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ABSTRACT Aggregation-enabled wireless local area network (WLAN) technologies such as IEEE 802.11n
and 802.11ac are deployed densely for wireless access to the high-speed Internet. Conventional approaches
for performance modeling of 802.11n/ac assume fully saturated traffic, where stations always have enough
packets to transmit aggregate frames of full or fixed aggregation size. However, such an assumption is
unrealistic, since stations usually transmit aggregate frames with different aggregation sizes depending
on several dynamic factors, such as offered traffic load, number of active stations, transmission rate, and
random backoff time. In this work, we propose a new performance model of aggregation-enabled 802.11n/ac
WLANs for different traffic loads and buffer sizes with the assumption that stations always have at least
one packet to transmit. Unlike conventional models where stations always contend to transmit aggregate
frames of maximum or other fixed aggregation size, the proposed model dynamically determines the
aggregation size based on given offered traffic load, number of stations, transmission rate, and random
backoff process. Performance evaluations showed that the proposed model produces remarkably accurate
performance estimates for throughput, especially for higher traffic loads.

INDEX TERMS 802.11, 802.11n, 802.11ac, 802.11ax, A-MPDU, frame aggregation, Markov chain,
performance modeling, WLAN.

I. INTRODUCTION
The IEEE 802.11 wireless local area network (WLAN) tech-
nology became a de facto standard for ubiquitous wireless
Internet access in unlicensed frequency bands. To fulfill the
persistent demand for high-speed and mobile Internet access,
engineers have continuously improved IEEE 802.11 technol-
ogy. Orthogonal frequency division multiplexing (OFDM),
multiple-input/multiple-output (MIMO), and channel bond-
ing mechanisms greatly improved data rate in the physical
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(PHY) layer of IEEE 802.11n and 802.11ac, while the packet
aggregation mechanism was introduced to efficiently utilize
the increased PHY data rates in the medium access control
(MAC) layer. Due to its high efficiency, packet aggrega-
tion was also adopted in IEEE 802.11ax standard as well
[1], [2], [3].

The packet aggregation allows an 802.11n/ac station to
transmit up to 64 MAC protocol data units (MPDUs) in
one large frame called aggregate MPDU (A-MPDU). The
receiver station replies with a block acknowledgment (block-
ACK) frame indicating a success/failure status of each
MPDU in A-MPDU.
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In the literature, most conventional performance models
for aggregation-enabled 802.11n/ac WLANs assume fully
saturated traffic loads, that is, each station always has an
A-MPDU of maximum or other fixed aggregation size. For
example, the models in [4], [5], [6], [7], [8], and [9] assume
that all A-MPDUs have a maximum aggregation size, that
is, 64 MPDUs. However, such an assumption rarely applies
to real cases, since stations usually transmit A-MPDUs of
different aggregation sizes depending on various dynamic
factors (for example, offered load, random backoff time, etc.).
Furthermore, using these models, it is impossible to produce
basic curves of interest such as ‘‘Throughput versus Offered
load’’.

In this work, our aim is to improve the current state of
the existing modeling approaches for aggregation-enabled
WLANs in [4], [5], [6], [7], [8], [9], [10], [11], [12], and [13]
to model the performance more accurately for any offered
load. To do so, we propose a new performance model of
aggregation-enabled WLANs, assuming that stations always
have at least one packet in their queues. Due to such an
assumption, all stations continuously compete for channel
access, making it easy to derive transmission and conditional
collision probabilities. Since this assumption generates an
additional packet whenever the station has no packet to send,
themodel produces a higher throughput than the real through-
put, especially at small offered loads. But as offered load
increases, the amount of such additionally generated pack-
ets decreases and the produced throughput becomes much
similar to the real one. Most importantly, unlike the exist-
ing modeling approach, the aggregation size of A-MPDUs
in our model is dynamically determined by several factors,
such as the offered traffic load, the number of stations, the
transmission rate, and the random backoff process. Moreover,
it is possible to produce ‘‘Throughput versus Offered load’’ or
‘‘Average aggregation size versus Offered load’’ curves using
the proposed model. The performance evaluations showed
that the proposed model improves the accuracy of the perfor-
mance modeling of aggregation-enabled WLANs compared
to the existing modeling approach. The main contributions of
this work are as follows.

