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ABSTRACT Breast segmentation in magnetic resonance imaging (MRI) slices plays a vital role in early
diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning
have indicated promise in automating this process, but significant gaps and challenges remain to address. This
PubMed-based review provides a comprehensive literature overview of the latest deep learning models used
for breast segmentation. The article categorizes the literature on deep learning based on input modalities, use
of labeled/unlabeled data during training, and different architectures. Additionally, it describes more complex
frameworks structured using hierarchical, ensemble, or fused learning. Then, MRI processing approaches,
key aspects of convolutional neural networks, and key gaps and challenges are focused. The need for large
breast MRI datasets with accurate annotations and the generalization of the proposed structures to diverse

and comprehensive datasets are among the gaps.

INDEX TERMS Breast cancer, computer-aided diagnosis, CNNs, MRI processing, review.

I. INTRODUCTION

According to estimates by the American Cancer Society in
2022 [1], there would be 287,850 invasive cases of breast
cancer and 43,250 deaths among women in the United States,
as visualized in Fig. 1. Additionally, there would be 51,400
cases of ductal carcinoma in situ (DCIS), a stage-0 breast
cancer confined to the ducts of the breast with the potential
to progress to an invasive type. Long-term follow-up studies
of untreated DCIS cases have reported rates of progression to
invasive breast cancer ranging from 10% to 53%.

Early diagnosis of breast anomalies is crucial for high
survival rates in breast cancer. Since breast cancer often
exhibits no symptoms in its early stages, the American
Cancer Society recommends annual screening at age 40 for
women at average risk and at age 30 for women at high risk
[1]. Among different nondestructive evaluation techniques
[2], mammography is the primary imaging modality, while
magnetic resonance imaging (MRI) serves as a supplemen-
tary method for high-risk or dense-breasted women [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Rajeswari Sundararajan

MRI techniques such as T1/T2-weighted imaging, diffusion-
weighted imaging (DWI), and dynamic contrast-enhanced
(DCE) imaging provide valuable information on different
breast structures [4]. Combined as multi-parametric MRI,
these techniques enhance the segmentation accuracy [5].
DCE-MRI, in particular, has shown promising results in early
diagnosis for women with extremely dense breast tissues [6].
Contrast agents are used in DCE-MRI to improve visibility,
and images are captured in 3D at different time points.
Representative slices from axial T1-weighted (T1W) time-
signal curves, pre-contrast, and first post-contrast sequences
are displayed in Fig. 2.

Analyzing MRI data for tumor diagnosis is challenging
for radiologists due to the large data volume. Additionally,
various imaging artifacts can be introduced into breast MRIs,
such as background noise, movement artifacts, chemical
shift artifacts, incorrect patient positioning artifacts, magnetic
susceptibility artifacts, and aliasing artifacts [8]. Therefore,
the implementation of a computer-aided diagnosis (CAD)
system becomes crucial to assist radiologists and physicians
in analyzing breast MRI and expediting the diagnosis
process. This analysis involves preprocessing, segmentation,
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FIGURE 1. a) Age distribution of DCIS cases, invasive cases, and mortality in breast cancer patients in the United States in 2022;
b) Distribution of breast cancer subtypes based on molecular traits in the United States from 2015 to 2019 [1].
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FIGURE 2. MRI modalities from the publicly available Duke database [7] showing images of patient 112, with a bounding box marking the

suspicious area.

region of interest (ROI) detection, classification into benign
or malignant categories, and identification of molecular
subtypes, as shown in Fig. 3.

Automatic segmentation of breast structures, as shown
in Fig. 3, within a CAD system plays a critical role in
accurate cancer diagnosis. Several factors contribute to this:
a) breast MRI slices encompass adjacent organs such as
heart, liver, and pectoral muscles; b) tumors may exhibit
lower contrast compared to normal blood vessel tissues;
c) breast MRI exhibits variability due to the utilization
of different MRI acquisition protocols; and d) automated
segmentation can exclude unwanted areas and measure
breast density and its temporal gradients as a cancer risk
factor, while manual delineations being time-consuming and
prone to error. To address these challenges, CAD systems
frequently leverage machine learning (ML), a subset of
artificial intelligence. The learning process can be either
unsupervised, as in the case of fuzzy c-means [9], [10],
or supervised, employing algorithms such as support vector
machines [11], random forests [12], and logistic regression
[13]. Manual feature extraction, being time-consuming and
tedious to develop, was a necessary step in traditional
machine learning [14]. However, deep learning algorithms
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based on convolutional neural networks have revolutionized
this field by enabling direct learning and recognition of
relevant features from the images [15].

