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ABSTRACT With increasing penetration of wind power, accurate prediction of wind speed is essential
for planning and operation of power grids. In this paper, a novel two-dimensional (2D) convolutional
neural network (CNN)-based wind speed forecasting technique is proposed for an hour-ahead wind speed
prediction. The wind speed at a specific time can be predicted in less than a few milliseconds using the
proposed approach and meteorological data from a few hours earlier. The input feature selection, data
preprocessing, and model evaluation of the proposed approach are presented; the efficiency of 2D CNN
is compared to that of one-dimensional (1D) CNN, Long Short-Term Memory (LSTM), and Multi-Layer
Perceptron (MLP). A three-year historical wind speed dataset from 2020 to 2022 collected at Saskatoon
International Airport in Saskatoon, Saskatchewan, Canada, is used in this study. It is found that 2D CNN
shows superior performance in addressing regression and prediction challenges. Experimental results verify
that the proposed 2D CNN-based forecasting techniques can provide accurate wind speed prediction. Using
deep learning for wind speed prediction can reduce costs while boost energy output and contribute to
sustainable and green energy development in Saskatchewan and beyond.

INDEX TERMS Feature selection, meteorological data, short-term prediction, two-dimensional convolu-
tional neural networks, wind speed forecasting.

I. INTRODUCTION

Wind power is increasingly integrated into power grids,
and leads to significant challenges to planning and oper-
ation of power grids. Energy production of wind farms
can be improved and maintenance costs can be reduced
by analyzing wind patterns and accurately predicting wind
speeds [1]. Wind power generation has been growing
annually, according to the International Renewable Energy
Agency (IRENA) [2], the total installed wind power gen-
eration capacity in 2021 was 733 GW worldwide, a 274%
increase compared to 196 GW in 2011. Onshore wind farms
are the most developed and widely used globally, while
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offshore wind farms are still in their early stages due to
technical difficulties and cost constraints [3].

Wind speed prediction methods can be categorized accord-
ing to their prediction horizons as follows: very short-term,
short-term, medium-term, long-term, and very long-term
prediction. Very short-term prediction is defined as the pre-
diction within a few seconds to 30 minutes, the short-term
prediction is from 30 minutes to 6 hours, the medium-term
prediction is between 6 and 24 hours, the long-term prediction
is between 24 to 72 hours, and the very long-time prediction
is 72 hours or longer [4], [5]. In this paper, we focus on an
hour-ahead short-term wind speed forecasting.

Wind speed forecasting can also be categorized as phys-
ical and statistical approaches [6]. The physical approach
relies on numerical weather prediction (NWP) techniques
through weather forecast data, such as temperature, pressure,
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surface roughness, and obstacles [7]; it requires accurate
input data and is computationally intensive, so is less suitable
for real-time wind speed forecasting [6]. Statistical time
series models are more suitable for short-term wind speed
forecasting using historical data and statistical equations for
data analysis [8].

Wind speed forecasting has been conducted using linear
models, including the Kalman filter [9], moving average
(MA) [10], exponential smoothing (ES) [11], locally
weighted regression (LWR) [12], autoregressive moving
average (ARMA) [13], and autoregressive integrated mov-
ing average (ARIMA) and the hybrid techniques [14], [15].
However, these models are usually static without considering
environmental factors.

Due to recent advancements in machine learning tech-
niques, wind speed prediction using machine learning and
deep learning has attracted significant research interest.
Machine learning techniques define relationships between
wind speed and environmental factors including temperature,
humidity and atmospheric pressure in wind speed prediction.
Through feature extraction and pattern recognition, wind
speed prediction can be adjusted using new data with signif-
icantly improved accuracy and reliability.

Commonly used machine learning algorithms for wind
speed prediction include Artificial Neural Networks (ANNSs),
Support Vector Regression (SVR), and Random Forests etc.
ANNSs and the Multi-Layer Perceptron (MLP) models can
learn complex relationships between input variables and the
output [16], [17]. SVR aims to find a hyperplane that can
maximize the margin between actual and forecasted values
[18], [19]. Deep learning techniques, such as Convolutional
Neural Networks (CNNs) [20], Long Short-Term Memory
(LSTM) networks [21], and Generative Adversarial Net-
works (GANS), are very useful for dealing with complex and
large datasets [22]. Non-linear models have been proposed
for wind speed prediction, such as a non-linear autoregres-
sive model developed in [23] to forecast day-ahead mean
hourly wind speed using a general regression neural network
to characterize non-linear patterns in datasets and improve
prediction accuracy.

