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ABSTRACT This paper studies efficient output feedback model predictive control (OFMPC) via adaptive
event-triggered control (AETC) for the networked control system (NCS) with data dropout and bounded
disturbance. First, we adopt AETC in NCS to save limited network resources and introduce a Bernoulli
random variable to represent the occurrence of data dropout events. Subsequently, two sufficient conditions
are presented to handle the gain matrix of the state observer and the estimation error bound. Then,
by offline solving an elliptic invariant set satisfying the input constraint and online optimizing for additional
perturbations, the initial feasible set is enlarged and the online computational burden is greatly reduced.
Finally, the effectiveness of the proposed algorithm is verified by two simulation examples.

INDEX TERMS Efficient output feedback model predictive control (EOFMPC), the networked control
system (NCS), adaptive event-triggered control (AETC).

I. INTRODUCTION
As a specific class of control, model predictive control (MPC)
is able to efficiently handle multi-variable systems with
various physical constraints in a systematic way [1] and is
therefore widely used in academia and industry (see, e.g., [2],
[3], [4], [5], [6], [7]). In [2], a synthesis approach for robust
MPC was proposed that aimed to design a state feedback
control law at each time to minimize the ‘‘worst-case’’
infinite-horizon objective function satisfying the control
input and system output constraints. In [3] and [4], a multicell
uncertain system was discussed, and parameter-dependent
Lyapunov functions were designed based onmultiple vertices
of the polyhedron. In [5] and [6], free control motions were
introduced to separate the first few control actions from
the rest of the control actions governed by the feedback
law. In [7], Ding et al. combined free control motions with
parameter-dependent Lyapunov functions. The online MPC
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algorithms proposed in [2], [3], [4], [5], [6], and [7] are
all designed to improve the control performance of the
system. However, for systems that require fast control, the
complexity of MPC may not meet the need for real-time
system computation, so it is necessary to sacrifice the control
performance of the system to reduce the complexity of online
MPC computation. The core idea of [8], [9], and [10] was to
offline compute a sequence of control laws for asymptotically
stable elliptic invariant sets one after another and to select a
suitable control law by online search. References [11], [12],
[13], and [14] proposed an efficient MPC (EMPC) algorithm,
whose main idea was to introduce additional perturbations
in the design of the controller, to offline design an elliptic
invariant set, and to online optimize the perturbations. The
EMPC algorithm compared to the offline MPC algorithm in
[8], [9], and [10] not only improves the control performance
of the system but also enlarges the initial feasible set of the
system, making it more applicable. In view of the advantages
of the EMPC algorithm, it constitutes the motivation for the
research in this paper.
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The papers mentioned above were all done when the
system state could be measured. Nonetheless, in practical
applications, the state of most systems cannot be measured
directly, so output feedback MPC (OFMPC) is often more
applicable than state feedback MPC (SFMPC), but it is also
more complex because of the need to refresh the estimation
error set in real time. There are two common types of
OFMPC: 1) dynamic OFMPC (see, e.g., [15] and [16]);
2) observer-based OFMPC (see, e.g., [17], [18], [19], [20]).
In [17] and [18], the effect of external disturbances on
the system control performance was not considered, and
the estimation error eventually converged to the origin.
In [15], [16], [19], and [20], external disturbances were
taken into account, and it was verified that the estimation
error eventually converged to around the origin as time
evolved. Although [15], [16], [17], [18], [19], [20] made
wonderful studies on OFMPC, their main purpose was still to
improve the control performance of the system, which would
result in a heavy online computational burden. In order to
satisfy the real-time application of the system, [21] and [22]
investigated the offline OFMPC and refreshed the estimation
error set in real-time. Unfortunately, the algorithms proposed
in [21] and [22] did not discuss the initial feasible set of the
system adequately. Hence, in this paper, an efficient OFMPC
(EOFMPC) algorithm is proposed, which not only reduces
the online computational burden but also enlarges the initial
feasible set of the system at the sacrifice of little control
performance.