This review aims to provide an overview of the lat-
est advancements in deep learning-based techniques for
automatic MRI segmentation in the field of breast cancer.
It highlights the current state of the field while emphasizing
the existing gaps and challenges. The increasing trend in the
use of artificial intelligence regarding breast cancer based on
the number of published reviews is depicted in Fig. 4 (a).
Furthermore, Fig. 4 (b) shows the original research articles
that are the basis of the current review. Additionally, Fig. 5
shows the literature content presented in the next section,
followed by sections on MRI processing approaches, key
aspects of CNN, and key gaps and current challenges. Finally,
the review concludes with conclusions and future directions.

II. LITERATURE REVIEW

This section presents a summary of key findings, method-
ologies, and approaches related to breast MRI segmentation
using deep learning models. Table 1 showcases notable
studies in the literature, where CNN-based models are
utilized to perform segmentation by classifying individual
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FIGURE 3. a) Image analysis procedure for breast MRI data; b) Breast structure.
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FIGURE 4. a) Review articles published on artificial intelligence applied to breast cancer; b) Research articles specifically

focused on the subject of current review.
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FIGURE 5. Overview of the state-of-the-art knowledge organization. (BPE— background parenchymal enhancement; NAC— neoadjuvant

chemotherapy; ALN— axillary lymph node.)

pixels through a sliding window technique. The main steps
for image segmentation includes: a) MRI data preprocessing;
b) model development and training; c¢) model evaluation;
d) inference; and e) post-processing. Multi-modal models
integrate information from multiple input MRI modalities
such as T1, T1 contrasted, and T2, while single-modal ones
use only one type of input modality.
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A. MULTI-/SINGLE-MODAL MODELS

Segmenting breast tumors in single-modal images is chal-
lenging due to the limited tumor morphology and the
difficulty in distinguishing between tumors and normal
blood vessels [23]. On the other hand, multi-modal images
contain richer tumor information, as tumors exhibit distinct
morphological or grayscale differences from other tissues.
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TABLE 1. Deep learning (DL) models for breast segmentation.

Aim DL model and Input Performance eval-  Processing approaches Key findings
(source) uation
FGT seg- Models: 2C U-Nets (hier- Dice similarity N4 bias-field correction us-  3C U-Net—DSC: 0.85, Pear-
mentation archical learning), 3-C U-  coefficient (DSC); ing the breast mask; man-  son’s correlation: 0.974; 2C U-
[16] Net. Dataset: 132 T1 DCE-  Pearson’s ual thresholding to select Nets—DSC: 0.811, Pearson’s
MRIs of 66 non-cancerous  correlation FGT voxels; image reorien-  correlation: 0.957.
patients. Reference: manual  between  breast tation; image mirroring for
annotations. density values. left breast.
Tumor seg- Models: 2D Seg-Net and U-  Mean intersection  N4ITK bias-field  Seg-Net — IoU: 68.88%, Loss:
mentation Net. Dataset: 86 T1 DCE-  over union (IoU); correction; augmentation  0.053; U-Net —IoU: 76.14%,
[17] MRIs of 43 cancer patients.  binary cross  using random translations,  Loss: 0.002.
Reference: manual annota-  entropy; one-sided  rotations, flips, and scale;
tions. Mann-Whitney U linear transformations.
test.
3D FGT Model: U-Net and patch DSC and Jaccard Normalization; rescaling; DSC: 87.0 & 7.0% and JI: 77.6
segmenta- DCNN based GAN. index (JI). and resizing. + 10.1%.
tion [18] Dataset:  bilateral breast
pre-contrast MRIs of 100
patients. Reference: manual
annotations.
Mass seg- Model: a 3D modified Dice similarity,  Resizing; normalization;  Proposed model—Dice: 77.6
mentation FuseNet based on U-Net. sensitivity, and combination of cross- = 0.3, sensitivity: 84.4 4 0.7,
[19] Dataset: TI DCE-MR and  relative area  entropy loss and Dice loss  and RAD: 30.9 & 1.6. Respec-
T2W images from 313  difference (RAD). for the loss function. tive values 74.9 + 0.2, 82.2 +
patients. Reference: manual 0.4, and 37.9 £ 2.5 for Fuse-
annotations  for  central UNet.
slices.
Tumor seg- Model: a MHL framework  Mean DSC; Sensi-  Image normalization; image  DSC: 71.76 £ 24.19, SEN:
mentation via the U-Net structure. tivity (SEN); and reorientation; random resiz-  75.04 4+ 23.12, PPV: 77.33
[20] Dataset: TIW pre-contrast  Positive Predictive  ing for data augmentation; =+ 21.05. Better performance
and first post-contrast MRIs  Value (PPV). cropping; or curve fitting compared with random for-
of 272 patients. Reference: and active contour based est based method, patch-based
FCM segmentation using method. Manual annotations ~ CNN, U-Net, and V-Net.
cuboid bounding box. of the right and left nipples.
3D lesion Model: multi-modal,  Mean DSC;  Breast mask generation us- DSC of 0.79 £ 0.172 for the
segmenta- ensemble learning via  Hausdorff ing skin-air boundary de-  proposed model.
tion [21] modified U-Nets. Dataset:  Distance (HD); tection; zero padding; zero-
46 cases (3D TIW) False Positive Rate  mean unit-variance inten-
from the TCGA-BRCA (FPR); AdaDelta sity normalization; balanced
dataset. Reference: manual  optimizer, and a  patch extraction.
annotations for 2 lesions. threshold of 0.5.
Tumor seg- Model: Res-Unet. Dataset: DSCandintraclass Random zoom, scale in- DSC: 0.89; ICC>0.95 for tu-
mentation 1000 cancer patients under  correlation tensity value, shift inten- mor diameter and ICC>0.80
[22] axial TIW DCE-MRI. Ref-  coefficient (ICC); sity range, Gaussian noise,  for tumor volume.

