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ABSTRACT In this paper, we present a novel approach to estimating multiple time delays (TDs) in sensor
arrays that is robust to outliers of TD measurements. These measurements are typically obtained from the
peak of the cross correlation of two sensor signals but may contain outliers due to noise, significantly
degrading the performance of downstream applications. To address this issue, we propose an approach to
leverage only the best minimum-necessary TD measurements. First, we describe the general properties of
TDs and show that the degree of freedomof TDs is the number of sensorsminus one for a signal source, which
indicates that the full set of TDs is redundant in this case. We then consider selecting nonredundant TDs from
all measurements given the necessary and sufficient condition to reconstruct all TDs uniquely. We represent
this condition by utilizing the graph theory, and then, formulate an optimization problem to select the optimal
nonredundant TDs while satisfying the condition above. We reduce this problem to the problem of finding
a minimum spanning tree and propose an efficient algorithm for TD estimation. Experimental evaluation
shows that our method successfully eliminates outliers while ensuring that all TDs can be restored.

INDEX TERMS Time delay estimation, generalized cross correlation, graph theory, microphone array,
minimum spanning tree.

I. INTRODUCTION
A time delay (TD) or time difference of arrival (TDOA)
observed between two sensors is a fundamental spatial cue
for many signal processing techniques regarding the spatial
position of a signal source [1]. Source localization and
direction of arrival (DOA) estimation are essential techniques
in audio [2], [3], [4], [5] and other various engineering fields
[6], [7], [8], including sonar [9] and radar [10]. Typically, a
TD estimate is obtained by the generalized cross correlation
(GCC)method [11], [12]. Any improvement in TD estimation
(TDE) directly benefits the subsequent applications, and
numerous studies on this subject have been carried out [1],
[12], [13], [14], [15], [16].

Recently, devices equipped with more than three sensors
have become common. In the field of acoustic signal
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processing, spatially distributed microphone arrays and
wireless acoustic sensor networks (WASNs) have been
widely and actively studied [17], [18], [19]. TDs are
necessary information in resampling and synchronization
[20], [21], [22], which is a general topic in WASNs. For these
applications, a TDE method that can estimate multiple TDs
with high accuracy is expected.

Let us consider TDE on an M channel sensor array.
Fig. 1(a) shows an example of a 5-channel sensor array,
where the circles and lines indicate the sensors and TDs,
respectively. As shown in this figure, there are MC2 =

M (M − 1)/2 TDs corresponding to every possible pair of
sensors (2-combinations of M sensors). A set of these TDs
is referred to as the full TD set [23], [24]. In practice,
individual TDs can be measured by, e.g., the GCC method
[11], [12]. Therefore, the full TD set must be contaminated
by errors in the GCC method and may contain outliers (huge
estimation errors). This problem becomes more severe in,
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e.g., noisy environments and rooms with long reverberations.
Since these outliers have a tremendous negative impact on
downstream applications, in this paper, we study how to avoid
using them but estimate the full TD set.

The key idea to achieve the above is redundancy of the
full TD set (overdetermined) [23], [24]. Indeed,M (M − 1)/2
TDs can be represented by the M − 1 TDs among them.
For example, a TD between sensors i and j, τij say, can be
obtained indirectly as τik+τkj for any k . That is, the degree of
freedom of the TDs isM−1, whereasM (M−1)/2 TDs exist.
This redundancy can be utilized to improve the accuracy and
robustness of the TDE algorithms.

One approach to leveraging the full TD set is computing
M − 1 nonredundant TDs from every member of the set.
A classical solution in this sense is using the average of τik +

τkj for all k (k = 1, . . . ,M ) to estimate τij. This is the least
square estimator under the assumption that TDmeasurements
are contaminated by additive Gaussian noises [25], [26].
Moreover, Velasco et al. have proposed novel TDE methods
based on a TD (or TDOA) matrix (TDM) [24]. The TDM
itself has been considered in [27], and its properties have
been further studied in [24]. The TDM is one representation
of a full TD set; thus, its measurement might include errors
and outliers. Therefore, the denoisingmethods have also been
proposed to deal with this problem [24], [28], [29].

Another approach is to choose a reference sensor and
only use nonredundant M − 1 TDs between the reference
sensor and the others [3], [23], [30]. Fig. 1(b) shows
an example where sensor 1 is chosen as the reference
sensor. In this case, any TDs can be computed from the
TDs between the reference sensor and the remaining ones,
e.g., τ34 = τ31 + τ14. Utilizing an appropriate reference
sensor may help avoid the use of TD measurements with
significant errors. Choosing a reference sensor is equivalent
to determining the absolute time origin for TDs, which are
relative values. This approach is thus meaningful. Indeed,
choosing a reference sensor is also a common practice in
downstream applications [3], [31], [32].

However, is this approach optimal for avoiding outliers?
There might be a better way to choose nonredundant TDs that
can still reconstruct the full TD set; this is the focus of this
study. In fact, there is an alternative approach to selectingM−
1 TDs that can restore the full TD set, even without using the
reference sensor, as shown in Fig. 1(c) Note that we cannot
always compute the full TD set from the chosenM − 1 TDs,
as will be shown later.