At another scientific frontier, as a closed-loop system
connected by a communication network, the networked
control system (NCS) has been widely used in industrial
control due to its low cost and high reliability. On the one
hand, due to the limited communication network bandwidth
in NCS, some network-induced phenomena may occur, e.g.,
time delay [23], data quantization [24], and so on. Competing
with the problems mentioned above, [25], [26], [27], [28],
[29], [30] proposed an event-triggered control (ETC) that
could save network resources. The idea in [25], [26], [27],
[28], [29], and [30] was to determine whether signals needed
to be released into the communication network based on
a predetermined threshold. However, the trigger threshold
cannot be flexibly adjusted when certain changes occur in the
NCS. Therefore, the adaptive event-triggered control (AETC)
proposed in [31], [32], and [33] combined the adaptive
law with the trigger condition so that the trigger threshold
could be dynamically adjusted and the network resources
could be sufficiently utilized. On the other hand, most
communication networks are prone to data dropout due to
communication congestion, which has attracted widespread
attention in academia as another challenge of NCS (see,
e.g., [34], [35], [36], [37], [38], [39]). Both [40] and [41]
provided an NCS framework for ETC for communication
networks with data dropout. Reference [42] discussed the
control problem of NCS with AETC and data dropout and
guaranteed the stability of the system.

FIGURE 1. Structure of NCS.

To the best of the authors’ knowledge, there is no existing
literature on EOFMPC algorithms, let alone EOFMPC
that considers AETC and data dropout simultaneously,
which promotes the research work in this paper. The main
contributions of this paper are presented below:

1) To reduce the bandwidth burden on the communication
network, AETC is used, and the occurrence of data
dropout is represented by a Bernoulli random variable.

2) In this article, we introduce the EOFMPC approach to
NCS, which greatly reduces the online computational
burden and enlarges the initial feasible set compared to
the traditional online OFMPC approach.

3) The optimization problem of refreshing the estimation
error bounds is obtained to guarantee that the error
between the true and estimated states of the system is
tighter.

Notation: All inequalities in vectors are expressed in an
element-wise sense. xh|t represents, at the time t , the value
of x, which predicts sampling instant t + h. ∗ in the matrix
represents a symmetric term. The matrix inequality A >

0 showsA is a positive-definite matrix, εQ means {x|xTQx ≤

1}. I is the adaptive identity matrix.

II. PROBLEM STATEMENT
The framework of NCS with random data dropout and a state
estimator is shown in FIGURE 1. The sampled data of the
sensor may be lost when transmitting through the network,
and the successful transmitted data ȳt is the input of the state
estimator. Based on the estimation state x̂t obtained from
the state estimator, ut can be calculated by the controller.
And ũt is determined by the adaptive event-triggered law
subsequently. What’s more, the input of the system ũt will
also be the input of the state estimator.

A. LINEAR POLYTOPIC SYSTEM MODEL
Consider the uncertain discrete-time system in FIGURE 1,
and it is described as

xt+1 = Atxt + Bt ũt + Dtwt
yt = Ctxt + Etwt (1)
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where x ∈ ℜ
nx , u ∈ ℜ

nu , w ∈ ℜ
nw denote the system

state, control input, and external disturbance, respectively.
The disturbance wt satisfies ∥wt∥2 ≤ 1 for all t > 0.
Moreover, there exist hlt satisfies

[At |Bt |Ct |Dt |Et ] =

nl∑
l=1

hlt [Al |Bl |Cl |Dl |El] (2)

where hlt ≥ 0 and
∑nl

l=1 h
l
t = 1. Assume that the polytope

Co{[Al |Bl |Cl |Dl |El]}, l ∈ {1, . . . , nl}, is exactly known, and
at each sampling instant, hlt can be calculated.

B. NETWORK WITH DATA DROPOUT
In addition, due to the unreliable communication link
between sensor and buffer, the data dropout is inevitable
and may result in terrible consequences, which should be
considered. Hence, the input of the state estimator ȳt can be
obtained as below:

ȳt = βtyt + (1 − βt )ȳt−1 (3)

where βt is a random variable satisfying the Bernoulli
distribution. Furthermore, we can get the expectation and
variance of the βt

E{βt } := βE ,

D{βt } = βE (1 − βE ) := β2
D (4)

Since the probability of βt is known, βE is a known scalar.
Remark 1: βt denotes the Bernoulli random variable for

data dropout. When βt = 1, it means that the data was
successfully transmitted, i.e., ȳt = yt , and when βt = 0,
it means that data dropout occurred and ȳt is still the data
of the previous moment.