erence: manual and infer-
ence annotations.

Adam optimizer,
DSC and cross-
entropy based loss
function.

crop fore/background, rota-
tion, elastic transformation.
Normalization and respac-
ing.

3D tumor Model: DenseVoxNet  Sensitivity, DSC,
segmenta- for coarse and a pseudo- and absolute
tion [23] Siamese network for fine  relative  volume
segmentation. Dataset:  difference
TIW and Tl-contrasted (ARVD). Dice
MRIs of 590 patients. Loss; Adam
Reference: manual. optimizer.

Image normalization.

DSC—TIC:90.49 £+ 1.89; Tl:
85.07 £ 3.61.

2C U-Nets—Two Consecutive U-Nets; 3-C U-Net—3-Class U-Net; DSC—Dice Similarity Coefficient; FGT— Fibroglandular
Tissue; loU—Mean Intersection over Union; GAN— Generative Adversarial Network; JI—Jaccard Index; DCNN—Deep
Convolutional Neural Network; TIW and T2W— T1 Weighted and T2 Weighted; MHL— Mask-guided Hierarchical Learning;
FCM—Fuzzy C-Means; PSN—Pseudo-Siamese Network; TIC—T1 Contrasted.

Regarding multi-modality, Piantadosi et al. [24] incorpo-
rated the 3 time points (3TP) approach into the U-Net
architecture for lesion segmentation in MRI slices. They
inputted temporal acquisitions before and after the contrast
agent injection (T = 0, 2, and 6 min), and achieved a
median dice similarity coefficient of 61.24%. Khaled et al.
[21] explored an ensemble U-Net framework for lesion
segmentation using three U-Net models with different inputs:
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3TP acquisitions, a full series of images, and pre, last,
and standard deviation images of the full series. They also
incorporated a breast mask in all models and replaced U-Net
convolutional blocks with residual basic blocks. Hirsch et al.
[25] achieved radiologist-level performance with a 3D U-Net,
using a large training set of 60,108 benign breast and 2,455
malignant breast images. The input MRI included the first
postcontrast image, T1 postcontrast minus precontrast image
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(DCE-in), washout (DCE-out), and a reference created by
radiologists.

Deep learning models can be classified into supervised,
semi-supervised, or unsupervised based on their use of
labeled and/or unlabeled data during training.

B. SUPERVISED MODELS

Over the past decade, supervised deep convolutional neural
networks (CNNs) have consistently demonstrated superior
performance compared to the prevailing state-of-the-art
methods in numerous visual recognition tasks [26]. These
techniques aim to automatically extract meaningful features
from input images. Low-level features such as texture and
edge detection are captured in the initial layers, while
subsequent layers apply convolutional kernels to evolve the
feature maps, resulting in high-level features near the output
layer. Moeskops et al. [27] segmented the breast’s pectoral
muscle efficiently in 34 T1-MRIs using a fully CNN applied
on a combination of brain MRI, breast MRI, and cadiac
CTA. Guo et al. [28] utilized a CNN-SVM network for MRI
breast tumor segmentation, where the label output of a trained
CNN was fed into a support vector machine (SVM). Various
learning architectures based on U-Net, Seg-Net, FuseNet,
or GAN, have been applied for breast MRI segmentation.