2D CNN is a deep learning technique. TABLE 1 highlights
the distinctive features and advantages of 2D CNN in compar-
ison to other machine learning and deep learning techniques.
Although 2D CNN offers unique features, such as spatial
information extraction, temporal feature learning, automatic
feature extraction, hierarchical learning, transfer learning,
and pre-training, currently, there is very limited research
exploring 2D CNN applications in wind speed prediction.
In this paper, we aim to develop a novel 2D CNN-based
accurate wind speed forecasting technique using three-year
historical wind speed data recorded from 2020 to 2022 at
Saskatoon International Airport in Saskatoon, Canada.

The main contributions of this paper include

1) A novel 2D CNN-based wind speed forecasting tech-
nique is proposed for an hour-ahead wind speed
prediction.
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2) Temporal Context Capture: By taking into account the
weather data from a small number of previous hours,
the 2D CNN effectively captures the temporal context
and dependencies in wind speed, which leads to more
accurate predictions as the model learns patterns and
trends over time.

3) Spatial Feature Extraction: The 2D CNN efficiently
extracts spatial features from the multidimensional
weather data, and captures complex relationships
between meteorological variables and wind speed. This
overcomes the limitations of traditional techniques,
which may struggle to identify such associations.

4) Automatic Feature Learning: The 2D CNN learns rel-
evant features directly from the raw data, eliminating
the need for manual feature engineering. This improves
wind speed forecasts by leveraging the mode’s ability
to automatically learn discriminative features.

5) Nonlinear Relationships: The 2D CNN captures com-
plex nonlinear relationships between weather variables
and wind speed. By modeling intricate dependencies,
the model uncovers patterns that may not be apparent
with linear models or shallow machine learning algo-
rithms, leading to enhanced forecasting accuracy.

The paper is arranged as follows: in Section II, the novel
2D CNN-based an hour ahead wind speed prediction method
is proposed and its implementation procedure is explained;
in Section III, historical wind speed datasets used in this
study are discussed; in Section IV, the principles of 2D CNN
and other four deep learning algorithms used for compari-
son are briefly introduced; the data preprocessing method,
and the system training procedure and results analysis are
provided in Sections V and VI; in Section VII, the pro-
posed 2D CNN-based method is compared with other four
deep learning-based wind speed forecasting; conclusions are
drawn in Section VIII.

Il. THE PROPOSED METHOD

In this paper, a novel 2D CNN-based wind speed forecasting
method is proposed using historical wind speed along with
other meteorological data. The 2D CNN model is pre-trained
offline using a large dataset to learn complex patterns and
extract informative features. Once trained, the model can
be used online for real-time wind speed forecasting appli-
cations, efficiently scan a small number of weather data in
past hours to generate accurate wind speed predictions for
upcoming hours. This approach offers a fast and efficient
decision-making process that can optimize the operation of
wind energy systems, improve energy efficiency, and reduce
operating costs. As shown in Fig. 1, the proposed method can
be implemented in the following five steps:

Step 1: Define the problem and set up the environment.
This step involves defining the problem of wind speed fore-
casting with specific objectives, input and output data, and
performance metrics.

Step 2: Data collection and preprocessing. This step
involves collecting and preprocessing relevant data for wind
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TABLE 1. Unique features and advantages of 2d cnn compared to other machine learning and deep learning methods.

Property 2D CNN ANN SVR MLP
.. MLP might require
. . . SVR does not explicit], . .
Spatial 2D CNN can capture spatial ANN might struggle to consi d;)re: [::i';xp ety additional preprocessing or
Information dependencies in wind speed data extract spatial information p . feature engineering to
. . L . . dependencies in the data . .
Extraction effectively by treating it as an image  effectively [24] [25] incorporate spatial
information [26]
2D CNN can capture temporal SVR can capture some MLPs are primarily designed
Temporal features by incorporating a time ANN can capture temporal temporal patterns, but it for feed-forward tasks and
Featlﬁ’re dimension into the input data and patterns but may require primarily focuses on are not naturally suited for
Learnin effectively learning and exploiting additional design choices or modeling the statistical capturing temporal
g temporal patterns in wind speed time  preprocessing [24] relationship between input dependencies in sequential
series [27] and output variables [28] data [26]
o L . ANN may require manual
. 2D CNNs can automatically learn feature engineering, which SVR relies on handcrafted MLP may require manual
Automatic relevant spatial and temporal features . . . .
. can be time-consuming and features or kernels for feature engineering to
Feature from raw wind speed data, may not capture all the capturing relevant patterns identify and extract
Extraction eliminating the need for explicit Y P P g p y

feature engineering [29]

relevant patterns in the wind
speed data [30]