• First, we thoroughly analyze the literature related to per-
formance modeling of aggregation-enabled 802.11n/ac
WLANs and legacy 802.11a/b/g WLANs.

• Then, we identify the major weaknesses of those models
and group them according to their common properties.
We also explain why there is a need for a more accurate
and simpler model that can better reflect the operations
of aggregation-enabled WLANs.

• Next, we propose a new three-dimensional Markov
chain model based on simple assumptions where we
derive steady-state probabilities, throughput, and aggre-
gation size distribution. We also explain how to derive
the throughput for the existing modeling approach.

• Finally, we evaluate the performance of the model in
comparison to the simulation results and the existing
modeling approach.

The remainder of this paper is organized as follows.
Section II briefly reviews how the data is transmitted in
aggregation-enabled WLANs, the A-MPDU and blockACK
frames, the limiting factors of aggregation size, the exist-
ing performance models in the literature and describes the
motivation of this work. Section III introduces the pro-
posed performance analysis model. The aggregation size and
throughput performance of the proposed model is evaluated
and discussed in Section IV. Finally, Section V concludes this
paper.

II. BACKGROUND
A. DISTRIBUTED COORDINATION FUNCTION
Data transfer in IEEE 802.11 WLANs, including IEEE
802.11n/ac, is handled by a distributed coordination function
(DCF) protocol. Every station with a packet to send conducts
carrier sensing to know if the medium is idle or busy. If the
medium is sensed idle for a period called the DCF inter-frame
space (DIFS), the station waits for additional random backoff
counter slots before starting the transmission. The backoff
counter is randomly selected from the current contention
window size Wi, i.e., from [0,Wi) interval, where i ∈ [0, r]
is the current backoff stage. The basic time unit is called a
slot and has a duration of σ . For every idle slot, the station
decrements its backoff counter by one. When the medium
is detected to be busy, the backoff counter is frozen, and it
continues to decrease only after the medium becomes idle
for a DIFS period. When the backoff counter reaches 0, the
station transmits the data frame [3].

The data frame can be an A-MPDU that includes multiple
packets or anMPDU that includes a single packet. If the trans-
mission is successful, following the short interframe space
(SIFS) period, the receiver replies with an ACK frame when a
singleMPDU is received or blockACK framewhenA-MPDU
is received. When the sender receives the ACK/blockACK
frame, it resets the backoff stage to 0, i.e., resets the con-
tention window size toW0 with a standard value of 16. If the
sender does not receive ACK / blockACK within a timeout
interval, it increments the backoff stage, i.e., doubles the con-
tention window size as Wi+1 = min(2Wi,Wmax), and starts
a new backoff process. In other words, the station randomly
chooses a new backoff counter value from [0,Wi+1), starts
decrementing the backoff counter upon idle slots as explained
previously, and finally retransmits the collided data frame
when the counter expires. Here, Wmax is the maximum con-
tention window size. If the data frame successively collides
and the sender does not receive an ACK/blockACK even at
the last backoff stage (r), the sender drops/discards the data
frame, resets the backoff stage to 0, and initiates another
backoff process if there are other data to send [3].

There are two types of medium access schemes in
802.11WLANs. The first one is called a basic access scheme,
which was explained in the previous two paragraphs, where
the sender immediately transmits a data frame upon expira-
tion of the backoff counter, and the receiver replies with an
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FIGURE 1. A-MPDU and blockACK frames.

ACK/blockACK if the transmission was successful. The sec-
ond is the request-to-send (RTS)/clear-to-send (CTS) access
scheme, where the sender sends a short frame called RTS
upon the backoff timer expiration; if the RTS is successful,
the receiver replies with another short frame called CTS after
a SIFS duration. If the sender successfully receives the CTS,
it finally transmits the data frame after another SIFS duration;
if the sender does not receive the CTSwithin the CTS timeout
interval, the sender increments the backoff stage and retries
the transmission [3].

B. A-MPDU AGGREGATION IN IEEE 802.11n/ac
One of the major improvements throughout the evolution
of IEEE 802.11 technology was A-MPDU aggregation and
blockACK mechanisms. The IEEE 802.11n standard intro-
duced A-MPDU aggregation, where a sender is allowed to
send up to 64 MPDUs in one large frame called A-MDPU
[1]. As shown in Figure 1, the sender, once its backoff timer
expires, composes an A-MPDU from pending MPDUs in
its queue and starts transmitting. The MPDUs are guarded
with delimiters, and each MPDU has its MAC header with a
sequence number (SN) and a frame checksum (FCS) fields.