C. ADAPTIVE EVENT-TRIGGERED STRATEGY
In practical application, the communication resources of
the network are limited. Therefore, an adaptive event-
triggered strategy that can dynamically adjust the number
of transmitted signals by choosing the appropriate threshold
actively in view of the change in the system state is introduced
to save limited communication resources.

In FIGURE 1, ut and ũt are the output of the controller and
the input of the system, respectively, and they satisfy

ũt =

{
ũt−1 ẽTt Pũet < ϵt ũTt−1Pũut−1

ut ẽTt Pũet ≥ ϵt ũTt−1Pũut−1
(5)

where ẽt := ut − ũt−1, Pu is a weighting matrix determined
by the optimization problem in the next section, and ϵt is the
adaptive law. At time t + 1, the adaptive law ϵt+1 can be
obtained, i.e.,

ϵt+1 = (
1
ϵt

−
1
ϵ̌
)̃eTt Pũet + (1 − σ )ϵt (6)

where ϵ̌ > 0, ϵ0 and σ ∈ {0, 1} are pre-specify scalars.
Remark 2: We note that ũt will become the latest trigger-

ing data that is transmitted to the actuator by the controller

when the sampling data ũt makes the AETC condition (5)
to be established; otherwise, ũt will be maintained as the
previous triggering data.

D. STATE ESTIMATOR
Since system state is unmeasurable in practice, let us
construct the following estimator to estimate the system state:

x̂t+1 = At x̂t + Bt ũt + Lp(ȳt − ŷt )

ŷt = βtCt x̂t + (1 − βt )ȳt−1 (7)

where Lp is the estimator gain determined in the next section,
and at time t , ȳt is the estimator input.

The estimation error is defined as êt := xt − x̂t .
By subtracting (7) from (1), the estimation state and
estimation error dynamics are obtained as

x̂t+1 = At x̂t + Btut − Bt̃et + βtLpCt êt + βtLpEtwt
êt+1 = (At − βtLpCt )êt + (Dt − βtLpEt )wt (8)

Based on the estimator, the system state can be described by
the estimation state and the estimation error.

III. MAIN RESULTS
In this section, we will describe the main results in the
subsections. The subsections A and B are about parameter
determination and error analysis of the state estimator;
In subsection C, the feedback gain and a weighting
matrix of adaptive event-triggered are obtained. Based on
subsections A, B, and C, subsection D introduces the
EOFMPC algorithm.

A. OFF-LINE ESTIMATOR DESIGN
The estimator gain Lp will be obtained by following
the following condition, which guarantees estimation error
stability:

Define a quadratic E(êt ) = ∥êt∥2P0e
which is satisfied by the

quadratic boundness condition, which yields

E(êt ) ≥ 1 ⇒ E{E(êt+1)} ≤ E(êt ) (9)

Lemma 1: If there exist P0e and Y
0
e satisfying

(1 − λ1)P0e ∗ ∗ ∗

0 λ1I ∗ ∗

P0eAj − βEY 0
e Cj P0eDj − βEY 0

e Ej P0e ∗

−βDY 0
e Cj −βDY 0

e Ej 0 P0e

 ≥ 0,

j ∈ {1, . . . , nl} (10)

where Y 0
e = P0eLp and 0 ≤ λ1 ≤ 1 is a pre-specified

scalar, the estimation error is ensured to stay within εP0e
for

the sufficiently large t.
proof: According to (9), by applying the S-procedure,

there exists a scalar 0 ≤ λ1 ≤ 1 satisfies

êTt P
0
e êt − E{êTt+1P

0
e êt+1} − λ1(êTt P

0
e êt − wTt wt ) ≥ 0 (11)
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If the random variable βt = β̂t + βE , it can be obtained that

E{β̂t } = 0, E{β̂2
t } = β2

D (12)

By using the Schur complement and considering the polytope
Co{[Al |Bl |Cl |Dl |El]}, l ∈ {1, . . . , nl}, (11) becomes (10). □