In this paper, we propose a new TDE method based on the
selection approach, which is robust against the outliers in the
full set of TD measurements. We discuss the methodology
and criterion for selecting the best TDs among the TDs in
the full set. We introduce fundamental graph theory to the
above problem, which is essential in this paper. On the basis
of the graph theory, we first show a necessary and sufficient
condition to uniquely reconstruct the full TD set from the
chosen TDs. We then consider the optimization problem
for choosing the best minimum-necessary TDs under that

FIGURE 1. Sensor array and TDs for a single source. The circles and lines
between them represent the sensors and the TDs to be measured from
the sensor pairs, respectively. (a) Set of full redundant M(M − 1)/2 TDs.
(b) Set of nonredundant (M − 1) TDs. Only the TDs between the reference
sensor and the others are used, where sensor 1 is the reference.
(c) Another set of nonredundant TDs. No reference sensor is used in this
case.

condition. This optimization problem can be reduced to
the problem of finding the minimum spanning tree (MST),
a common topic in the graph theory. The cost function for the
optimization is designed on the basis of the GCC method.

Note that disambiguation [33], [34] is another topic when
considering a graph structure on a sensor array. In contrast to
our study, the key constraint in the disambiguation methods
is that the sum of cyclic TDs becomes 0, e.g., τ12 + τ23 +

τ31 = 0. Disambiguation aims to estimate the nonredundant
TDs under the above constraint. Since multiple sets of TDs
that satisfy the constraint may exist, however, a certain type
of postprocessing is necessary to choose the best TD set [31].
One advantage of our approach is that the solution is uniquely
obtained by finding the MST.

Robust localization [35], [36], [37] is a field that also
addresses outliers removal, where sensor positions or dis-
tances are necessary to compute DOAs from TDs. In contrast,
our approach focuses solely on TD measurements, requiring
no prior information, such as microphone positions. Further-
more, the proposed method eliminates outliers and estimates
the full set of TDs, which are the fundamental spatial cues
for various array signal processing methods. The proposed
method can thus serve as preprocessing for a wide range of
applications.

The rest of this paper is organized as follows. In Section II,
we introduce the background knowledge regarding TDE.
In Section III, we explain the motivation and then state the
problem addressed in this paper. Section IV is devoted to
solving the problem, where we present the necessary and
sufficient condition to restore the full set of TD estimates
from the chosen TD measurements, and in Section V,
we propose the method of estimating optimal M − 1 TDs.
In Section VI, we discuss the efficacy of the proposed method
via numerical experiments. Finally, we conclude this paper in
Section VII.

A. NOTATION
We write scalars with regular letters (e.g., x), vectors and
matrices with bold lowercase and uppercase letters (e.g., x
andX), respectively, and sets with calligraphic fonts (e.g.,X ).
The superscripts T, H, and ∗ denote transposition, conjugate
transposition, and complex conjugate, respectively.
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FIGURE 2. TDs defined in a sensor array. TD τ13 is equal to the sum of τ12
and τ23. This relationship holds for a single source in any sensor array
arrangement.

II. PRELIMINARIES
A. SIGNAL MODEL
Let us consider estimating TDs observed by an M channel
sensor array. In this paper, we assume that only one target
signal propagates to the array. Let xmkn be the short-
time Fourier transform (STFT) representation of the signal
observed by the mth sensor (m = 1, . . . ,M ), where k =
−K/2+ 1, . . . ,K/2 and n = 1, . . . ,N denote the frequency
bin and time frame indices, respectively. We model the
discrete observed signals as follows:

xkn = skngk(τ r )+ ukn
= [x1kn · · · xMkn]T ∈ CM , (1)

gk(τ r ) =
[
a1ke−iωkτr1 · · · aMke−iωkτrM

]T
∈ CM , (2)

τ r = [τr1 · · · τrM ]T ∈ RM . (3)

The variable skn denotes the source image observed at the
reference sensor indexed by r ∈ {1, . . . ,M}. The vector
ukn = [u1kn · · · uMkn]T denotes noise signals at each sensor,
ωk = 2πk/K denotes the normalized angular frequency, and
i denotes the imaginary unit. The vector gk(τ r ) denotes the
relative transfer function (RTF) [38], which is defined as the
ratio of the transfer function at the reference sensor to those
at the other sensors. The relative amplitude is denoted by
amk ∈ R+.
Fig. 2 shows an example of a sensor array. The continuous

TD parameter between sensors i and j is denoted by τij. Given
three sensors with the indices i, j, and k , the TDs between two
of these three sensors satisfy the following three equations:

τij = τik + τkj, (4a)

τij = −τji, (4b)

τii = 0. (4c)

These equations are naturally used to evaluate the so-called
consistency of TDs [23], [24]. Clearly, all TDs on an M
channel sensor array have the M − 1 degree of freedom at
most, whereas MC2 = M (M − 1)/2 TDs can be considered.
Note that the use of a reference sensor is not mandatory in

this paper. Nonetheless, we use the reference sensor merely
for notation ease and denote the TD vector τ r as in (3).

B. TD MEASUREMENT AND TD MATRIX
Hereafter, wewill proceedwith our discussion by distinguish-
ing between the TD τij and the TD measurement θij. The
TDs are the parameters we seek to estimate. Even though
there exist M (M − 1)/2 TDs, the degree of freedom of TD
parameters is M − 1 and they satisfy (4a), (4b), and (4c) as
described in the previous section. On the other hand, the TD
measurements obtained from pairs of two sensor signals are a
type of observation including errors. We assume that the TD
measurements also satisfy θij = −θij and θii = 0 as in (4b)
and (4c), but θij = θik + θkj does not always hold owing to
errors.

