure the complex-
ity reduction performance. The calculation formula of TS is
as follows:

4

TS = l Z Tpase(i) — szrop(i)
- Thase(i)

4 i
where T pyg, (i) and Ty () respectively indicate the encoding
time used by the original VTM10.0 and the encoding time
used by the rapid algorithm suggested in this article under
the QP values of 22, 27, 32, and 37, respectively.

x 100% (13)

B. COMPARISON AND ANALYSIS OF EXPERIMENTAL
RESULTS

Table 4 shows that our algorithm can reduce the encoding
time by 57.27% compared with the anchor algorithm. At the
same time, the BDBR of the algorithm is only increased
by 1.53%, which is acceptable. Our test sequences con-
tain videos of different resolutions, which demonstrates the
good generalization ability of the proposed method. Among
these, it is worth noting that for a single sequence, the pro-
posed method achieves a remarkable maximum reduction of
61.54% in encoding time (observed in BQTerrace).
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In order to verify the effectiveness of the proposed
algorithm, we compared the algorithm proposed in this paper
with the advanced algorithms described in literature [16],
[17], [18], [24]. These experiments are performed on the
same sequence, configuration (Al) and parameters to ensure
a fair and accurate comparison. Reference [16] also uses the
methods of CNN and RFC at the same time. In [16], CNN is
used to judge the depth of CU, while the CNN in our joint
method is to judge whether the CU is divided. Reference
[17] combines traditional methods and CNN methods, CNN
and traditional methods are widely used in the field of video
coding. Reference [18] combines visual perception methods
and RFC methods. It can be seen that the methods used in
[16], [17], and [18] are related to the algorithms we proposed,
and they include data-driven methods and heuristic methods,
which are representative to a certain extent. It is worth noting
that [17] and [24] are related to our previous work. To ensure
a fair and accurate comparison, these experiments need to
be performed on the same sequence, configuration (Al) and
parameters.

By observing Table 5, it can be found that our proposed
algorithm reduces the encoding time by 18.16%, 20.46%,
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TABLE 5. Performance comparison of proposed algorithms.

The performance of [16] on different class

The performance of the proposed algorithm

Sequence sequences (Average) on different class sequences (Average)
BDBR (%) TS (%) BDBR (%) TS (%)
Class A (8 sequences) 1.03 51.43 1.53 57.21
Class B (5 sequences) 0.50 42.17 1.39 57.79
Sequences used in
Class C (4 sequences) 0.60 30.25 1.70 56.67
Table 6 of [16]
Class D (4 sequences) 0.24 22.97 1.42 57.70
Class E (3 sequences) 0.93 34.91 1.73 57.19
(Under the above 24 sequences) 0.63 39.16 1.54 57.32
The performance of [17] on different class
Sequence sequences (Average)
BDBR (%) TS (%) BDBR (%) TS (%)
Class A (2 sequences) 1.04 36.76 1.67 58.92
Class B (4 sequences) 1.01 35.61 1.46 56.73
Sequences used in
Class C (3 sequences) 1.10 36.97 1.66 57.15
Table 3 of [17]
Class D (3 sequences) 1.12 36.57 1.32 56.15
Class E (2 sequences) 1.01 37.64 1.85 56.82
(Under the above 14 sequences) 1.06 36.56 1.56 57.02
The performance of [18] on different class
Sequence sequences (Average)
BDBR (%) TS (%) BDBR (%) TS (%)
Class A (6 sequences) 1.07 40.61 1.55 57.29
Class B (5 sequences) 1.21 41.21 1.39 57.79
Sequences used in
Class C (4 sequences) 1.21 41.27 1.70 56.67
Table 2 of [18]
Class D (4 sequences) 0.98 39.90 1.42 57.70
Class E (3 sequences) 1.29 39.40 1.73 57.19
(Under the above 22 sequences) 1.14 40.57 1.54 57.35
The performance of [24] on different class
Sequence sequences (Average)
BDBR (%) TS (%) BDBR (%) TS (%)
Class A (6 sequences) 1.48 53.60 1.55 57.29
Class B (5 sequences) 1.56 54.70 1.39 57.79
Sequences used in
Class C (4 sequences) 1.40 52.78 1.70 56.67
Table 1 of [24]
Class D (4 sequences) 1.29 53.97 1.42 57.70
Class E (3 sequences) 2.15 55.70 1.73 57.19
(Under the above 22 sequences) 1.54 54.05 1.54 57.35

16.78, and 3.3% on average compared with the algorithms
described in [16], [17], [18], and [24].

The proposed algorithm in this paper shows compara-
ble performance to the algorithm of [16] in the Class A
high-resolution category. Compared with [16], the algorithm
discussed in this paper shows a slight increase (in class A,
the average encoding time is reduced by 5.78% compared
with [16]). But the algorithm discussed in this paper shows
superior performance in low-resolution classes (i.e., Class C
and Class D) (in Class D, the average encoding time is
reduced by34.73% compared to [16]).