B. ERROR UPPER BOUND ANALYSIS OF ESTIMATOR
Since estimator error is uncertain, define a scalar ηt to
describe the upper bound of estimator error, i.e.,

E(êt ) ≤ ηt (13)

For t = 0, assume that η0 is a known scalar.
Lemma 2: At time t, the upper bound of estimator error

ηt+1 is obtained by following the optimization problem:

OP1 : min
λ2,ηt+1

ηt+1 s.t. (15) (14)
λ2P0e
ηt

∗ ∗ ∗

0 (1 − λ2)I ∗ ∗

Aj − βELpCj Dj − βELpEj ηt+1P0e
−1

∗

−βDLpCj − βDLpEj 0 ηt+1P0e
−1


≥ 0, j ∈ {1, . . . , nl} (15)

where λ2 is a scalar.
proof: At time t , according to (13), we have two

inequalities, E(êt )/ηt ≤ 1 andwTt wt ≤ 1. Based on the above
inequalities, using the S-procedure, if there exist two scalars,
λ2 ≥ 0 and λ3 ≥ 0 satisfy

1 −
E{E(êt+1)}

ηt+1
− λ2(1 −

E(êt )
ηt

) − λ3(1 − wTt wt ) ≥ 0

(16)

then E{E(êt+1)}/ηt+1 ≤ 1 at time t + 1 can be guaranteed.
By taking inequality 1− λ2 − λ3 ≥ (1− λ2 − λ3)wTt wt , (16)
becomes

λ2
E(êt )
ηt

+ (1 − λ2)wTt wt −
E{E(êt+1)}

ηt+1
≥ 0 (17)

By using the Schur complement and considering the polytope
Co{[Al |Bl |Cl |Dl |El]}, l ∈ {1, . . . , nl}, (17) becomes (15). □

Based on the (14), we can get the upper bound of the
estimator error at each time.

C. OFF-LINE OPTIMIZATION PROBLEM
The main aim of this subsection is to get the off-line feedback
gain F and the weighting matrix of adaptive event-triggered
Pu to guarantee the estimation state stability.

Firstly, define a feedback gain as uh|t = Fx̂h|t , and
according to (8), the prediction of estimated state and
estimated error are

x̂h+1|t = (Ah|t + Bh|tF)x̂h|t − Bh|t̃eh|t
+ βh|tLpCh|t êh|t + βh|tLpEh|twh|t (18)

êh+1|t = (Ah|t − βh|tLpCh|t )êh|t
+ (Dh|t − βh|tLpEh|t )wh|t (19)

Secondly, define a quadratic function and a cost index as

Vh|t =

[
x̂h|t
êh|t

]T [Px 0
0 Pe

] [
x̂h|t
êh|t

]
+ ϵh|t (20)

J0|∞t =

∞∑
h=0

([
x̂h|t
uh|t

]T [ Lx 0
0 Lu

] [
x̂h|t
uh|t

])
Px > 0,Pe = αP0e > 0,Lx > 0,Lu > 0 (21)

where Px and α are determined by optimization problem (23)
and Lx and Lu are determined by the user.
Lemma 3: For h ≥ 0, Vh|t satisfies the quadratic

boundness condition, i.e.,

Vh|t ≥ γ ⇒ Vh|t − E{Vh+1|t } − Jh|ht ≥ 0 (22)

and it is guaranteed by the following condition, that is

OP2 : min
α,Qx ,γ,Y ,Pu,Qu

trace(PuQu) s.t. (24), (25) (23)[
Pu ∗

I Qu

]
≥ 0, (24)

(1 − σ )Qx ∗ ∗ ∗ ∗

0 122 ∗ ∗ ∗

131 132 133 ∗ ∗

141 142 0 144 ∗

151 0 0 0 155

 ≥ 0,

j ∈ {1, . . . , nl} (25)

where σ is a pre-specified scalar, Qx = P−1
x , Y = FQx ,

122 =

 S11 ∗ ∗

0 S22 ∗

S31 0 S33

 , S22 =
Pu
ϵ̌

,

S11 = α[(1 − σ )P0e − (Aj − βELpCj)TP0e(Aj − βELpCj)

− (βDLpCj)TP0e(βDLpCj)],

S31 = −α[(Dj − βELpEj)TP0e(Aj − βELpCj)