Upon receiving the A-MPDU, the receiver can determine
if each MPDU is received correctly using its FCS field. If at
least one of the MPDUs was received correctly, the receiver
replies with a blockACK frame indicating the SNs of the
MPDUs that were successfully received. After receiving the
blockACK, the sender retransmits the failed MPDUs (if there
are any) together with new MPDUs (if there are any) in
another A-MPDU upon next access to the channel [3].

C. DETERMINING FACTORS FOR THE AGGREGATION SIZE
As it is clear from the discussion of the previous two sub-
sections, the station composes an A-MPDU and transmits it
after the backoff timer expires. Thus, under unsaturated traffic
conditions, the aggregation size of each A-MPDUdepends on
the number of pending MPDUs in the queue (i.e., the current
queue size), which changes depending on current offered
load at the station, the number of competing stations in the
network, the PHY transmission rate, and a random backoff
time.

Let us now address the other factors that play a role in
determining the aggregation size. Apart from a maximum
aggregation size of 64, the 802.11 standard puts the following
limitations while composing an A-MPDU [1], [2], [3]:

• The maximum size for an A-MPDU is limited
to 64 Kbytes in 802.11n and 1024 Kbytes in 802.11ac.

• The maximum duration for an A-MPDU is limited to
10 ms in 802.11n and 5.484 ms in 802.11ac.

The above two standard limitations restrict the aggregation
size further. For example, suppose that all arriving MPDUs
have sizes of about 1.2 Kbytes. Then the 802.11n station
cannot include 64 such MPDUs in one A-MPDU, since it
would violate the 64 Kbytes maximum A-MPDU size limit.

In addition to the limitations put by standards, there are
also real implementations that introduce their limitations. For
example, ath9k driver for Atheros 802.11n cards, limits the
aggregation size to 32 packets and the A-MPDU duration to
4 ms [14]. Now consider another case, where the currently
optimal PHY transmission rate at the 802.11n station is only
6.5 Mbps. Then the maximum A-MPDU size is limited to
6.5 Mbps × 4.0 ms ≈ 25.4 Kbytes instead of the 64 Kbytes
limit put by the standard.

In summary, in practice, the aggregation size of A-MPDUs
varies dynamically depending on not only offered traffic load,
random backoff process, number of stations, and PHY trans-
mission rate but also standard and implementation-specific
limitations and packet size.

D. EXISTING PERFORMANCE MODELS OF
AGGREGATION-ENABLED WLANs IN LITERATURE
There are many works aimed at developing the performance
model of aggregation-enabled WLANs. Almost all of them
extend the seminal legacy 802.11a/b/g DCF model proposed
by Bianchi [15]. In the Bianchi model, stochastic processes of
backoff stage and backoff counter evolution compose a two-
dimensional (2)-D) Markov chain with the assumptions of
constant collision probability, saturated traffic, and an ideal
channel environment. Moreover, Bianchi assumed that the
stations decrement their backoff counters at the beginning of
each slot time. However, as Tinnirello et al. stated in [16],
a closer look at the standard specification revealed that the
stations decrement their backoff counters only at the end of
idle slots. Due to such a backoff counter decrement rule,
the first backoff slot immediately following the successful
transmission plus idle DIFS can be accessed only by the
transmitting station if it chooses 0 as the next backoff counter
value. In other words, only the station which has just finished
successful transmission can access the first backoff slot with
a probability of 1/W0. Besides, the first backoff slot followed
by collision plus an idle extended IFS (EIFS) duration is not
accessible by any of the stations. Tinnirello et al. called these
two types of slots anomalous slots and extended the Bianchi
model to reflect their impact on performance. We ask readers
to refer to [16] for more information on anomalous slots.

In the literature, several works model the performance of
legacy IEEE 802.11a/b/g WLANs with unsaturated traffic
considerations. Most of them extend the Bianchi’s model.
For example, in [17], [18], and [19], the authors extended
Bianchi’s model to account for a particular case of unsat-
urated traffic assuming a bufferless station, i.e., a station
can have at most one packet at a time. But in practice,
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802.11 stations usually have buffers for at least a few
dozen packets. Few other works extended Bianchi’s model
to address the unsaturated traffic case with finite buffer [20],
[21]. To achieve it, the authors introduced a third dimension
in the Markov chain to track the evolution of queue size.
However, the complexity of the model increased substantially
because new packet arrivals are accounted for at the end
of each slot, i.e., the queue size can change after each slot,
resulting in an enormous number of transitions between the
states of the different queue size. Such modeling approach
makes it difficult to formulate the steady-state probabilities
in terms of concise equations.