[31]

informative features [26]

Hierarchical

2D CNN employ multiple layers
with hierarchical feature
representations, allowing them to

ANN can capture
hierarchical relationships but
may require additional

SVR does not inherently
possess a hierarchical

MLPs are not inherently
designed for hierarchical
learning, as they lack the

Learning capture complex spatial and temporal ~ design choices to model . explicit mechanisms to
R .. R . . learning structure [30] . .
relationships in the wind speed data complex relationships capture hierarchical
[32] effectively [33] relationships in data [30]
2D C.NN can leverage. transfer . ANN can benefit from MLP can benefit from
learning and pre-training techniques, transfer learning and pre- SVR does not typicall transfer learning and pre-
Transfer allowing them to capture general g P ypieaty & P

Learning and
Pre-training

spatial and temporal patterns from
large datasets and fine-tune the
model on specific wind speed data
(32]

training, but it may require
more effort to adapt the pre-
trained models to wind speed
forecasting [33]

incorporate transfer learning
or pre-training techniques
(30]

training, but it may require
more effort to adapt the pre-
trained models to wind speed
forecasting [30]

speed forecasting. The meteorological data, such as wind
speed, temperature and pressure are collected and prepro-
cessed to create appropriate input formats for the 2D CNN
model.

Step 3: Model construction. A 2D CNN model is con-
structed to predict wind speed. The model architecture
is designed to extract relevant features from input data.
Different types of convolutional layers, pooling layers, and
activation functions can be used to achieve this.

Step 4: Model training, validation and testing. The CNN
model is trained and validated using a large dataset of pre-
processed data. The training process involves optimizing the
model’s parameters based on the mean squared error loss
function. The validation process is used to test the accuracy of
the model and tune its parameters to minimize errors. Testing
is performed using unseen historical data or real-time data
from sensors and meteorological stations. The model can be
evaluated by comparing predicted wind speeds to actual wind
speeds, and error metrics, such as the mean absolute error and
the root mean square error.

Step 5: Continuous monitoring and updating of the model.
The CNN model should be continuously updated to ensure
its accuracy in wind speed forecasting by collecting new data,
retraining the model periodically, and adjusting its parameters
as necessary.
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IIl. HISTORICAL WIND SPEED DATASET

The data used in this paper are publically available at the
Government of Canada website [34], and we picked the data
measurement location as Saskatoon International Airport in
Saskatoon, Canada for the data download. Several years of
historical meteorological data from 2020 to 2023 recorded at
Saskatoon International Airport in [34] serve as the datasets
in this study. Saskatoon International Airport is located at the
elevation of 504.10 m, the latitude of 52°10°15.000” N, and
the longitude of 106°42°00.000” W [34]. The wind direction
and wind speed were monitored ten meters above the ground.

The datasets include hourly data for 24 hours per day and

365 days per year with the following seven major parameters,
which serve as features for the wind speed prediction (the
measurement time refers to the Local Standard Time (LST)):

1) Temperature: The air temperature, expressed in degrees
Celsius (°C).

2) Dew Point Temperature: The temperature at which
cooling would cause the air to become saturated with
liquid water, measured in degrees Celsius (°C).

3) Relative Humidity: The amount of water vapor in the
air relative to the maximum amount it can store at that
given temperature, measured in %.

4) Wind Direction: The real or geographic direction of the
wind, measured in tens of degrees.
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FIGURE 1. The flow chart of the proposed 2D CNN-based wind speed
forecasting method.

5) Visibility: The distance at which objects of an appro-
priate size may be seen, recognized, measured in
kilometers (km).

6) Station Pressure: The station elevation’s atmospheric
pressure, measured in kilopascals (kPa).

7) Wind Speed: The speed of air movement, measured in
kilometers per hour (km/h).

Each of the yearly datasets in 2020, 2021 and 2022 has
8,760 rows of data. The developed models are eventually
tested using the first three months (January to March) data
in the 2023 dataset. Fig. 2 shows physical features of the data
in January and February 2022 with 1,416 measurement hours
(the horizontal axis).