1) U-NET-BASED MODELS

The majority of CNN models for automatic segmentation use
the U-Net architecture [29]. U-Net extends the concept of
a fully CNN [30] by incorporating up-sampling layers after
standard CNN layers. Ronneberger et al. [29] employed elas-
tic deformation for extensive data augmentation to address
limited training data, and utilized a weighted loss function
for handling touching objects. Later, Cigek et al. [31] applied
this U-Net architecture to construct a 3D network, training
it on 3D volumes with sparse annotations. Preferentially, 3D
models are chosen to capture both intra-slice and inter-slice
tumor characteristics.

a: STANDALONE VERSUS COMBINED LEARNING

Deep learning can be achieved through standalone or
combined frameworks. In standalone networks, input data
is processed to extract high-level features, enabling output
predictions without additional connections. On the other
hand, a combined framework can be structured using hierar-
chical learning, ensemble learning, or feature fusion learning.
Both standalone and combined frameworks are essential in
deep learning, offering flexibility and adaptability for diverse
applications. Yue et al. [22] developed an efficient standalone
network called Res-UNet by incorporating residual blocks
in the encoder section and combining them with U-Net skip
connections. Dalmis et al. [16] employed two U-Net based
approaches, namely the two consecutive U-Nets (2C U-Nets)
via hierarchical learning and the 3-class U-Net (3-C U-Net) as
a standalone framework. The 2C U-Net segments the breast
first, then follows with FGT segmentation. On the other hand,
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the 3-C U-Net simultaneously segments the entire volume
into three classes: nonbreast tissue, breast FGT, and breast fat.
The 3-C U-Net method demonstrated superior performance
over traditional machine learning including an atlas-based
algorithm.

b: HIERARCHICAL LEARNING

This approach entails training lower-level models to perform
simple tasks and utilizing their outputs as input for higher-
level models. In a segmentation approach by [20], first,
a U-Net model using a pre-contrast image generated a
breast mask, which serves as input to the next two-stage
U-Net model. Then, a double U-Net framework utilized first
post-contrast image and the subtraction image to achieve
coarse-to-fine segmentation, resulting in a tumor mask.
To address class imbalance, the authors introduced a dice-
sensitivity-like loss function and a reinforcement sampling
strategy. Peng et al. [23] devised a multi-modal hierarchical
network that consists of two stages for segmentation of
small tumors. The first stage introduced a novel 3D tiny
object segmentation network (TOSN) based on DenseVoxNet
[32] to capture tumor boundary details. Second stage used
a bidirectional request-supply information interaction mod-
ule (BD-RSIIM) to enable information exchange between
sub-networks of two modalities. Qin et al. [33] employed a
two-stage U-Net-based framework, in which the first stage
applied a refined U-Net model to automatically delineate a
breast ROI. The second stage enhanced the U-Net model
by modifying the activation function, substituting batch
normalization with group normalization, introducing a dense
residual module using dilated convolution in the encoder, and
replacing the original convolution blocks in the decoder with
a recurrent attention block.

¢: ENSEMBLE LEARNING

This approach combines the predictions of multiple individ-
ual models to improve the overall performance through tech-
niques like averaging, voting, or stacking. Piantadosi et al.
[34] made modifications to the original U-Net model by
adjusting the output feature map to a single channel,
employing size-preserving zero-padding, and incorporating
batch normalization layers after each convolution. The
modified model analyzed 2D MRIs in sagittal, coronal, and
transversal planes using an ensemble approach with a voting
technique. Khaled et al. [21] reported that the union operation
of three U-Net models in an ensemble learning process
achieved the most effective segmentation of primary lesions.

d: FEATURE FUSION LEARNING

This involves integrating features from multiple sources or
models to enhance performance or provide a comprehensive
representation of the input data. The U-Net++ framework
was utilized to segment the breast region in DCE-MRIs
of 75 patients, surpassing the performance of U-Net [35].
U-Net++ [36] improves upon the original U-Net architecture
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by enhancing the skip connection with feature combination
modules, enabling the fusion of features from different levels
through superposition. It also incorporates a deep supervision
scheme that connects the middle module to the final output,
ensuring effective gradient propagation.

2) SEG-NET MODELS

The following single-modal, standalone architectures com-
pare Seg-Net and U-Net performances for breast MRI
segmentation. In certain instances, El Adoui et al. [17]
demonstrated that the U-Net model achieved higher accuracy
in predicting the segmentation of 2D slices compared to
human-generated segmentation. Conversely, the qualitative
results obtained by Seg-Net were not closely aligned with
the ground truth. This disparity was attributed to the fact
that Seg-Net is better suited for multiclassification tasks,
such as applications related to autonomous car. Moreover,
Carvalho et al. [37] utilized U-Net and Seg-Net architectures
for tumor segmentation in 2D T1 and T2 images. Seg-Net
demonstrated superior performance with a dice coefficient of
97.55% and an IoU score of 95.30% when training with T1
images and testing with T2 images. Therefore, segmentation
performance using Seg-Net or U-Net was varied based on the
input.