Compared with [17], our proposed algorithm has a
good effect in high-resolution sequences, and the proposed
algorithm is 22.16% higher than [17] on average in class
A sequences. Our algorithm also shows a slight increase in
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low-resolution sequences, which is 19.58% higher in class
D sequences. In Figure 7, we selected several sequences and
compared with [17] using the time saved as the evaluation
metric.

Compared to [18] and [24], we not only save 16.78% and
3.3% of time, but also control the increase of BDBR.

In addition, we encoded the sequence BasketballDrill
with the algorithm proposed in this chapter and the original
algorithm of VTM10.0 respectively, and randomly selected
a frame to compare the CU division of the two, as shown
in Figure 8. It can be seen that whether in the texture com-
plex region or in the texture smooth region, the proposed
algorithm exhibits mostly the same CU division as the origi-
nal algorithm, which also proves that the proposed algorithm
can basically replace the original algorithm to complete the
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FIGURE 7. Histogram comparing the experimental results of the
proposed algorithm with those of ref. [17].

CU division, and the division results are close to the original
algorithm’s optimal division results.

In order to gain a clearer insight into the rate-distortion
(RD) performance of the proposed algorithm, we select
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End

BasketballDrill and BQSquare as illustrative examples and
perform coding experiments using both the VTM10.0 anchor
algorithm and the algorithm proposed in this paper. As shown
in Figure 9, it can be obtained that the RD curves of the pro-
posed algorithm and the VIM10.0 anchor algorithm highly
overlap with the proposed algorithm, which means that the
proposed method and the anchor algorithm have similar RD
performance.

In our previous work [8], a VVC complexity reduction
algorithm based on statistical analysis and adaptive size
convolutional neural network is proposed to make partition
decisions for CUs of different sizes. However, the previous
work can only make a decision on whether to divide a CU,
and the specific division type decision still needs to use
the RDO process of the traditional algorithm, which needs
further improvement. Aiming at this shortcoming, this paper
designs an RFC-based CU partition mode decision algorithm
based on [8], and combines the previous work, proposes a
fast adaptive CU partition decision algorithm within a VVC
frame. So as to certify the innovation and effectiveness of
the decision algorithm of CU partition type based on JRFC
suggested in this article, we compared the previous work
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(b) Texture complex region under the proposed
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FIGURE 8. Comparison of CU division for different texture complexity.

TABLE 6. Experimental result table of ablation study.

[8] Proposed

Sequence B(le)B)R TS (%) B(I:/]:)R TS (%)
Al Campfire 1.01 35.78 1.64 58.79
A2 CatRobot 0.96 36.98 1.70 59.04
BQTerrace 0.89 36.79 1.58 61.54
B Cactus 0.87 34.12 1.41 53.75
Kimono 0.71 34.59 1.26 54.38
BasketballDrill 1.10 35.03 1.88 59.07
C PartyScene 0.67 34.55 1.32 60.02
RaceHorsesC 0.75 33.89 1.78 52.37
BlowingBubbles 0.97 35.86 1.46 49.69
D BQSquare 0.71 32.35 1.33 58.81
RaceHorses 0.76 33.14 1.17 59.94
E FourPeople 0.99 38.40 1.62 57.11
KristenAndSara 1.08 35.84 2.07 56.53
Average 0.88 35.17 1.56 57.00

[8] to conduct ablation experiments. For the specific exper- the experimental results that the CU partition type decision

imental results, please refer to Table 6. It can be seen from algorithm suggested in this article reduces the complexity
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FIGURE 9. The RD performance graph of the proposed algorithm. (a) RD of the BasketballDrill; (b) RD of the

BQSquare.

by an average of 21.83% compared with [8]. It also proves
that the suggested algorithm has excellent performance of
reducing complexity.

V. CONCLUSION

In this article, we first put forward a decision algorithm of
CU partition type based on JRFC, using 5 independent binary
classifiers to design JRFC. And through experiments and the-
oretical analysis, the appropriate features are selected as the
input of JRFC, which is used to make decisions on the divi-
sion type of CUs of different sizes. The results of the ablation
experiments can reflect that the decision algorithm of CU par-
tition type based on JRFC is innovative and effective, and can
effectively reduce the coding complexity. Then, combined
with previous work, we put forward fast adaptive CU partition
decision algorithm for VVC intra coding. The algorithm can
deal with the CUs of different sizes generated by the QTMT
structure, and makes partition decisions for CUs with sizes
below 3232, and thus greatly reduce the coding complexity.
The experimental findings demonstrate that the algorithm
proposed in this article yields a remarkable average reduction
of 57.27% in encoding time, while incurring a mere 1.53%
increase in BDBR. It has been demonstrated that the pro-
posed algorithm can significantly diminish the intricacy of
coding while ensuring virtually unaltered coding quality, thus
achieving a commendable equilibrium between the reduction
of coding complexity and the compromise of coding quality.
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