Fig. 3 illustrates the correlation between meteorological
measurements. According to this heatmap correlation graph,
temperature has a positive correlation of 0.1 with wind speed,
indicating that as the temperature increases, there is a slight
tendency for wind speed to increase. This can be attributed to
that higher temperatures often lead to increased atmospheric
instability, and thus, result in stronger air movements and
wind speeds. Dew point temperature shows a very weak
positive correlation of 0.04 with wind speed, which reflects
the moisture content in the air, and may have a minor
influence on wind speed. Relative humidity has a negative
correlation of —0.18 with wind speed, suggesting that higher
relative humidity levels are associated with slightly lower
wind speeds. This is because higher humidity often indicates
a more stable atmospheric condition, which can limit the
intensity of wind patterns. Visibility shows a negative corre-
lation of —0.073 with wind speed, implying that the reduced
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FIGURE 2. Physical parameter variations for the data measured in
January and February, 2022.

visibility may be associated with slightly higher wind speeds.
This can be attributed to fog or heavy precipitation, which
often occur in turbulent conditions and can lead to increased
wind speeds. Station pressure demonstrates a moderate neg-
ative correlation of —0.25 with wind speed. Lower pressure
systems are often accompanied by stronger wind patterns due
to variations in atmospheric circulation, resulting in increased
wind speeds [34].
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FIGURE 3. The correlation values between weather observations.

Despite weak individual correlations between the selected
parameters and wind speed, the utilization of these param-
eters in wind speed forecasting through a 2D CNN offers
advantages, including multivariate analysis and exploration
of complex relationships. Incorporating multiple parame-
ters enables the model to capture the combined effects and
potential interactions among these variables. While their
individual correlations may be weak, the collective informa-
tion they provide can offer valuable insights for wind speed
prediction.

2D CNN can capture nonlinear relationships and patterns
that may not be visible through simple correlation analysis.
It can effectively learn the complex dependencies between
the input parameters and wind speed, leading to improved
forecast accuracy.

Fig. 4 illustrates the pair-plot graph, which provides a
comprehensive visualization of the relationship between the
parameters (temperature, dew point temperature, relative
humidity, wind direction, visibility, station pressure) and
wind speed. The diagonal section of the graph presents the
distribution of each parameter individually, allowing for an
in-depth analysis of their frequency distributions and the
identification of noteworthy patterns or outliers. Notably, the
majority of recorded wind speeds in the dataset are concen-
trated around 18 km/h; while the station pressure falls mostly
within the range of 96 kPa.

In the off-diagonal section of the graph, scatter plots
portray the pairwise relationships between each parameter
and wind speed. These scatter plots enable the detection of
potential correlations or dependencies among the variables.
By closely examining the scatter plots, it becomes possi-
ble to recognize patterns indicative of linear or nonlinear
relationships, thereby revealing the strength and direc-
tion of the connections between the parameters and wind
speed.
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FIGURE 4. The pair plot of the weather information which has the highest
correlation to wind speed.

IV. FUNDAMENTAL THEORY OF DEEP LEARNING
APPROACHES IN TIME SERIES PREDICTION

In this paper, a novel 2D CNN-based short-term wind speed
prediction method is proposed, which is further compared
with other four deep learning-based methods, 1D CNN,
LSTM, MLP, and Rough Autoencoder (RAE), for validation.
In this section, the principles of all five deep learning methods
are briefly introduced.

A. 2D CNN
2D CNN is a powerful deep learning algorithm that is widely
used in the image analysis and recognition tasks. It can also
be used for time series forecasting, such as stock prices or
weather data, by converting the time series data into a 2D
image format [35]. Generally, this conversion is achieved
through the sliding window technique, which generates a
sequence of two-dimensional images. Each image corre-
sponds to a slice of the time series data [36]. The generated
images can be either color or grayscale. For a color image,
it refers to a 3D tensor with three pixel values in each
coordinate, and the size of (width, height, 3); while for a
grayscale image, it refers to a 2D tensor with one pixel value
per position with the size of (width, height, 1). When creating
an image database from a time series dataset, it is common to
have just one value in each position. As a result, each image
is typically classified as either a 2D tensor or grayscale [37].
The image dataset is then used to train the system along with
its corresponding output labels. This enables the system to
predict the value of a future time step accurately.

A 2D CNN architecture typically consists of convolu-
tional layers, pooling layers, and fully connected layers.

VOLUME 11, 2023



M. Nazemi et al.: Novel 2D CNN-Based an Hour-Ahead Wind Speed Prediction Method

IEEE Access

The convolutional layers are responsible for extracting the
main features using a set of filters to identify relevant patterns
in the input data. The pooling layers then downsample the
feature maps generated by the convolutional layers, which
reduces computation and prevents overfitting. Finally, the
fully connected layers combine the extracted features to make
a prediction. There are numerous variations and modifica-
tions to this basic 2D CNN architecture that can be explored
depending on the particular study and data being processed.
An illustration of 2D CNN is shown in Fig. 5.