3) GAN-BASED MODELS

Generative adversarial networks (GANs) are deep neural
network architectures that consist of two competing networks
[38]. Ma et al. [18] introduced a GAN-based approach for
precise fibroglandular tissue (FGT) segmentation, essen-
tial for quantitative analysis of background parenchymal
enhancement (BPE) in MRI and assessing breast cancer risk.
It utilizes an enhanced U-Net as a generator to produce FGT
candidate regions, while a patch deep convolutional neural
network (DCNN) functioning as a discriminator to assess
the credibility of the generated FGT region. The FGT areas
segmented by the proposed GAN model provided improved
quantification of BPE compared to those by the baseline
U-Net.

4) FuseNet MODELS

Li et al. [19] applied two modifications on FuseNet [39]
for breast mass segmentation. First, a FuseNet-like network
is built upon U-Net, named FuseOrigin-Unet. Second,
achannel-wise concatenation is implemented to fuse different
imaging modalities, and convolution kernels for each layer
are halved in encoder, named FuseUNet. Therefore, their
model was applied to multi-modal MRIs, with the T1C
processed as the primary modality for segmentation and T2W
as assistant. An attention block was employed to extract
supervision information from the primary modality and then
to choose relevant information from assistants.

C. UNSUPERVISED MODELS
The goal of unsupervised learning is to discover the ROI
in images without any manual annotations or bounding
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boxes during training. Parekh et al. [4] employed a stacked
sparse autoencoder (SSAE) multiparametric deep learning
network that utilizes breast tissue signatures from various
MRI modalities (T1-weighted, T2-weighted, DCE imaging,
and DWI) as inputs for unsupervised breast segmentation.

D. CLINICAL APPLICATIONS OF SEGMENTATION
Segmentation in medical imaging accurately delineates and
identifies specific structures or regions of interest, enabling
various clinical applications such as radiomic analysis,
treatment response, disease progression, and cancer risk
assessment.

1) RADIOMIC ANALYSIS

Radiomics involves extracting and analyzing quantitative
features from breast MRIs. In their study, Spuhler et al. [40]
employed a U-Net model to segment lesions in breast DCE-
MRIs, which was then utilized as input for the radiomics
model.

2) TREATMENT RESPONSE

Breast tumors automatically segmented using a U-Net model
in the third post-contrast images were utilized to predict the
likelihood of systemic recurrence within three years after
neoadjuvant chemotherapy (NAC) operation in patients with
triple-negative breast cancer [41].

3) DISEASE PROGRESSION

Axillary lymph node metastasis refers to the spread of cancer
cells from the primary tumor site to the lymph nodes located
in the axilla (armpit) region. Gan et al. [42] employed
automatic segmentation to delineate axillary regions on
post-neoadjuvant chemotherapy DCE-MRIs.

4) CANCER RISK

Accurate breast density assessment, as an indicator of breast
cancer risk, was achieved through a supervised 3D U-Net
segmentation strategy using fat- and water-only images [43].
Similarly, increased background parenchymal enhancement
(BPE) linked to higher breast cancer risk was classified
by employing radiomics features extracted from segmented
images using a modified V-Net model [44]. The BPE region
was identified using thresholding values in the subtraction of
the pre- and post-contrast TIW images and the segmented
FGT mask. The main steps required for segmentation,
as shown in Fig. 6, are addressed in more details in the
subsequent sections.

IIl. MRI PROCESSING APPROACHES

T1-/T2-weighted imaging, DWI, and DCE-MRI are key MRI
modalities employed in breast cancer diagnosis. Despite
each modality consisting of numerous slices, they often
lack sufficient information to differentiate between tumors
and breast nodules, which exhibit similar sizes and shapes.
The utilization of multi-modal images becomes crucial in
accessing a broader dataset for identifying abnormalities.
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FIGURE 6. Sample segmentation process of breast MRis.

Consequently, the application of image processing techniques
becomes necessary.

A. INPUT MRI DATA

The DL algorithm uses multi-modal MRIs and mask labels
as input data, and models with multi-modal inputs are
more effective than those with single-modal inputs [19].
Including the precontrast image as input provided anatomical
information, excluding enhancements from the heart in the
chest region [45]. Similarly, incorporating the contralateral
subtraction image as input helped eliminate false positives
from parenchymal enhancements, important for radiologists’
interpretation and deep learning models. Ground truth labels
are generated manually by experts using graphical software to
assess segmentation accuracy. When evaluating effect of the
tumor alone and different annotation boxes [10], the smallest
box containing proximal peritumor tissue showed the highest
accuracy. Researchers have applied various techniques on
raw data to enhance result reliability.