A popular method of obtaining TD measurements is the
GCCmethod [11], [12]. Given two observations xikn and xjkn,
the GCC function is written as

8ij(t) =
1
K

K/2∑
k=−K/2+1

WijkSijkeiωk t , (5)

Sijk =
1
N

∑
n

xiknx
∗
jkn, (6)

where t denotes the discrete lag and Wk ∈ R+ denotes
an arbitrary weight function. Suitable weights have been
proposed, e.g., GCC-phase transform (PHAT) and GCC-
smoothed coherence transform (SCOT);

W PHAT
ijk = |Sijk |

−1, W SCOT
ijk =

(
SiikSjjk

)−1
2 . (7)

Then, we can obtain the TD measurement between sensors i
and j as the peak of the GCC function:

θij = arg max
t

8ij(t). (8)

Now, we consider the following TDM [24], [27] to
represent the full set of TD measurements:

2 = [θ1 · · · θM ]T

=


θ11 θ12 · · · θ1M
θ21 θ22 · · · θ2M
...

...
. . .

...

θM1 θM2 · · · θMM

, (9)

where θ r = [θr1 · · · θrM ]T denotes the TD measurements
between sensors r and m = 1, . . . ,M . The TDM 2 is a
skew-symmetric matrix since θij = −θji and θii = 0.

When the measurements contain no errors, i.e., all of them
satisfy (4), 2 can be rewritten as

2 = 1θT
r − θ r1

T, (10)

where 1 = [1 · · · 1]T ∈ RM . In this case, the degree of
freedom of the TDM is essentially M − 1 because 2 is
represented by only θ r as in (10), where θrr = 0. The other
properties, such as the rank of 2, which is two in theory,
have been shown in [24]. However, when the measured TDM
contains errors, it has notM − 1 butM (M − 1)/2 degrees of
freedom, which is redundant.
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FIGURE 3. Processing flow of the proposed approach with a 5-channel sensor array. (a) TDM measurement 2, where θij = −θji and θii = 0 for all i
and j . (b) Perforated TDM with the TD measurements corresponding to the set of selected sensor pairs E ′ . (c) Estimate of the TDM T̂ computed
from (b), where τ̂ij = τ̂ik + τ̂kj , τ̂ij = −τ̂ji , and τ̂ii = 0 for all i, j and k . The TD estimates in red and blue represent direct and indirect estimates,
respectively.

III. PROBLEM STATEMENT
A. MOTIVATION
The purpose of this study is to develop a TDE algorithm
that is robust against errors in TD measurements. Let us
consider errors by dividing them into two types: small ones
around the true TD value and outliers far from it. In the
context of the GCC method, the former corresponds to the
errors around the global maxima. The GCC function, being
a nonconvex function, has one main lobe and numerous side
lobes. The peak of the main lobe is basically expected to be
close to the true TD, whereas the peak and the true TD do not
match because they are affected by noise and other factors.
Some methods have utilized the redundancy of multichannel
observation to further improve the accuracy of GCC-based
TDE [24], [39], [40].

The peaks of side lobes are far from that of the main
lobe. The value of the GCC function corresponding to these
peaks may be reversed in severe environments. The TD
measurement obtained in such circumstances may become
an outlier that is far from the true TD. Since these outliers
significantly degrade the quality of downstream applications,
such as DOA estimation and signal enhancement, they should
be removed immediately after observation. In this paper,
we thus discuss the methodology for avoiding the outliers.

B. APPROACH
To develop a TDE method that is robust to outliers, we adopt
a selection approach, as shown in Fig. 3. Specifically, we start
with the measurement of TDM, as shown in Fig. 3(a),
and identify a minimally necessary set of sensor pairs {i, j}
denoted by E ′, as shown in Fig. 3(b). By using only the
TD measurements θij such that {i, j} ∈ E ′, we restore
all TDs, as shown in Fig. 3(c). We aim to mitigate the
impact of outliers by selecting the smallest number of reliable
measurements for TDE, as the number of outliers is unknown
in practical scenarios.

Let τ̂ij be an estimate of τij. We first define the direct and
indirect TDEs as follows.

• We refer to the TDE τ̂ij← θij as direct estimation, where
the sensor pair {i, j} is the member of E ′;

• We similarly refer to τ̂ij ←
∑L−1

ℓ=1 θzℓzℓ+1 as the indirect
estimation, where zℓ denotes the sensor index, especially

z1 = i, zL = j. The sensor pair {zℓ, zℓ+1} for all ℓ is the
member of E ′.

Given E ′, we then restore the full set of TD estimates T̂ =[
τ̂ 1 · · · τ̂M

]T by direct or indirect estimation, where τ̂ r is
the estimate of the TD vector (3).

In this approach, the choice of sensor pairs is very
important. Depending on how the sensor pairs are selected,
all TD estimates may not be obtained or multiple inconsistent
estimates may be obtained. Then, the specific problems
addressed in this paper are as follows.
• What is the necessary and sufficient condition of E ′ for
obtaining all elements of T̂ uniquely?

• How is the optimal one determined among E ′ satisfying
the condition above?

We devote Section IV to solving the first problem and
Section V to the second one.