+ (βDLpEj)TP0e(βDLpCj)],

S33 = σ Iγ − α[(Dj − βELpEj)TP0e(Dj − βELpEj)

+ (βDLpEj)TP0e(βDLpEj)],

131 =

[
AjQx + BjY

0

]
,

132 =

[
βELpCj −Bj βELpEj
βDLpCj 0 βDLpEj

]
,

133 =

[
Qx ∗

0 Qx

]
,

141 = Y , 142 =
[
0 −I 0

]
, 144 = Qu,

151 =

[
Qx
Y

]
, 155 =

[
L−1
x ∗

0 L−1
u

]
.

proof: According to the S-procedure method, (22) holds
if there exists a non-negative scalar σ satisfying Vh|t −

E{Vh+1|t }− Jh|ht −σ (Vh|t −γ ∥wt∥2) ≥ 0. The detailed proof
procedure is similar to the reference paper [20]. □
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D. EFFICIENT OUTPUT FEEDBACK MPC
1) PREVIOUS WORK
We introduce the augmented state c and get maximum initial
feasible set.

Firstly, define the input of system uh|t as

uh|t = Fx̂h|t + ch|t (26)

where ch|t = Gfh|t , fh|t ∈ RN , G = [Inu , 0, . . . , 0], N is
determined by th user (see the reference paper [11]). fh|t can
be denoted as fh|t = [cT0|t , c

T
1|t , c

T
2|t , . . . , cTN−1|t ]

T .
Secondly, the prediction of f is defined as fh+1|t = Mfh|t ,

where M is a variable matrix with an appropriate dimension
and f0|t is a variable in the following online optimization
problem.

With (18), we can get[
x̂h+1|t
fh+1|t

]
=

[
Ah|t + Bh|tF Bh|tG

0 M

] [
x̂h|t
fh|t

]
+

[
−Bh|t
0

]
ẽh|t +

[
βh|tLpCh|t

0

]
êh|t

+

[
βh|tLpEh|t

0

]
wh|t (27)

According to (26), we redefine the Vh|t and J
0|∞
t as

Vh|t =

[
zh|t
êh|t

]T [Pz 0
0 Pe

] [
zh|t
êh|t

]
+ ϵh|t (28)

J0|∞t =

∞∑
h=0

(
x̂Th|tLx x̂h|t + uTh|tLuuh|t + f Th|tLf fh|t

)
=

∞∑
h=0

(
zTh|tLzzh|t

)
(29)

where Pz > 0,Pe = αP0e > 0, zh|t = [x̂Th|t , f
T
h|t ]

T , Lf is a
pre-specified weighing matrix and

Lz =

[
Lx + FTLuF FTLuG
GTLuF GTLuG+ Lf

]
.

Lemma 4: For h ≥ 0, Vh|t satisfied, the quadratic
boundness condition is guaranteed, i.e.,

Vh|t ≥ γ ⇒ Vh|t − E{Vh+1|t } − Jh|ht ≥ 0 (30)

and the maximum initial feasible set τ3 will be obtained if the
following optimization problem is solved as follows:

OP3 : maximize
α,γ,M ′,τ1,τ3,τ4

log det(τ3) s.t. (32) (31)
811 ∗ ∗ ∗ ∗

0 822 ∗ ∗ ∗

831 832 833 ∗ ∗

841 842 0 844 ∗

851 0 0 0 855

 ≥ 0,

j ∈ {1, . . . , nl} (32)

where τ1 ∈ ℜ
nx×nx , τ3 ∈ ℜ

nx×nx , τ4 ∈ ℜ
Nnu×nx ,

811 = (1 − σ )
[

τ3 ∗

τ1 τ1

]
, 822 = 122,

831 =


(Aj + BjF)τ3 + BjGτ4 (Aj + BjF)τ1

(Aj + BjF)τ3 + BjGτ4 +M ′ (Aj + BjF)τ1
0 0
0 0

 ,

832 =


βELpCj −Bj βELpEj
βELpCj −Bj βELpEj
βDLpCj 0 βDLpEj
βDLpCj 0 βDLpEj

 ,

833 =


τ3 ∗ ∗ ∗

τ1 τ1 ∗ ∗

0 0 τ3 ∗

0 0 τ1 τ1

 , 841 =
[
Fτ3 + Gτ4 Fτ1

]
,

842 =
[
0 −I 0

]
, 844 = P−1

u ,

851 =

[
τ3 τ1
τ4 0

]
, 855 = L−1

z ,

α in 822 is a variable and M ′ in 831 defined as M ′
:=

τT2 Mτ4.
proof: By using S-procedure, (30) becomes

Vh|t − E{Vh+1|t } − J0|0t − σ (Vh|t − γwTh|twh|t ) ≥ 0 (33)