B. PROCESSING TECHNIQUES

1) PREPROCESSING

This step plays a pivotal role in image segmentation and
is mandatory to remove marks, labels, non-breast tissues,
and black areas. Some commonly-used techniques (refer
to Table 1) are as follows: normalization; rescaling and
resizing; augmentation using geometric transformations,
such as rotations, flips, or translations; and motion correction
using 3D rigid and non-rigid image registration [11], [46].
The role of preprocessing in highlighting the tumor region
and removing the non-breast areas is shown in Fig. 7.

2) DURING-PROCESSING

Data balancing is crucial in medical imaging due to the
significant imbalance between voxels representing lesioned
and healthy tissues. Galli et al. [46] tackled this challenge
by implementing an eras/epochs training schema that ensures
an equal number of healthy and lesion slices are sampled
during each training step. To balance the data, Yue et al.
[22] employed a random selection method for cropping
patches. The center point of the patches was chosen with
equal probability either within the foreground or background
area. Additionally, they applied various degrees of rotation
(augmentation) during inference to the input data before
feeding them into the model for evaluation. Patch extraction,
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transfer learning, and attention mechanisms are also among
this type of techniques.

3) POST-PROCESSING

Morphological operations (e.g., erosion and dilation), thresh-
olding, and connected component analysis can be utilized
to refine segmentation result. Techniques like skin fold
removal to improve fibroglandular tissue segmentation [47],
retaining only the largest continuous regions of segmentation
[48], eliminating outliers within connected regions [22], and
applying a threshold of 0.35 with hole filling [43] have been
implemented to enhance segmentation results.

IV. KEY ASPECTS OF CNN

This section explores the essential components and various
basic architectures of CNNs, and offers insights into the
core elements contributing to their success in breast MRI
segmentation.

A. CNN COMPONENTS

Different CNN architectures can be designed by adjusting
the parameters related to the components as following,
depending on the specific segmentation task requirements
and dataset characteristics.

1) CONVOLUTIONAL LAYERS

They perform convolution operation, which involves sliding
a small matrix called a filter, to extract features from the input
data.

2) ACTIVATION FUNCTIONS

They introduce non-linearity following each convolutional
layer, and enable the network to learn complex patterns and
make accurate predictions. Rectified Linear Unit (ReLU)
has widely been used in hidden layers [29], [49]. Leaky
ReLU activation function addresses a limitation known as
the “dying ReLU” problem in standard ReL U and helps the
network maintain the flow of gradients by introducing a small
hyperparameter for negative input values [50]. Additionally,
SoftMax or Sigmoid have been used at the final classifier
layes [31], [35].

3) BATCH NORMALIZATION

This can enable end-to-end training with the same optimizing
solver [49]. This technique was applied before each ReLLU to
enhance gradient flow leading to faster convergence [31] and
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FIGURE 7. Preprocessing techniques applied to image modalities shown in Figure 2.

to reduce the internal covariate shift [39]. Additionally, it was
applied after each ReLU block to improve training speed [51],
to make the model robust to input variations [46], to reduce
internal covariate shift [39], and to mitigate sensitivity to
weight initialization [43].

4) POOLING LAYERS

They reduce the spatial dimensions of the feature maps
through operations like max-pooling or average pooling,
leading to a reduction in the number of parameters in
subsequent layers. This leads to improvement in training
speed and overfitting prevention.

5) OPTIMIZERS

They determine parameter adjustments during training
through gradient computation and application, with com-
monly used options including stochastic gradient descent
[17], adaptive moment (Adam) [23], and Adadelta as an
extension of AdaGrad [21].

6) SKIP CONNECTIONS

They create extra paths for backpropagation between network
layers by concatenating feature maps from the encoder
with feature maps in the decoder. These connections bypass
network layers, preserving and reusing low-level information
during upsampling.

7) DROPOUT

It is a regularization technique that randomly ““drops out” a
portion of the neurons during training to prevent overfitting
and improve generalization. For instance, Hazirbas et al. [39]
utilized dropout in both the encoder and decoder to enhance
the network performance.