Let us now discuss the existing performance modeling
approaches of aggregation-enabled WLANs. In [4], Lin and
Wong extended the Bianchi’s model to analyze the through-
put for error-prone channels with an assumption of fully
saturated traffic where all stations always have enough pack-
ets to send A-MPDUs of maximum or other fixed aggregation
size. In [5], Li et al. proposed a new aggregation scheme
similar to A-MPDU and extended the Bianchi’s model to
analyze the performance of the scheme with a fully satu-
rated traffic assumption where the stations always transmit
full-sized aggregate frames.

In [6], Hajlaoui et al. proposed an algorithm that adapts the
MPDU size for noisy channel and adjusted Bianchi’s model
to analyze the performance for a saturated traffic condition.
Seytnazarov et al. [7] proposed a scheme to transmit multiple
20MHz PHY PDUs (PPDUs) in parallel instead of a single
wideband PDU and analyzed the performance of the scheme
using Bianchi’s model. In [8], the authors extended the Tin-
nirello’s model [16] to include frame aggregation.
In [10] and [11], the authors proposed new automatic

repeat request (ARQ) schemes and analyzed their throughput
performance with a fully saturated traffic assumption. In [12],
Seytnazarov et al. proposed a new model that reflects the
impact of the standard ARQ protocol on the size of the
aggregation and the throughput under erroneous channel and
saturated traffic conditions. In [9] and [13], the authors pro-
posed a model similar to the one in [12], but including the
probability of packet drop after an exhausted retry limit.

All the above modeling approaches for aggregation-
enabled WLANs consider a fully saturated traffic condition
where every station has enough packets to compose an
A-MPDU of maximum aggregation size [4], [5], [6], [7]
or the aggregation size that the considered ARQ scheme
currently allows [8], [9], [10], [11], [12], [13]. However, some
performance modeling attempts include unsaturated traffic
conditions. For example, Kuppa and Dattatreya [22] analyzed
performance using embeddedMarkov chains assuming a pre-
defined service time distribution. Similarly, in [23] and [24],
the authors proposed a performance model for stations with
unsaturated traffic and finite buffers but with the assumption
that arrival times and service times have an exponential dis-
tribution. Assuming an exponentially distributed arrival times
is usual practice in existing works because it can be repeated
in real test-bed experiments as well, whereas assuming a

predefined service time distribution is unfavorable. In real-
ity, the service time is random and is determined by many
factors, such as the number of active stations, transmission
rate, random backoff process, packet size, and offered load.
In another work [25], Kim et al. proposed an extension of
the Markov chain in [17] and [18], where the transmission is
triggered only when K packets arrive, and the arrivals during
the service of an A-MPDU are ignored.

E. MOTIVATION
As discussed in Subsections II-C and II-D, the aggregation
size can change for each A-MPDU depending on multiple
factors, but the existing modeling approach considers fully
saturated traffic conditions where the aggregation size is
always fixed or controlled solely byARQ [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13]. Since MPDU aggregation is a key
element of modern WLAN technologies, correctly modeling
its performance, including variable aggregation size, is still an
open problem. So, in this work, we propose a new model that
predicts the performance of aggregation-enabled WLANs
more accurately for any given offered load and where the size
of aggregation of an A-MPDU is dynamically determined by
several factors, such as the offered traffic load, the number
of stations, the transmission rate, and the random backoff
process.