According to (6) (19), (27), (28) and (29), by taking the
Schur complement and the polytope Co{[Al |Bl |Cl |Dl |El]},
l ∈ {1, . . . , nl}, (33) becomes

(1 − σ )Pz ∗ ∗ ∗ ∗

0 822 ∗ ∗ ∗

931 932 933 ∗ ∗

941 842 0 844 ∗

I 0 0 0 855

 ≥ 0,

j ∈ {1, . . . , nl} (34)

where 931 =

[
Aj+BjF BjG

0 M

]
, 941 = [ F 0 ], 932 =[

βh|tLpCj −Bj βh|tLpEj
0 0 0

]
, 933 = P−1

z .
Then, the variable substitution is used to linearize the above

LMI. Let us define

Pz =

[
τ−1
1 τ−1

1 τT2
τ2τ

−1
1 ξ1

]
, P−1

z =

[
τ3 τT4
τ4 ξ2

]
(35)

By taking the congruence transformation diag{851, I ,Pz851,
I , I} and (4), (34) becomes (32). □

2) ON-LINE OPTIMIZATION PROBLEM
In the previous subsection, γ , α and P−1

z are obtained. In the
following introduction of approaches, they will be used as
known. At each time t , consider the following optimization
problem

OP4 :min
f0|t

f T0|tLf f0|t s.t. V0|t ≤ γt (36)
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which can ensure the stability of the estimation state. V0|t ≤

γt is guaranteed by γt − αηt − ϵt ∗ ∗

x̂0|t τ3 ∗

f0|t τ4 ξ2

 ≥ 0 (37)

where ξ2 = τ4(τ3 − τ1)−1τT4 .
proof: According (13) and (28), we can get

γt − zT0|tPzz0|t − êT0|tPeê0|t − ϵt ≥ 0 (38)

êT0|tPeê0|t ≤ αηt (39)

By using Schur complement, (37) can be obtained. □
In order to guarantee feasible and closed-loop stability for

(36), at time t = 0, let us define γ0 = γ , and according to
(30), set γt+1 as

γt+1 = γt − J0|0t (40)

IV. NUMERICAL EXAMPLE
Example 1: We introduce a continuous stirred tank reactor
(CSTR) system and its parameters, which has been investi-
gated in [43]. Then, the proposed algorithm parameters will
be set based on the CSTR system. Finally, assume different
situations about data dropout rate βE , disturbance wt and the
initial state of the estimator and CSTR system.

1) The parameters of the CSTR system are shown as
follows:

The number of polyhedral vertices nl = 4 and the state
space matrices of the system are

A1 =

[
0.823 −0.002
6.123 0.937

]
, A2 =

[
0.965 −0.002

−0.676 0.943

]
,

A3 =

[
0.890 −0.003
2.945 0.997

]
, A4 =

[
0.893 −0.001
2.774 0.886

]
,

B1 =

[
−0.092
0.1014

]
, B2 =

[
−0.097
0.1016

]
,

B3 =

[
−0.157
0.1045

]
, B4 =

[
−0.034
0.0968

]
,

C1 = C2 = C3 = C4 =
[
0 1

]
,

D1 = D2 = D3 = D4 =

[
0.008
0.023

]
,

E1 = E2 = E3 = E4 = 0.04,

h1t =
1
2
ȳt − 0.5703
1.7891

, h2t =
1
2

−ȳt + 2.3594
1.7891

,

h3t =
1
2
ȳt − 0.0307
0.0281

, h4t =
1
2

−ȳt + 0.0588
0.0281

.