IV. RECONSTRUCTION OF FULL TD SET
A. SENSOR ARRAY AS GRAPH
In this paper, we consider the problem of sensor pair selection
on the basis of graph theory. The graph theory has sometimes
been used for representing the pairwise relations in the TDE
problem as in [33] and [34].

Let us consider the M channel sensor array. Let V = {i |
1 ≤ i ≤ M} and E = {{i, j} | i, j ∈ V and i ̸= j} be a set of
vertices and all distinct pairs of vertices (edges), respectively.
We denote the undirected graph including all edges as G =
(V, E). On the other hand, the set of selected sensor pairs
E ′, which appeared in the previous section, is a subset of E ,
that is, E ′ ⊆ E , and we use only the TD measurements for
sensor pairs contained in E ′. Then, let G′ = (V, E ′) be a
sensor graph. Now, Fig. 1 can be regarded as an example of
the sensor graphs with the 5-channel sensor array.

B. RECONSTRUCTION CONDITION
Our objective here is to choose E ′ appropriately since a
certain choice of E ′ would yield a problem such that not all
TDs are estimated or some TDs are not uniquely determined.
We can visualize this problemwith the sensor graph as shown
in Fig. 4(a) where the TD measurements associated with
the sensor pairs {1, 4}, {1, 5}, {2, 3}, or {4, 5} are selected.
In this case, we cannot compute the TD estimate τ̂12 since the
subgraphs with {1, 4, 5} and {2, 3} are not connected; then,
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the relationship between them has been lost. Moreover, the
selected edges form a cycle in Fig. 4(a). Then, there exist
both direct and indirect estimations, namely, τ̂ (1)14 ← θ14 and
τ̂
(2)
14 ← θ15 + θ54, where τ̂

(1)
14 ̸= τ̂

(2)
14 owing to the error

in measurements. This indicates that the TDs corresponding
to the chosen sensor pairs remain redundant. To avoid this
problem, the edges must be chosen appropriately, as shown in
Fig. 4(b). We thus consider the condition for reconstructing
the full TD set.

First, the following proposition regarding a single TDholds
for any sensor graph G′ = (V, E ′).
Proposition 1: A TD between arbitrary two sensors i and

j can be uniquely determined by either direct or indirect
estimation in general1 if and only if there exists a unique path
between the vertices i and j on the sensor graph G′ = (V, E ′).

Proof: Let us denote the path from a vertex z1 to another
vertex zL on the graph E ′ as (z1, . . . , zL). Suppose there exists
a unique path (z1, . . . , zL) from z1 = i to zL = j where
L ≥ 2. Since the edge {zℓ, zℓ+1} corresponds to the TD
measurement θzℓzℓ+1 , the TD estimate is uniquely obtained as
τ̂ij←

∑L−1
ℓ=1 θzℓzℓ+1 .

Conversely, suppose there is no unique path from the
vertices i to j, which is divided into two cases, that is,
no path or multiple paths exist. If there is no path from the
vertices i to j, τ̂ij cannot be computed by the direct or indirect
estimation. Next, suppose there exist multiple distinct paths,
namely, (z1, . . . , zL1 ) and (z′1, . . . , z

′
L2
), where z1 = z′1 = i,

zL1 = z′L2 = j, and L1,L2 ≥ 2. Then, the TD estimate can
be computed in two ways by tracing the two paths: τ̂ij ←∑L1−1

ℓ=1 θzℓzℓ+1 and τ̂ ′ij ←
∑L2−1

ℓ=1 θz′ℓz
′

ℓ+1
. However, these two

TD estimates do not match in general since they contain
different TD measurements; thus, τ̂ij cannot be uniquely
determined. This holds for any i and j.
Now, we present the following proposition, which we refer

to as the reconstruction condition.
Proposition 2: TDs between all distinct sensor pairs can

be uniquely determined by either direct or indirect estimation
if and only if the sensor graph G′ = (V, E ′) is a spanning tree.

Proof: From Proposition 1, the following two conditions
are identical: TDs between all distinct sensor pairs can be
uniquely determined and there exists a unique path between
any distinct pair of vertices. Now, a graphwith such a property
is referred to as a spanning tree [41], [42].

In accordance with Proposition 2, the full set of TD
estimates can be computed from the TD measurements
corresponding to an arbitrary spanning tree. The number
of minimum-necessary sensor pairs is thus M − 1, which
corresponds to the same number of nonredundant TD
measurements.

1Here ‘‘in general’’ means to exclude a particular case such that θij and
θik + θkj take the same value coincidentally. In such a case, the TD estimate
can be uniquely determined even if the two paths (i, j) and (i, k, j) exist.
However, we here generally discuss excluding such a case.

FIGURE 4. Examples of undirected graphs for the 5-channel sensor array
with 4 edges. (a) Graph with a cycle where the sensor nodes {1, 4, 5} and
{2, 3} are disconnected, indicating that this is not a tree. (b) Graph
without any cycles where all sensor nodes are connected, thus indicating
that this is a tree.

As an example of the reconstruction process, let us
consider computing τ̂34 in the spanning tree shown in
Fig. 4(b). The edges are {{1, 5}, {2, 3}, {2, 5}, {4, 5}} and
the corresponding TDs are {θ15, θ23, θ25, θ45} with their sign
reversals. With such a spanning tree, there exists a unique
path from sensors 3 to 4, and thus, the TD estimate can be
computed indirectly as

τ̂34← θ32 + θ25 + θ54

= −θ23 + θ25 − θ45. (11)

All the elements in T̂ = [τ̂ij]1≤i,j≤M can be obtained in the
same manner, where τ̂ii = 0.