III. PROPOSED PERFORMANCE ANALYSIS MODEL
A. ASSUMPTIONS
We assume that the channel is ideal, the stations can hear each
other perfectly, and all collided frames are undecodable at
the listening stations upon collision. To further simplify the
problem, we make the following assumptions:

1) A station always has at least one packet to send.
2) The size of an A-MPDU does not change after its

service is started.
The rationale behind the Assumption 1 is to simplify the
model by keeping all stations continuously competing for
channel access. This makes it easy to derive the transmission
and conditional collision probabilities. One can expect that
the throughput produced by our model under Assumption 1 is
higher than the true throughput for the given offered load.
This is partially true, especially for small traffic loads. The
reason is that Assumption 1 creates an extra packet whenever
the station has no packet to send, therefore, themodel displays
greater throughput than the actual throughput, particularly at
low offered loads. However, when the offered load grows,
the probability of an empty queue decreases, consequently
less extra packets are generated by Assumption 1, and there-
fore the produced throughput approaches the true throughput.
Most importantly, unlike the previous modeling approach [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13] where the aggrega-
tion size is always fixed, the aggregation size of A-MPDUs
in our model is dynamically determined by multiple crite-
ria, including offered traffic load, station count, transmission
rate, and random backoff process. Furthermore, the proposed
model can be used to generate ‘‘Throughput versus Offered’’
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load, ‘‘Average aggregation size versus Offered load’’, and
other curves of interest.

Let us now address Assumption 2. The rationale behind
this assumption is to simplify themodel further, by decreasing
the number of transitions between the states of different queue
size. This will be more clear when we introduce the pro-
posed three-dimensionalMarkov chain in the next subsection.
Now, recall that, due to Assumption 1, a station always has
a packet to send. In other words, after the service of the
previous A-MPDU is finished, a station always has at least
one packet in its queue. At this time moment, the station
immediately composes anA-MPDUusing currently available
packets in its queue (even if there is only one) and invokes
the backoff procedure for transmission, i.e., the service of
the A-MPDU is started. During the service, new packets
can arrive in the queue, but they are not included in the
existing in-service A-MPDU. For example, a station finished
a successful transmission (i.e., received a blockACK for the
previous A-MPDU transmission), and after an idle DIFS
period, at a time moment t1, it immediately formed a new
A-MPDU with the pending packets in queue (say two) and
started the service of it. The A-MPDU collided twice and
was eventually successfully delivered in the third attempt,
and the station received blockACK at t2. From t1 till the third
transmission attempt, several new packets arrived from upper
layer, but due to Assumption 2 they were not appended to
the existing in-service A-MPDU (of size two). The effect
of Assumption 2 is that new packets cannot be appended to
an in-service A-MPDU. The time interval t2 − t1 is usually
referred to as the service time [26], [27] or the access delay
[28], [29].

B. THREE-DIMENSIONAL MARKOV CHAIN
Due to Assumption 1, all stations always compete for channel
access and consequently the statistical characteristics of each
station are identical to each other. It is a common practice
in the literature to assume that the stations have identical
characteristics. For example, the models in [5], [6], [7], [8],
[9], [10], [11], [12], and [13] assume a fully saturated traffic
condition, so the stations always compete for channel access
to send A-MPDUs of maximum size. In a result, in the
long run, all stations experience the same transmission and
collision probabilities. It helps to simplify the model or test
new protocols. Therefore, in devising the performance model
of aggregation-enabled 802.11n/ac WLANs, we can focus
on the operations of a single station, as in the models of
[5], [6], [7], [8], [9], [10], [11], [12], [13], [15], [16], [17],
[19], [20], [21], [22], [23], and [24]. On the other hand,
it is possible to model the performance of WLANs where
the stations are not fully identical. For example, the work
in [18], models the performance of 802.11g WLAN where
stations have different offered loads. Another work in [30]
takes into account individual frame error rates at each station
to model the performance of 802.11g WLAN, considering
rate adaptation algorithm. However, modeling the network

with diverse stations comes at a cost – the model becomes
more complex. In this work, we also take into account the
existence of anomalous slots found by the authors in [16].
We take a discrete and integer timescale where t and

t + 1 correspond to the beginning time moments of two
consecutive slots, and the backoff counter of a station is
decremented at the end of each slot. We propose a three-
dimensional (3D) Markov chain to mathematically analyze
the performance of aggregation-enabled 802.11n/ac WLANs
for a given offered load. In addition to the stochastic process
for a backoff counter, b(t), and the stochastic process for a
backoff stage, s(t), which were introduced by Bianchi in [15],
we introduce a new stochastic process q(t), which represents
the queue size (1, . . . ,Q) of the station. Without loss of
generality, we consider the queue size limit, Q, to be greater
than or equal to the maximum aggregation size A. Unlike
b(t) and s(t), due to Assumption 2, q(t) can change only
when the A-MPDU service is finished (either successfully or
unsuccessfully). It does not mean that newly arriving packets
during the service of an A-MPDU are ignored. But once the
service is finished, we determine the number of newly arrived
packets based on the offered traffic load and the average
service time of the previous A-MPDU.