Convl

Convs Fully

Convolutional+ReLU B
Max Pooling @
Fully Connected @

FIGURE 5. A graphical representation of a 2D CNN architecture.

B. 1D CNN

1D CNN is often used to analyze time series/sequential data
and is suitable for classification, regression, and anomaly
detection due to its capability to automatically learn features
from raw data. The standard components of 1D CNN are the
input layer, convolutional layers, pooling layers, and fully
connected layers. The input layer receives the sequential data,
such as time series or text, prepares it for processing, and the
input data is slid over by a filter. Convolutional layers com-
pute the dot products at each point to extract local patterns or
features. Pooling layers summarize the data and downsample
the output of convolutional layers, and the output of pooling
layers is sent to the fully connected layers, which then turns
it into a final output for classification or regression predic-
tion [38]. Depending on the particular study and data being
processed, the architecture of 1D CNN and the layer count
may change. An illustration of 1D CNN is shown in Fig. 6.

k Features

Batch

Max Pooling
ConviD
Max Pooling
Flatten

Time (n samples)

Time series with n samples /

Full Output
and k features ully utpu

Connected Neuron

FIGURE 6. The graphical representation of a 1D CNN.
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C. LSTM
The LSTM is a type of Recurrent Neural Network (RNN) that
contains a memory cell within the hidden layer to manage
the memory information of the time series data. The memory
cell is governed by three gates: the forget gate, the input
gate, and the output gate. The forget gate determines how
much information from the previous time step should be
retained; the input gate controls how much information from
the current time step should be added to the memory cell;
and the output gate determines how much of the memory
cell’s current state should be propagated to the next layer in
the network. This gating mechanism enables the LSTM to
selectively retain or discard information from past time steps,
enabling it to remember long-term dependencies in the data.
Compared to traditional RNNs, the LSTM can overcome
the gradient disappearance issue, which hinders the network’s
ability to learn and remember long-term dependencies. The
utilization of the memory cell and gating mechanism in the
LSTM allows for the management of memory and forget-
ting of past and current information. The LSTM network’s
structure is shown in Fig. 7, which explains that the gates are
controlled by the sigmoid (o) function ranging from O to 1,
0 means that no information should pass through the gate,
and 1 indicates that all information should be permitted
to pass through the gate. To address the gradient disap-
pearance issue, the hyperbolic tangent function is used to
ensure that the network’s parameters are within a reasonable
range [39], [40].

Input Gate Output Gate

orge

Cell state from [\ Cell state to

timestamp=t-1 [T\ >% ar T i —t+1
Hidden state Hidden state output
input from for ti —te1

timestamp =t - 1

Input data
Timestamp = t

FIGURE 7. The schematic diagram of LSTM.

D. MLP

The MLP is a type of neural network, where the information
flows in one direction (the feedforward neural network) from
the input layer to the output layer through multiple layers of
interconnected neurons. Each neuron takes inputs from the
previous layer’s neurons and produces outputs that are sent
to the next layer’s neurons. The input layer receives the input
data, such as wind speed measurements, and the input data is
sent to hidden layers. The hidden layers process the input data
and produce the transformed output data that is more suitable
for the final output layer. The output layer generates the final
prediction, which in this case is the predicted wind speed. The
hidden layers of an MLP are responsible for learning complex
relationships between input features and output prediction.
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During the training process, the weights between the
neurons in each layer are adjusted by minimizing the differ-
ence between predicted and actual outputs. This process is
repeated iteratively until the error is minimized and the MLP
produces accurate predictions [41]. Fig. 8 provides a basic
visual representation of the MLP structure.

Input#l
Input#2
Input#3
Input#4
Hidden  Output
Input Layer Neuron

FIGURE 8. The MLP basic model.

E. ROUGH AUTOENCODER

The Rough Autoencoder (RAE) is a specialized neural net-
work variant tailored for handling uncertain data effectively
by combining the rough set theory with autoencoders, making
RAE very valuable for wind speed forecasting. The archi-
tecture of RAE includes an encoder-decoder structure with
a unique rough set layer for handling uncertain data pat-
terns. Training involves minimizing the reconstruction error
to ensure RAE represents and reconstructs uncertain data
efficiently [42].

RAE excels with low-quality data, which are common
in wind speed forecasting, as RAE can robustly handle
noises and incompleteness in the data. It automates features
selection, which eliminates the need for the manual feature
engineering. In wind speed forecasting, RAE can preprocess
uncertain meteorological data, enhance the model accuracy
and mitigate data imperfections, leading to advanced data
handling for more precise predictions [43].