V. ESTIMATION OF NONREDUNDANT TDS
A. OPTIMIZATION PROBLEM
As mentioned in the previous section, estimates of TDs
between all distinct sensor pairs can be determined uniquely
if and only if the set of selected sensor pairs forms a spanning
tree. Let S be a set of spanning trees on V and S be a member
of S. The problem here is how to find the optimal spanning
tree S† among S.

To evaluate the optimality of a spanning tree, we introduce
a cost function for each TDmeasurement, which corresponds
to each edge of the graph, e ∈ E . The lower the cost, the
better the TD measurement. (or: We intend to represent that
the lower the cost, the better the estimate.) Let Cij denote the
cost for the TD measurement θij and C = [Cij]1≤i,j≤M denote
the cost matrix. We define that all diagonal elements of C
are zero. The matrix C is symmetric as a result, providing the
weight for the edge {i, j} onG. The cost matrix then represents
the adjacency matrix of a weighted graph. With such a cost
matrix, we consider the optimal spanning tree to be the one
that minimizes the sum of the costs of its edges.

We can then formulate the following optimization problem
pertinent to the sensor graph with selected edges, G′ =
(V, E ′), for choosing the optimal set of sensor pairs.

E† = arg min
E ′

∑
i,j∈e
e∈E ′

Cij s.t. G′ ∈ S, (12)

where the abbreviation ‘‘arg min’’ stands for the argument of
the minimum. The optimal spanning tree can be obtained as
S† = (V, E†).
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Algorithm 1 Kruskal’s MST Solver
Input: G = (V, E; C)
Output: S†

= (V, E†)
Initialize:

E ′ = ∅
l = 1, . . . ,L and L = M (M − 1)/2
C̃(e) = Cij, where i, j ∈ e and e ∈ E
Define el for all l such that C̃(e1) ≤ · · · ≤ C̃(eL )

i = 0
while |E ′| ̸= |V| − 1 do

if no cycle exists in E ′ ∪ {ei} then
E ′ ← E ′ ∪ {ei}

end if
i← i+ 1

end while
E† ← E ′

B. REFERENCE-BASED SOLUTION
As mentioned in Section I, the reference sensor is commonly
used to employ nonredundant TDs [3], [23], [30], [31], [32],
with the first sensor often serving as the reference. Then,
before solving (12), let us consider the problem of choosing
the optimal reference sensor as follows.

E† = {{r†, j} | 1 ≤ j ≤ M , j ̸= r†}, (13)

r† = arg min
r

∑
j̸=r

Crj. (14)

Obviously, this solution satisfies the reconstruction condition
[see (10)]. We will show that it is a special case of (12) as
follows.

From the graph theory perspective, this solution forms a
star [41], as shown in Fig. 1(b). We can also confirm that
the reconstruction condition holds since the star is one of the
spanning trees. Hereafter, wewill refer to this solution asSST
(star-spanning tree).

This approach is very intuitive and the computational
complexity is low. However, this solution is sub-optimal since
the feasible region is limited to only a set of stars among all
spanning trees. For instance, let us consider a TDM that has
outliers on superdiagonal entries, namely, (i, i + 1) entries
(and consequently, (i+ 1, i) entries as well). Then, no matter
which reference sensor is chosen, an outlier will inevitably be
included. If the selection of sensor pairs is not constrained to
the pair of the reference sensor and others, we can still choose
M − 1 TD measurements without outliers even in this case.

C. MST-BASED SOLUTION
Now, we consider solving the optimization problem (12)
directly, which is referred to as the MST, one of the
well-studied subjects in the graph theory [43], [44], [45],
[46], [47], [48], [49]. There exist efficient algorithms that
can achieve a unique solution as long as the edge weights are
defined appropriately.

Kruskal’s algorithm [43], [44] is one of the famous MST
solvers. We briefly show the pseudo-code in Algorithm 1,
where C = {Cij | i, j ∈ V and i < j} denotes the set of weights
corresponding to each edge in E . The inequality for i and j is

Algorithm 2 Prim’s MST Solver
Input: G = (V, E; C), arbitrary a ∈ V
Output: S†

= (V, E†)
Initialize:

E ′ = ∅
A = {a} ▷ Set of selected vertices
Ac
= V \ A ▷ Set of remaining ones

while A ̸= V do
Find the edge e = {i, j} such that whose weight Cij
is minimum in {Cij | {i, j} ∈ E, i ∈ A, j ∈ Ac

}

E ′ ← E ′ ∪ {e}
A← A ∪ {j}
Ac
← V \A

end while
E† ← E ′

merely for choosing Cij from the elements above the main
diagonal of the cost matrix, which is essentially meaningless.
Kruskal’s algorithm is a kind of greedy algorithm. The MST
is found by iteratively selecting/removing the edge with the
lowest weight from a list of sorted edges while ensuring that
the selected ones do not form a cycle. The computational
complexity is O(|E | log |V|) or equivalently O(|V|2 log |V|)
because |E | = |V|(|V| − 1)/2 in our problem.