In the proposed Markov chain, each state is represented by
(n, k, v), where

• n is the number of packets in a queue (i.e, queue size)
right after the service of the previous A-MPDU finishes
and n ∈ [1,Q],

• k is the current backoff stage and k ∈ [0, r],
• v is the value of the backoff counter at time t and v ∈

[0,Wk ).

Due to the lack of space and to avoid complexities in descrip-
tion, Figure 2 explicitly depicts only the outgoing transitions
from the states with queue size n to the states with queue size
m. The figure illustrates only the states of backoff stage 0
for queue size m. We expect that one can easily derive the
outgoing transitions from all other queue sizes. ln, given in
the caption of Figure 2, is the number of packets aggregated
as one A-MPDU (i.e., the aggregation size) when there are
n packets in the queue. Thus, ln = min(n,A) where A is the
maximum size of aggregation and is 64 in the standard [1].

Let us examine the states with queue size n, which are
enclosed by the colored circles inside a rectangle with the
red and dashed line in Figure 2. There is a special 2D state
(n, 0∗) that looks different from the other 3D states. This
state represents the anomalous slot that is accessible only by
a station that has just completed a successful transmission.
Therefore, the transmission of an A-MPDU from the state
(n, 0∗) is always successful.
On the other hand, regular 3D states with the same queue

size can be differentiated from each other by two components:
a backoff stage (k) and a backoff counter (v). Thus, when
focused on any specific queue size, its states can be expressed
as a 2D process that is similar to those in [15] and [16]. Note
that the biggest difference between our 3D process and the
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FIGURE 2. State transition diagram of outgoing transitions from the states with queue size n, where n ∈ [1, Q], k ∈ [0, r ], and
m ∈ [max(1, n − ln), Q].

2D processes in [15] and [16] is manifested in the outgoing
transitions to states with other queue sizes. Let us examine the
outgoing transitions from the states with queue size n. As it
was discussed in Subsection II-A, when the backoff counter
reaches zero at backoff stages k ∈ [0, r], i.e., in the states
(n, k, 0), the station transmits the A-MPDU.

• If the transmission is successful, the station transits to
either (m, 0∗) or one of the (m, 0, v) states. The queue
size m is determined by the number of new packet
arrivals during the service time of the last A-MPDU.
If the newly extracted random backoff counter v is 0,
then the transition to the state (m, 0∗) occurs; otherwise,
i.e., v ∈ [1,W0), a transition occurs to the state (m, 0, v).

• If the A-MPDU transmitted from the state (n, k, 0) col-
lides, the backoff stage is increased to k + 1 and a new
backoff counter v is randomly selected from [0,Wk+1),
i.e., transition happens to a state (n, k + 1, v).

• Upon unsuccessful transmission from the state (n, r, 0)
(i.e., unsuccessful service and drop/discard of the A-
MPDU), the station moves to one of the states (m, 0, v),
where v ∈ [1,W0). Note that the anomalous slot, that
is, the state (m, 0∗), is accessible only after a success-
ful transmission with probability 1/W0. Therefore, after
unsuccessful service, if a newly selected random backoff
counter is 0, the station transits to the state (m, 0, 0), not
the state (m, 0∗).

• Transmissions from the state (n, 0∗) are always success-
ful, since the state is accessible only by a station that has
just finished a successful transmission. Therefore, after
transmission, the state moves to (m, 0∗) or one of the
(m, 0, v) states, where v ∈ [1,W0).

C. ONE-STEP TRANSITION PROBABILITIES
Let P{u|s} denote the one-step transition probability from
state s to state u. We examine the outgoing transition prob-
abilities from the states with queue size n. Following the
discussions of Subsections III-A and III-B, we can easily
derive the transition probabilities of our chain in Figure 2.
In Subsections III-C – III-D, since n and m represent the size
of queue, n ∈ [1,Q] and m ∈ [1,Q] unless otherwise stated.
First, let us focus on the outgoing transitions from state

(n, 0∗). As discussed in Subsection III-B, all transmissions
from this state are successful, since this anomalous slot is
accessible only by a station that has just finished the success-
ful transmission and has selected a zero backoff count with
probability 1/W0. After the transmission, the station enters
another anomalous slot state (m, 0∗) if it again randomly
selects zero as its new backoff counter value with probability
1/W0. With the same probability, the station chooses a non-
zero v ∈ [1,W0) as a new backoff counter value and transits
to the (m, 0, v) state. The probability of such transitions is
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as follows.