V. DATA PREPROCESSING AND HYPERPARAMETERS

In this section, the essential data preprocessing steps are
described, ensuring data consistency and an optimal format
for our 2D CNN model. This process involves feature nor-
malization, data transformation into 2D images, resizing to an
ideal image size, and alignment of input and output vectors.
These steps establish the groundwork for accurate wind speed
predictions.

A. PERFORMANCE EVALUATION INDICES
There is a range of factors to take into account while assessing
the performance of a regression model. The commonly used

regression model evaluation metrics include Mean Abso-
lute Error (MAE) and Root Mean Squared Error (RMSE),
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they can be calculated as follows [6] and [38]:

SV Ly @) =50
N

N . e
o / Zi b0 =50) o

where N is the number of data points, y(i) is the observed
wind speed data at the i sample of the time vector, and (i)
is the forecasted wind speed value. A lower value of these
indices indicates a better model. They provide a thorough
evaluation of the effectiveness of a regression model.

MAE = 1

B. STANDARDIZATION AND IMAGE DATASET GENERATION
To train the proposed model, a portion of the input data vector
(X) and the output true labels vector (y) (the training dataset)
must be provided to 2D CNN based on the system standard
feed. The following three stages must be implemented to
accomplish this task:

Stage 1: Since the features differ in the sign and range of
the values within the dataset, these features must be firstly
normalized to standardize all the data input for 2D CNN.
In the context of convolutional operation, the recommended
number format is the float values between —1 and 1, which
is the best number format that internal layers of 2D CNN
can recognize. To accomplish this, a normalization function,
known as ‘“‘maxabs_scale”, is used from the preprocessing
class in the Python Scikit-learn package to normalize the
data. “maxabs_scale” is a scaling technique by dividing each
feature vector by its maximum absolute value, which ensures
their values are within the range between —1 and 1:

Xscaled = X/max(abs X)) 3)

where X is the original feature vector, and Xcaed 1 the scaled
feature vector. This technique is particularly useful for sparse
matrices by preserving its sparsity, and it is also robust to
outliers in the data.

Stage 2: Using a 2D CNN, the wind speed at a particu-
lar date and hour can be estimated by analyzing the seven
meteorological data (the temperature, dew point temperature,
relative humidity, visibility, station pressure, wind direction,
and wind speed) from an arbitrary number of data measured at
previous hours. The preferred image size for 2D CNN would
be identical in width and length. Since seven meteorological
data were measured hourly, the most optimal image size
would be 7 x 7, i.e., each sliding window sweeps seven
lines of the dataset containing seven normalized features.
Therefore, we can forecast the wind speed at the 8" hour by
analyzing the data measured at the previous seven hours.

The sliding window moves down one line at a time, scan-
ning all the data in the dataset to create new images. The
sliding window continues to move forward until it reaches one
line left to the end line of the dataset (as there is no further data
available for estimation beyond the last point). As a result,
there will be a total of 8,753 grayscale images generated from
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the existing time series database, and the final X shape will
be in a cubic image dataset format of (8,753, 7, 7, 1).

The optimization of 2D convolutional operations is facili-
tated by the image dataset’s expansion. Although the image
dimension selection seems somewhat arbitrary, an extreme
enlargement may cause heavy processing burden. Larger
images can capture intricate details, and enable the detection
of complex, high-level features by 2D CNN filters. The infor-
mation loss may occur when using smaller images, particu-
larly for complex time series data. Filter kernels and pooling
operations can systematically reduce the feature image size
by half through each layer. Therefore, using smaller images
requires fewer convolution layers with constrained filters and
frequent pooling, reduces forecast accuracy, and increases
risks of overfitting and regression failures. These concerns
can be mitigated by using larger images, but excessively
large images donot necessarily guarantee superior regression
and prediction accuracy, and can substantially increase com-
putational burdens. Caution should be exercised to achieve
a careful balance between image dimensions and compu-
tational resources. In this paper, an optimal image size of
64 x 64 has been chosen, which is further extended by the
conventional interpolation technique, ““bilinear”.

Ultimately, in this paper, the final dimension of the input
image dataset for the 2D CNN training is chosen to be (8,753,
64, 64, 1). Fig. 9 shows a generated grayscale image by
sliding window technique from the time series data in this
study.

FIGURE 9. A grayscale image generated from the time series data.

Stage 3: In the proposed method, the estimation of the
eighth hour wind speed is based on utilizing the first seven
samples of the dataset (representing the weather information
from the initial seven hours). As a result, the output vector (y)
for the training sequence should begin with the eighth sample
of actual wind speed data and continue to the end, so the y
vector is 8, 753 x 1 in size. This vector is considered the true
label for the regression model. Thus, the length of the feature
vector matches the length of the output vector.