Another famous method is Prim’s algorithm [45], [46],
[47], which is shown in Algorithm 2. The MST is obtained
by iteratively expanding a subset of edges. The subset is
grown by adding the edge with the lowest weight between
the vertices in the current subset and the remaining ones. The
computational complexity2 is O(|V|2).

To compare these methods, Kruskal’s algorithm is prefer-
able when the edges are sparse since it first sorts all the
edges. On the other hand, Prim’s algorithm evaluates a limited
number of edges per loop and is thereby faster for a complete
graph. Since the graph associated with the full TD set always
has full edges, the latter is a better choice for our problem.

The output of whichever MST solver is the MST with a
set of M − 1 edges. We can then reconstruct the TDM by
estimating every TD directly or indirectly, as discussed in
Section IV-B.

D. COST MATRIX
The remaining problem is how to define an appropriate cost
matrix C = [Cij]1≤i,j≤M . In this paper, we propose the
GCC-function-based cost matrix for the following reason.
Typically, a TD is obtained by measuring the peak of the
GCC function. It is expected that the GCC function will
take a larger value when the given TD measurement is
closer to the unknown true TD. Conversely, outliers are
expected to have a relatively small GCC function value.
We thus employ the value obtained by substituting the
measurement θij into the GCC function (5) as the cost for
itself. Moreover, we introduce the weighting factor α ∈ {0, 1}

2The computational complexity depends on the data structure, e.g., it is
O(|E | + |V| log |V|) with the Fibonacci heap.
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for normalization by defining the following cost matrix:

Cij =


−

1
K

K/2∑
k=−K/2+1

Sijk
|Sijk |α

e−iωkθij i ̸= j

0 otherwise,

(15)

where i, j ∈ e and e ∈ E . The (i, j) element of the cost matrix
corresponds to the ordinary cross correlation when α = 0,
and it corresponds to the GCC-PHAT (7) when α = 1. Hence,
the properties of the cost matrix with α = 1 follow those of
the GCC-PHAT.

E. PROPOSED ALGORITHM
Finally, we summarize the algorithm of the MST-based TDE
inAlgorithm 3. The function TRIU(·) returns amatrix with the
upper triangle elements of the given matrix, where elements
below the main diagonal are zero. MST(·) denotes the
MST solver. Although any MST solver can be used, Prim’s
algorithm is employed in this paper. One implementation of
Prim’s algorithm is in ‘‘NetworkX,’’ a Python package [50].3

In Algorithm 3, we assume that the measurements are only
the multichannel observation xkn. The normalization factor p
is the user-defined parameter. The measurement of the TDM
is obtained by performing the GCC method, and the cost
matrix defined in (15) is employed. The output is the estimate
of TDM T̂ or equivalently the full set of TDs.
There are some options regarding the above conditions. For

example, given a measurement of the TDM, we can use it
directly instead of performing the GCCmethod. Any existing
TDE method can also be utilized as an alternative to the
GCCmethod. It is also possible to define another cost matrix,
where the cost matrix must be symmetrical since the TDM is
skew-symmetric.

VI. EXPERIMENTS
To investigate the efficacy of the proposed method, we con-
duct two numerical experiments and compare its performance
with that of existing methods. In Section VI-A, we evaluate
the robustness of the proposed method against the outliers.
In Section VI-B, we evaluate the TDE performance in a
simulated reverberant environment.

A. ROBUSTNESS AGAINST OUTLIERS
1) EXPERIMENTAL CONDITIONS
We simulate anM = 8 channel microphone array. The target
signal skn is a white noise of 4096 samples. The TD between
two adjacent microphones is randomly generated from the
uniform distribution whose interval is (−25, 25] samples.
TDs are simulated by rotating the phase of the target signal,
and the TDM is computed by using the ground truth. We then
contaminate the TDM with outliers, which are uniformly
generated from ±[50, 100] samples. The number of outliers
is in the range of 0 to 8C2 = 28. We perform STFT with

3Available as networkx.minimum_spanning_tree().

Algorithm 3MST-Based TDE
Input: xkn, α
Output: T̂ = [τ̂ij]1≤i,j≤M

Sk = 1
N

∑N
n=1 xknx

H
kn

Cij = 0 for all i = j
for i, j = 1, . . .M and i ̸= j do

θij = GCC(Sijk )

Cij = −
1

K

∑K/2
k=−K/2+1

Sijk
|Sijk |α

e−iωk θij

end for
(V, E†) =MST(TRIU(C))

τ̂ij = 0 for all i = j
for i, j = 1, . . .M and i ̸= j do

Let (z1, . . . , zL ) be the path from z1 = i to zL = j,
where {zℓ, zℓ+1} ∈ E† for all ℓ
τ̂ij =

∑L−1
ℓ=1 θzℓzℓ+1

end for
Function GCC(Sk )

8(t) = 1
K

∑K/2
k=−K/2+1WkSkeiωk t

return t = arg maxt 8(t)
end Function

4096 samples in a rectangle window, which is equivalent to
the one-shot discrete Fourier transform (DFT).