2) The parameters of the adaptive event-triggered are set
as ϵ0 = 1.2, ϵ̌ = 1.3 and σ = 0.01. The scalar λ1 in (10) is
set to 0.1, 0.15, and 0.19. The dimension of ft , N = 3. The
weight matrices are

Lf =

 1 0 0
0 1 0
0 0 1

 , Lx =

[
1 0
0 1

]
, Lu = 1.

FIGURE 2. xt and x̂t for standard situation under different λ1 in
Example 1.

FIGURE 3. Control intput of the system under different λ1 in Example 1.

FIGURE 4. Trigger times of the system under AETC in Example 1.

3) Set the data dropout rate to βE = 0.6 and the disturbance
to wt ∈ (−1, 1). The initial states are x̂0 = [0.2; 5] and x0 =

[0.3; 6].
Record the above settings as standard situations, and the

simulation results of standard situations are presented as
In FIGURE 2, it is observed that with disturbance w,

the state of the estimator and system finally approaches 0.
FIGURES 3 and 4 show the control input ut of the system.
FIGURE 4 indicates the trigger time point and release interval
under AETC. It can be determined that only 35% of the
communication resource has been occupied. FIGURE 5 can
verify that βE = 0.6. In FIGURE 6, we can see that the

118166 VOLUME 11, 2023



M. She, W. Wu: Efficient OFMPC for NCS With Data Dropout and Bounded Disturbance via AETC

FIGURE 5. Data dropout time points in Example 1.

FIGURE 6. The ellipsoidal set for standard situation in Example 1.

area of {x|xTPxx ≤ 1} less than {x|xT τ−1x ≤ 1} (τ−1
=

[Inx , 0]Pz[Inx ; 0]), and it shows that the addition of augmented
state f0|t enlarges the initial feasible set of the algorithm.
Example 2: The corresponding matrices for the system

with polyhedral vertices nl = 2 are given as follows, which
has been studied in [44]:

A1 = A2 =

0.9617 0 0
0 0.9872 0
0 0 0.6564

 ,

B1 = B2 =

45.44980
119.097

 ,

C1 = 21.06069c1, C2 = 21.06069c2,

9c1 =
[
10.9952 −0.6717 5.6465

]
,

9c2 =
[
10.9952 −0.6717 2.4199

]
,

D1 = D2 =

−0.0004525
0.0004525

−0.0006790

 ,

E1 = E2 = 0,

h1t =
ȳt − 5.05
4.95

, h2t = 1 −
ȳt − 5.05
4.95

.

In addition, the data dropout rate is βE = 0.9. The
initial states are x̂0 = [0.03; −0.1; 0.03] and x0 =

[0.0001; 0.0001; 0.038]. The rest of the parameters are the
same as in Example 1.

FIGURE 7. xt for standard situation under different λ1 in Example 2.

FIGURE 8. x̂t for standard situation under different λ1 in Example 2.

FIGURE 9. Control intput of the system under different λ1 in Example 2.

FIGURE 10. The ellipsoidal set for standard situation in Example 2.

FIGURE 7 and FIGURE 8 represent the true and estimated
states of the system, and FIGURE 9 represents the control

VOLUME 11, 2023 118167



M. She, W. Wu: Efficient OFMPC for NCS With Data Dropout and Bounded Disturbance via AETC

input under data dropout, and it can be clearly seen
that the system gradually stabilizes as time evolves. From
FIGURE 10, it can be observed that our proposed method can
enlarge the initial feasible set of the system.

It can be concluded that the proposed EOFMPC method
for NCS is feasible and shows satisfactory performance.

V. CONCLUSION
For NCS with data dropout and bounded disturbance, the
synthesis approach of EOFMPC has been investigated.
According to the linear polytopic uncertain system, the online
optimization problem was provided, which was based on
offline estimator design, the rule of estimator error upper
bound updating, an offline optimization problem for state
feedback gain, and an offline optimization problem for
augmented state. On account of the EOFMPC with AETC,
the optimality of the system and the initial feasible set have
been significantly improved with the increasing dimension of
the augmented state. In the future, we plan to investigate the
efficient dynamic OFMPC (EDOFMPC) approach in NCS
and consider other possible events in the communication
channel.
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