C. 2D CNN HYPERPARAMETERS TUNING
Since the 2D CNN algorithm processes images and requires

a larger processing volume of CPU, a batch size of 50 and
the epoch number of 100 are chosen. TABLE 2 displays the
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TABLE 2. The layers architecture of the proposed 2D CNN.

Layer (Type) Output Shape No. of Parameters
Conv2D (64,64,16) 160
MaxPooling2D (32,32,16) 0
Conv2D (32,32,32) 4640
MaxPooling2D (16,16,32) 0
Conv2D (16,16,64) 18496
MaxPooling2D (8,8,64) 0
Conv2D (8,8,128) 73856
MaxPooling2D (4,4,128) 0
Dropout (4,4,286) 0
Flatten (2048) 0
Dense (32) 6558
Dense (1) 33
Total Parameters 162,753

Trainable parameters 162,753

topology for 2D CNN layers to predict an hour-ahead wind
speed based on TensorFlow’s suggestion and trial-and-error.

To train the system. “Adam” is the most effective opti-
mizer algorithm for 2D CNN, which is a stochastic gradient
descent technique based on the adaptive estimate of the
first-order and second-order moments. This approach works
well for issues with plenty of data and parameters as it is
computationally efficient, requires minimal memory and is
invariant to the diagonal rescaling of gradients. The learning
rate of the Adam optimizer is set to 0.001 [44]. In this
paper, the CNN architecture is enhanced by increasing the
filter count from 16 to 64 in each convolutional layer with
a 3 x 3 kernel size. Various pooling window sizes, notably
2 x 2, were tested to optimize the feature map downsiz-
ing. Dropout layers are introduced with a tuned dropout
rate of 0.2 to prevent overfitting. “ReLLU” and its variants
serve as activation functions for hidden layers, introducing
crucial non-linearity. These adjustments aim to improve the
network’s ability to capture intricate spatial patterns while
preventing overfitting, resulting in a more robust model
for wind speed prediction using meteorological data. MAE
and RMSE, which compute the mean absolute error and
the root mean squared error between the true y and pre-
dicted y, respectively, are specified as the metrics functions
in (1) and (2). Generally, 80% of an entire shuffled X and y
vector is used as the training dataset (X_train and y_train),
and the rest 20% is used as the validation dataset (X_val and
y_val).

Algorithm 1 provides a clear illustration of the proce-
dure, starting from importing the meteorological data in a
spreadsheet format into the coding platform, to preparing the
training and validation datasets for feeding into the 2D CNN
model.

VI. SYSTEM TRAINING AND RESULT ANALYSIS

The proposed 2D CNN-based wind speed prediction tech-
nique is trained using X_train and y_train in 2020, 2021, and
2022 datasets, using the hyperparameters mentioned above,
and its performance is measured using X_val and y_val for
the same years. Fig. 10 provides a graphical representation on
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Algorithm 1 Training and Validation Dataset Generation
Input:  Dataset of hourly climate recorded in a
spreadsheet format
Output: Training and validation dataset
1: df = convert to data frame (Input)
2: (row = n, column = k) = size (df)
3: x = df [Temp, Dew Point Temp, Rel Hum, Wind
Dir, Visibility, Stn Pres, Wind Speed]

4: X = maxabs_scale (X [row = 1 to n-1, column = 1
to k])

5: shape (X) = (8759, 7)

6: y = df [Wind Speed] [row = 8 to n]

7. shape (y) = (8753, 1)

8: sliding window shape = (7, 7)

9: initial 3D matrix dataset = zeros vector (8753, 7, 7)

10: fori=1toi=8753

11: k = sliding window scans x[row =itoi+ 7,

column = 7]
12: initial 3D matrix dataset [i] = k
13: Endfor

14: X = initial 3D matrix dataset

15: Shape (X) = (8753, 7, 7)

16: For grayscale image dataset, the dimension of X
should be expanded:
expand X dimension to (8753,7,7, 1)

17: For preparing image dataset to fed 2D CNN the
image size should be stretched by the nearest or
bilinear technique:
resize X shape to (8753, 64, 64, 1)

18: Final X shape = (8753, 64, 64, 1)

19: Final y shape = (8753, 1)

20: This condition should be always met:
if length (X) == length (y)

21: continue

22: else print (verify the dimensions of the initial
vectors)

23: (X_train, y_train), (X_val, y_val)
= train_test_split function from scikit-learn
(X, y, test size = 20%, shuffle = True)

24: training dataset = tensor integrating (X_train,
y_train)
25: validation dataset = tensor integrating

(X_val, y_val)

26: compile 2D CNN model (optimizer = Adam, loss
= MSE, metrics = [MAE, RMES])

27: Ready for training and validation of 2D CNN
model

how training and validation metrics evolve with the increas-
ing number of epochs for the 2022 dataset. Additionally,
TABLE 3 offers insights into the training time of the 2D CNN
and presents performance evaluation indices for the trained
model. Notably, the model achieves an average MAE of
approximately 3.66 km/h on the validation dataset over a span
of three years. This MAE is relatively low, particularly when
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FIGURE 10. Training and validation metrics (MAE and RMSE) against
epochs for the 2022 dataset.