2) COMPARISON METHODS
We evaluate three methods for comparison: RST, SST,
and TDM. RST is a crude method that randomly generates
a spanning tree and uses it as a solution, implemented
merely for comparison. The algorithm employed in this
paper to obtain a random spanning tree4 has a computational
complexity of O(|V|). SST is the method described in
Section V-B. TDM is a robust TDE method based on the
TDM, which has been proposed in [24, Sec. VI]. To the
best of the authors’ knowledge, TDM is one of the state-of-
the-art algorithms that does not require prior information,
such as microphone positions. Although TDM is a method of
computing the TDM by using all TD measurements rather
than selection, we employ it as a comparison method because
the purpose of removing outliers is the same. Note that TDM
requires the maximum number of outliers supposed to be
present, and in this experiment, we use the true value.

We also perform the proposed method denoted by MST,
where α = 0 in this experiment. Since the noisymeasurement
of the TDM is given, we use it directly instead of performing
the GCC method in this experiment.

3) EVALUATION CRITERIA
In this paper, we will evaluate whether all outliers have been
removed. We thus define the rejection failure (RF) and RF
rate (RFR) as the evaluation criteria as follows:

RFp =

{
0 if

∣∣[T̂(p) − T ⋆
(p)

]
ij

∣∣2 < THR ∀i, j

1 otherwise
, (16)

4Available as networkx.random_tree().
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FIGURE 5. RFR as a function of the number of outliers in the TD
measurements, where the number of sensors is eight. Each method
attempts to eliminate outliers, and its failure rate is shown on the vertical
axis. Spanning-tree-based methods require at least M − 1 clean TDs;
hence, they always fail to remove outliers in the range of 22 or more on
the horizontal axis.

RFR =
1
P

∑
p

RFp, (17)

where T ⋆
(p) denotes the true TDM and the subscript p =

1, . . . ,P denotes the simulation index. THR denotes the
threshold for distinguishing whether the estimate is an outlier
or not, and we set THR = 5 in this paper. If a TDE method
successfully estimates T̂ and eliminates all outliers from 2,
RFp becomes 0.

4) RESULTS AND DISCUSSION
Fig. 5 shows the results of the experiment, where we perform
P = 10000 trials. The horizontal axis shows the number
of outliers in the noisy TDM and the vertical axis shows
RFR. In the spanning-tree-based approach, at least M −
1 = 7 TD measurements must be clean. Hence, these
methods theoretically fail if the number of outliers equals or
exceeds 22.

As shown in Fig. 5, RST shows the worst result. The
probability of not choosing one outlier in 28 elements is one-
fourth, almost matching the result of RST when the number
of outliers is one. The result of SST indicates that estimating
the optimal reference sensor helps avoid a few outliers, while
it may fail to remove outliers when their count exceeds five.
This tendency is almost the same in TDM even if the true
number of outliers is given.

In contrast, the proposed method, MST, works well despite
the numerous outliers. Even if 10 out of 28 TDs are strongly
contaminated by noise, MST successfully removes them
almost 100% of the time and restores the full set of accurate
TDs. Additionally, the curvature of the MST result is far from
the others. The RFR should be as close to zero as possible,
and MST achieves a significantly low RFR. Note that the
ideal RFR depends on which elements of the TDM contain
outliers andmay not always be zero. Let us consider a specific
scenario where there are 20 outliers. In some cases, it is
possible that, regardless of which seven of the eight clean TDs
are selected, a spanning tree cannot be constructed. Then,
outlier removal cannot be achieved in principle.

B. PERFORMANCE EVALUATION OF TDE
1) EXPERIMENTAL CONDITIONS
Next, we evaluate the performance of TDE in a reverberant
enclosure. We use pyroomacoustics [51], a Python package,
in this experiment. We synthesizeM = 4, 8, and 16 observed
signals with simulated room impulse responses (RIRs) with
a reverberation time of approximately 400ms. The sampling
frequency is 16 kHz. The target signal is approximately
4 s long and is randomly generated following the normal
Gaussian distribution. Noise signals are generated under the
same conditions, and the average signal-to-noise ratio (SNR)
is set to 20 dB. We perform a one-shot DFT with a rectangle
window for the observed signals. The target source and
microphones are randomly located in a room of 18m× 24m
× 6m size. They are placed at least 1m away from the
surfaces of the room, and the distance between the adjacent
microphones is forced to be greater than 0.01m. Thus, the
minimum and maximum distances between the microphones
are 0.01m and approximately 27.50m, respectively, with the
average distance of about 10.77m. The source-microphone
distance is around 10.78m on average. In general, the larger
the microphone spacing and/or the longer the reverberation
time, the more difficult it is to estimate the TDs. We adopt
this room size as a setting where outliers are likely to occur.

2) COMPARISON METHODS
The comparison methods are generally the same as those in
Section VI-A. Since the measurements are the microphone
observations in this experiment, we employ the GCC method
to compute the TDM, as shown in Algorithm 3. The weight
function here isWk = 1 for all k . We then perform SST with
the computed TDM, referred to as SST-INT.
The TD measurements obtained by the GCC method alone

are limited to an integer multiple of the reciprocal of the
sampling frequency. We thus employ parabolic interpolation
[52] as a postprocessing to obtain the TDM with subsample
TD measurements. Every method except for SST-INT is
based on the subsample TDM.

As in the previous section, we perform three comparison
methods: RST, SST, and TDM. TDM requires the number
of outliers in advance, whereas it is unknown in practical
situations. We thus perform TDM several times while
changing the hyperparameter, which is denoted by κ .