B. ARCHITECTURES

1) SEG-NET

SegNet, as shown in Fig. 8 (a), is an encoder-decoder
architecture, wherein encoder layers correspond with the
convolutional layers found in the VGG16 architecture [52].
The encoder uses max-pooling layers that store pooling
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indices to be used in the corresponding decoder layers for
usampling. The decoder output is input to a multi-class soft-
max classifier, generating independent class probabilities for
each pixel [49]. Seg-Net uses stochastic gradient descent
(SGD) with backpropagation for optimization, and it typ-
ically employs a variant of cross-entropy loss to measure
dissimilarity between the predicted segmentation map and
ground truth labels [37].

In terms of advantages, the use of max-pooling indices
during downsampling in SegNet enables accurate breast
boundary delineation and tumor localization [17]. SegNet’s
ability to handle input images of various sizes is particularly
beneficial for medical images with different resolutions and
aspect ratios. However, when it comes to breast tumor seg-
mentation in 2D slices, SegNet did not yield efficient results
compared to U-Net [17]. This was attributed to its exclusive
reliance on saved pooling indices during convolution. SegNet
primarily focuses on local spatial details and may not fully
capture the broader contextual information [53].

2) FuseNet

FuseNet follows an encoder-decoder architecture, where the
encoder is a two-branch network that simultaneously extract
features from complementary depth input and fuse them into
main feature maps [39], with encoder parameters fine-tuned
from the VGG 16-layer model. Fig. 7 (b) shows the related
architecture. Li et al. [19] used T1C MRI as main modality
as it highlights breast masses as well as irrelevant regions,
and T2W as auxiliary modality as it helps to distinguish
true breast masses from all the enhanced areas. In terms
of advantages, FuseNet leverages information from multiple
MRI sequences, thus enhancing the segmentation accuracy
by capturing complementary features from different imaging
modalities.

3) U-NET

The U-Net architecture, as shown in Fig. 8 (a), comprises a
contracting pathway (encoder) to capture contextual informa-
tion and an expanding pathway (decoder) that symmetrically
aids precise localization [29]. U-Net incorporates skip
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connections between encoder and decoder to allow the model
to capture both local and global contextual information.

In terms of advantages, U-Net is able to utilize complete
images of any size, eliminating the need for patch division
[16]. The architecture has demonstrated its ability to maintain
resilience and robustness, even with a relatively limited
amount of training data [35]. U-Net’s design enables the
combination of high-level information from the encoder with
detailed spatial information from the decoder. On the other
hand, U-Net exhibited limitations in accurately segmenting
FGT due to challenges like fuzzy edges between FGT
and neighbouring organs, false-positive segmentation of
fat and pectoral muscle area in cases of low breast density,
and under-segmentation in cases of high breast density
[18]. When training data is limited, careful regularization
techniques, such as dropout or data augmentation, should be
employed to mitigate the risk of overfitting [54].

4) GAN

GANs have a generator and discriminator trained adver-
sarially until convergence, as shown in Fig. 8 (b). The
generator produces realistic segmentations, and the discrimi-
nator distinguishes real from synthetic ones. GANs generate
realistic synthetic images, which can help in augmenting
limited training data. This is particularly beneficial in
cases where annotated data is scarce. Therefore, GANs can
enable unsupervised learning, meaning they can learn from
unannotated images. On the other hand, GANSs for breast MRI
segmentation may be sensitive to variations in breast shapes,
sizes, and imaging protocols [18].

V. KEY GAPS AND CURRENT CHALLENGES

A. WELL-ANNOTATED BIG DATA

Well-annotated big data is crucial for training accurate seg-
mentation models; however, the manual annotation process is
time-intensive and requires expert knowledge. Key gap is the
lack of large public datasets with comprehensive and accurate
ground truths for training new deep learning models in
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breast MRI segmentation. Efforts initiated to bridge this gap
include providing datasets on the ““Cancer Imaging Archive”
webpage, but further work is needed. Alternatively, there
is growing interest in developing segmentation techniques
independent of annotated data. Maicas et al. [55] combined
globally optimal inference in a continuous space with deep
learning. Other efforts in this direction can be found in the
works of Meng et al. [56] and Parekh et al. [4].

Challenges in developing large public datasets with com-
prehensive and accurate annotations include inter-observer
annotation variability and 3D annotation difficulty. Vari-
ability among radiologists in segmenting regions of interest
in breast MRIs can introduce uncertainty in the ground
truth annotations used for model training. For this reason,
for instance, 266 malignant breasts were segmented by
four radiologists, used for threshold tuning and testing by
Hirsch et al. [25]. Regarding 3D annotations, neighboring
slices often have inter-dependencies. Ensuring consistency
and smooth transitions between slices during annotations
is challenging for accurate segmentation. That is why, for
example, Li et al. [19] labeled only the central slices having
the largest cross-sections for masses.