P{(m, 0∗) | (n, 0∗)} = P{(m, 0, v) | (n, 0∗)}

=
1
W0

· qn,0∗,m, (1)

where qn,0∗,m is the probability that there are m packets in
the queue following a successful transmission from the state
(n, 0∗).
Unlike the state (n, 0∗), successful transmission from the

state (n, k, 0) occurs with probability 1 − p, and then with
the probability 1/W0 the state transitions to the anomalous
slot or one of the regular slots among v ∈ [1,W0). The exact
expression of the probabilities of those transitions is given as
follows.

P{(m, 0∗) | (n, k, 0)} = P{(m, 0, v) | (n, k, 0)}

=
1 − p
W0

· qn,k,m, (2)

where k ∈ [0, r] and qn,k,m is the probability that there are
m packets in the queue following a successful transmission
from the state (n, k, 0).
With probability p, transmission from the state (n, k, 0)

encounters a collision, consequently, the station increases the
backoff stage and enters the state (n, k + 1, v).

P{(n, k + 1, v) | (n, k, 0)} =
p

Wk+1
, (3)

where v ∈ [0,Wk+1) and k ∈ [0, r).
When a transmission from the state (n, r, 0) collides, the

station ceases the retransmission procedure, drops/discards
the current A-MPDU, and transits to the (m, 0, v) state with
the following probability.

P{(m, 0, v) | (n, r, 0)} =
p
W0

· qn,r+,m, (4)

where v ∈ [0,W0) and qn,r+,m is the probability that the queue
has m packets just after the drop of the A-MPDU due to an
unsuccessful transmission from the backoff stage r . We will
derive qn,0∗,m, qn,k,m, and qn,r+,m in Subsection III-G.
Finally, we examine the state transitions representing the

decrement of the backoff counter at the end of an idle slot as
follows.

P{(n, k, v− 1) | (n, k, v)} = 1, (5)

where v ∈ [1,Wk ) and k ∈ [0, r].

D. STEADY-STATE PROBABILITIES
Letπs denote the limiting distribution of state s.We can easily
derive the global balance equations of all feasible states from
the state transition probability diagram in Figure 2 because
in steady-state, the outgoing rate from a state is equal to the
incoming rate to the state. Let us derive the balance equations
for the states with queue size n. Since the states representing
the anomalous slots have incoming one-step transitions only

upon successful transmissions, their steady-state probabilities
can be obtained as follows

πn,0∗ =
1
W0

Q∑
m=1

(
qm,0∗,n · πm,0∗

+ (1 − p)
r∑

k=0

(qm,k,n · πm,k,0)
)
. (6)

The state (n, 0, 0) has the following incoming transitions: i)
from the neighboring state (n, 0, 1) at the end of an idle slot
and ii) after unsuccessful transmission from state (m, r, 0).
Thus, its steady-state probability can be written as

πn,0,0 = πn,0,1 +
p
W0

·

Q∑
m=1

(qm,r+,n · πm,r,0). (7)

In contrast, the state (n, 0,W0−1) has the following incoming
transitions: i) after transmission from the anomalous slot state
(m, 0∗), ii) after successful transmission from state (m, k, 0)
where k ∈ [0, r], and ii) after unsuccessful transmission from
state (m, r, 0). Thus, the steady-state probability is given as

πn,0,W0−1 =
1
W0

Q∑
m=1

(
qm,0∗,n · πm,0∗

+ (1 − p)
r∑

k=0

(qm,k,n · πm,k,0)

+ p · qm,r+,n · πm,r,0

)
. (8)

We can also easily derive the following relationship between
the states (n, 0, v) and (n, 0,W0 − 1) where v ∈ [1,W0).

πn,0,v = (W0 − v) · πn,0,W0−1. (9)

Since the backoff stage is incremented whenever the frame
collides, the steady state probability of any (n, k, 0) can be
written in terms of πn,0,0.