TABLE 3. Performance evaluation of the trained system.

Dataset ~ Training Time (s)  Validation MAE  Validation RMSE
2020 302.671 3.619 4.696
2021 316.162 3.836 4.986
2022 298.565 3.520 4.633

contrasted with the average wind speed observed throughout
the year.

Fig. 11 shows the performance of the proposed regression
model through a hybrid graph, including a scatter plot of
the measured wind speeds vs. the forecasted values, and
a histogram plot of true labels and predictions, integrated
with a Kernel Density Estimate (KDE) graph for three years.
According to the performance evaluation of the trained model
and the distribution of the predicted values, the best fit
is found in 2022 with minimal outliers, unusual data, and
nonnormality.

The trained model based on the 2022 dataset can be used to
predict an hour-ahead wind speed for the first three months of
2023. The performance of the model is evaluated using MAE
and RMSE, which are calculated as 3.314 and 4.296, respec-
tively. The predicted values are compared to the measured
values for January, February, and March separately, and the
results are presented in Fig. 12. The comparison shows a good
match between the forecasted and measured data, indicating
that the model is performing well.

VIil. COMPARING WITH OTHER DEEP LEARNING
METHODS

The datasets collected at Saskatoon International Airport
have both spatial and temporal information. The spatial infor-
mation includes the airport location, wind sensors, and the
topography, elevation, and surrounding land use. The tem-
poral information includes the time of day, day of the week,
and month of the year [45], [46]. 2D CNN has strength in
capturing spatial features; LSTM and 1D CNN are better
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FIGURE 11. Scatter and histogram plots of the measured and predicted wind speed for the 2020, 2021, and 2022 datasets.
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FIGURE 12. Wind speed prediction for the first three months of 2023
based on the 2022 regression model.

suited to capture temporal dependencies; RAE excels when
handling the data with uncertainties and enhancing the fore-
cast accuracy with noisy or incomplete data; while MLP is a
simpler approach, it may not perform as well as other methods
for complex datasets. Various algorithms should be assessed
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TABLE 4. Performance assessment of the proposed 2D CNN-based
approach vs. 1D CNN, LSTM, MLP, and RAE techniques using the
2022 dataset.

Method Training Time (s)  Validation MAE  Validation RMSE
1D CNN 78.959 4.262 4.696
LSTM 204.389 3.626 4.734
MLP 51.219 3.871 4.809
RAE 83.092 3.601 4.923
2D CNN 298.565 3.520 4.633

for the given datasets, and the one yields the best results
should be chosen [45].

In this section, a comparison is made between the proposed
2D CNN-based method and the methods using the four deep
learning techniques, 1D CNN, LSTM, MLP, and RAE, and
assessed through the metrics, MAE and RMSE, using a por-
tion of the 2022 dataset, as shown in Table 4 (the wind speed
is measured in km/h).

The 2D CNN model exhibits the strongest perfor-
mance, with the lowest MAE of 3.520 km/h and RMSE
of 4.633 km/h, among the five deep learning methods,
which indicates that the proposed 2D CNN-based method
provides superior accuracy in the short-term wind speed
prediction.

VIil. CONCLUSION

Accurate wind speed forecasting is essential to ensure proper
planning and operation of wind farms and power grids with
high wind power penetration. In this paper, a novel short-term
2D CNN-based wind speed prediction method is proposed.
Several years of historical wind speed and other meteorolog-
ical data from 2020 to 2023 measured in Saskatoon, Canada
are used to train, validate and test the proposed model. With
an average MAE of 3.66 km/h, the trained 2D CNN model can
predict one hour-ahead wind speed in less than a few millisec-
onds. By comparing the proposed 2D CNN-based method
with four deep learning methods, 1D CNN, LSTM, MLP, and
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RAE, the proposed method shows superior performance in
short-term wind speed prediction. It can improve economic
and reliable operations of wind farms in Saskatchewan and
beyond.
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