3) EVALUATION CRITERIA
In addition to the RFR, we use the root mean square error
(RMSE) as the evaluation metric in this section defined as5

RMSE =

√√√√ 1
PM (M − 1)

∑
p

∥T̂(p) − T ⋆
(p)∥

2
F, (18)

where ∥ · ∥F denotes the Frobenius norm. The number of
simulations, P, is 10000 in this paper. Since we generate

5The main diagonal elements of the TDM are always zero. The number of
TD estimates in the TDM is thus M (M − 1).
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TABLE 1. Results of TDE with M = 4, 8, 16-channel microphone arrays.

the RIRs regarding the microphone and source positions, the
ground truth T ⋆

(p) is unknown. Therefore, we compute it from
the distance between them. The speed of sound is set to
343 m/s, which is equal to that used for RIR generation via
pyroomacoustics.

If there is even one outlier in the TD estimates, the RMSE
becomes extremely large owing to the effect of the outlier.
The criteria excluding such a gross error(s) will help in the
interpretation of the results. Therefore, we also evaluate the
RMSE using only the results of trials in which outliers were
successfully discarded. From now on, we denote the RMSE
computed in this manner as ‘‘RMSE (W/O OLs)’’.

4) RESULTS AND DISCUSSION
Table 1 show the results of the experiments. In the case of
M = 4, the baseline method SST-INT shows the worst
RMSEs. SST-INT fails to remove outliers 190 times out
of P = 10000 trials. SST improves the RMSE (W/O OLs)
by applying quadratic interpolation to the TD measurements.
The RFR is also slightly improved accordingly. RST is worse
than the baseline method, which is similar to the results
discussed in the previous section. We show the results of TDM
for the different numbers of outliers κ = 0, 2, . . . , 10. Since
the number of TD measurements is 4C2 = 6, no results
are available with κ = 6, 8, 10. TDM is a method that
simultaneously realizes the refinement of TD measurements
and the removal of outliers by utilizing all TDmeasurements.
Thus, it shows much better results in RMSE (W/O OLs).
However, κ = 0 assumes that there are no outliers (in other
words, all measurements are assumed to be reliable), and the
RFR increases as a result. It can be seen that the RFR is
less than that of the baseline when considering outliers with
κ = 2 and 4.
The proposed method MST shows the best results when

α = 1 (with GCC-PHAT-based cost matrix). The number
of RFs is the lowest at 46, and the RMSE is accordingly
improved. Additionally, we can see that the cost matrix based
on the GCC-PHAT significantly improves the performance of
MST. Unlike TDM, the spanning-tree-based approach has no
refinement mechanism since it uses the minimum-necessary
TD measurements. The RMSE (W/O OLs) is thus limited by
the accuracy of the given TD measurements. In practice, it is

desirable to apply some accurate TDE algorithms, such as
those in [40], as the postprocessing of MST.

The trend observed with M = 8 microphones is similar
to the aforementioned results; however, the benefits of the
proposed method become more pronounced. As the number
of microphones increases from four to eight, the number
of TDs to be estimated also increases, leading to a higher
occurrence of outliers. This is the reason for the overall
increase in RFR compared with the case of M = 4.
Additionally, parabolic interpolation is applied regardless of
the accuracy of TD measurements. The interpolated TDs
are expected to approach the ground truth more closely,
whereas interpolated outliers may further stray away from
it. Then, the subsample TDM might contain worse outliers,
resulting in the decrease in the performance of SST compared
with SST-INT. Despite such circumstances, MST (α = 1)
markedly reduces the number of RFs. SST and MST search
for the optimal spanning tree in the same TDM on the basis
of their respective criteria. Therefore, we can confirm the
effectiveness of the proposed approach that estimates the
MST rather than using the best reference sensor. TDM can also
reduce the RFR by setting κ appropriately, such as κ = 4, 6.
Basically, TDM is guaranteed to converge when κ is small
[24]. However, it sometimes diverges when the number of
outliers, κ , is set to 10 (its maximum value here is 8C2 = 28),
which leads the RMSE to become infinity. In contrast, the
proposed MST (α = 1) shows the best results in terms of the
RMSE and RFR.

In the case of M = 16, similar results as in the case of
M = 8 are obtained. As shown in the rightmost column of
Table 1, the RFR becomes worse than that with M = 8 in
most cases. On the other hand, MST (α = 1) can reduce the
RFR to the same level as in the case ofM = 8 by utilizing the
additional redundancy owing to the increase in the number of
observations. Since the RMSE is still limited, the application
of postprocessing is preferable, as mentioned earlier. Finally,
from the above results, we can confirm the efficacy of MST
regardless of the number of microphones.

VII. CONCLUSION
In this paper, we proposed a novel method of estimating
TDs that is robust against outliers in the measurements.
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Specifically, we addressed the problem of selecting non
redundant TDs from a full set of TD measurements, while
ensuring that all TDs can still be restored.We showed that this
problem is reduced to the problem of finding theMST and we
developed an efficient algorithm based on graph theory.

In numerical experiments, we demonstrated that the
proposed method successfully selects relatively clean TD
measurements and reconstructs the full set while discarding
outliers. Moreover, we verified the efficacy of the proposed
method in a reverberant room environment through computer
simulations.

Compared with conventional methods, our approach
achieved superior performance in removing outliers, although
its estimation accuracy is still limited. The future work thus
includes integrating our method with TD refinement methods
to realize highly accurate and robust TDE.
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