B. INTER/INTRA VARIATIONS

Breast MRIs may significantly vary in shape, size, position,
image appearance due to diverse imaging protocols, and
patient characteristics, such as breast morphology, race,
ethnicity, and disease features [56]. Consequently, there is
a demand for robust deep learning models trained on large
diverse datasets to handle such variabilities. To cite a few
efforts, Hirsch et al. [25] utilized a large dataset featuring
challenging cases involving small cancers and patients with
breast implants. Dalmig et al. [16] employed a very small
dataset but comprising different MRI acquisition protocols
and breast types. Due to such variability, applying pre-trained
deep learning models to diverse datasets is challenging and
may require further generalization techniques.
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C. GENERALIZATION TECHNIQUES

Generalizing deep learning models trained on a specific
dataset to new, large, and diverse datasets is challenging
[46]. Many researchers have tried to automate breast MRI
segmentation by developing various DL techniques mostly
trained on private small databases. Nonetheless, their appli-
cation can be limited to their inputs, and model generalization
remains a gap. Some researchers excludes patients with breast
implants [43], or some use only 2D slices as inputs to learning
algorithm [17]. Improving the generalization capabilities of
algorithms through transfer learning [57], domain adaptation
[58], or cross-dataset validation [59] is essential for clinical
applications.

Various MRI modalities have been incorporated into
the training algorithms, as single-modal images are unable
to capture the complete tumor morphology without com-
plementary information in other modalities. Single-modal
segmentation of breast tumors leads to inaccurate tumor
boundaries and false positive/negative candidates. In addi-
tion, 3D models are preferred over 2D models to capture
the intra- and inter-slice features of the tumor [23]. The
availability of large annotated datasets is crucial to improve
the performance and generalization of models.

D. COMPLEX ANATOMY

The breast has complex anatomical structures such as tissue
types, blood vessels, ducts and lesions. Accurate segmen-
tation of these structures remains a challenge, especially in
the presence of overlapping or unclear boundaries [43]. For
instance, U-Net segmented th breast fat and the pectoral
muscle as FGT in low-density breasts, while it was unable
to segment the entire FGT region in high-density breasts
[18]. Furthermore, breast MRI segmentation suffers from
class imbalance, where the number of pixels belonging
to the lesion or anomaly is significantly less than those
pixels belonging to the non-target class. This can affect the
model’s ability to learn and generalize effectively. Therefore,
advanced architectures for managing anatomical structures
remains a gap that requires the integration of multiscale and
contextual information.
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VI. CONCLUSION AND FUTURE DIRECTIONS

The current review highlights latest trends in deep learning
for automating breast MRI segmentation. Models based on
U-Net, Seg-Net, FuseNet and generative adversarial network
(GAN) architectures have been of interest to researchers
for this purpose. The segmentation task forms the basis for
further analysis of breast MRI including classification and
diagnosis. Further future research is noteworthy to fill the
gaps in some areas.

Many efforts have been aimed at automating breast MRI
segmentation using various deep learning techniques mostly
on private limited datasets. In order to indicate their efficiency
for clinical applications, the performance of such models
should also be investigated on diverse datasets. Despite
some initiated efforts, large, diverse and well-annotated
public breast MRI datasets are lacking in the literature. The
algorithms trained and evaluated on multimodal compared
to single-modal input have proven to be more accurate in
differentiating between various normal tissues and lesions.
Considering this fact, training on a large-scale dataset
requires powerful computing equipment and long computing
time. Efforts to reduce the computational complexity are
much needed.

Various 2D and 3D CNNs have been developed using
different architectures, with U-Net being the most common.
By integrating different types of learning frameworks such
as hierarchical, ensemble, or fused learning, more efficient
frameworks for automating breast MRI segmentation have
been introduced. Improving the performance of the proposed
deep learning models and generalizing them to high-quality
annotated datasets in breast MRI is very important for
medical clinics. Open source codes can contribute to new
algorithmic developments based on previous research by
reproducing prior findings. Transfer learning allows models
trained on a well-annotated dataset to generalize well to
new sparsely annotated datasets of different feature space.
Domain adaptation is another related technique capable of
handling variability in imaging protocols and populations.
Cross-validation can also help train unseen data and prevent
overfitting. There is a lack of using such techniques in
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breast MRI segmentation. Addressing the challenges requires
collaborative efforts among researchers and medical experts
to develop robust and reliable deep learning models.

Clinical implications of research findings are important.
Since deep learning is considered complex and requires
knowledge in computational engineering, it is imperative to
develop simplified methods to enable interaction between
models and clinicians.
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