πn,k,0 = pk · πn,0,0, k ∈ [0, r]. (10)

The following relationship holds between the steady-state
probabilities of states (n, k, 0) and (n, k, v).

πn,k,v =
Wk − v
Wk

· πn,k,0, (11)

where k ∈ [1, r] and v ∈ [1,Wk ).
Note that it may be intractable to get a closed-form

expression of steady-state probabilities because the colli-
sion probability p depends on these steady-state probabilities
being recursively expressed by p. On the other hand, the
drop possibility of an A-MPDU is expected to be very small,
because it needs to collide r + 1 times successively. Further-
more, just after such an infrequent drop event, the station
selects the backoff counter 0 with probability 1/W0, and
thus the second term on the right side of (7) has negligible
values for reasonable values of p. To obtain a closed-form
expression, we approximate (6) and (7) by removing the
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second term on the right side of (7) and adding it to (6). Now,
the equations for πn,0∗ and πn,0,0 are updated as follows.

πn,0∗ ∼=
1
W0

Q∑
m=1

(
qm,0∗,n · πm,0∗

+ (1 − p)
r∑

k=0

(qm,k,n · πm,k,0)

+ p · qm,r+,n · πm,r,0

)
. (12)

πn,0,0 ∼= πn,0,1. (13)

Note that the expressions for the steady-state probabilities in
(8) and (12) look identical, i.e., πn,0,W0−1 = πn,0∗ . Then
the expression in (9) can be re-written as πn,0,v = (W0 −

v) · πn,0∗ , for v ∈ [1,W0). Since πn,0,0 = πn,0,1 from (13),
consequently

πn,0,0 = (W0 − 1) · πn,0∗ . (14)

From (10), (11), and (14), the followings hold for all (k, v)
such that k ∈ [1, r] and v ∈ [0,Wk ).

πn,k,v =
Wk − v
Wk

· pk · (W0 − 1) · πn,0∗ . (15)

Let us substituteπm,k,0 andπm,r,0 in (12) with (15) and define

8(m, n) :=
qm,0∗,n

W0
+
W0 − 1
W0

·

(
(1 − p) ·

r∑
k=0

(pk · qm,k,n) + pr+1
· qm,r+,n

)
,

(16)

Now we re-express (12) as follows

πn,0∗ =

Q∑
m=1

8(m, n) · πm,0∗ . (17)

and consequently

πn,0∗ =

Q∑
m=1,m̸=n

8(m, n) · πm,0∗

1 − 8(n, n)
. (18)

E. TRANSMISSION AND COLLISION PROBABILITIES
The sum of all feasible state probabilities is one. That is,

Q∑
n=1

(
πn,0∗ +

r∑
k=0

Wk−1∑
v=0

πn,k,v

)
= 1. (19)

After applying (14) and (15) to (19),

Q∑
n=1

πn,0∗ =

(W0(W0 + 1)
2

+
W0 − 1

2

r∑
k=1

pk (Wk + 1)
)−1

. (20)

Since the transmission can occur only at the states with zero
backoff count, the transmission probability by a station in a
random slot time, τ , can be obtained as follows

τ =

Q∑
n=1

(
πn,0∗ +

r∑
k=0

πn,k,0

)

=

(
1 +

(W0 − 1)(1 − pr+1)
1 − p

)
·

Q∑
n=1

πn,0∗ . (21)

After applying (20) to (21),

τ =

2
(
1 − p+ (W0 − 1)(1 − pr+1)

)
(1 − p)

(
W0(W0 + 1) + (W0 − 1)

r∑
k=1

pk (Wk + 1)
) .

(22)

The collision probability is calculated as in [15] and [16].

p = 1 − (1 − τ )NSTA−1, (23)

where NSTA denotes the number of stations in the network.
Using (22) and (23), we can numerically find p and τ for a
given NSTA.

F. THROUGHPUT
The throughput is calculated as the average amount of data
payload successfully transmitted during an average system
slot time. First, we derive the average system slot time,
denoted by Eslot . Note that the slots are classified into idle,
success, and collision slots.Pidle is the probability that the slot
is detected as idle and can be found using Pidle = (1−τ )NSTA .
The idle slot duration is σ , which is a standard slot duration
in 802.11 [1].
Now, let Psucc denote the probability that a slot contains a

successful transmission, i.e., success slot probability. Then

Psucc = NSTA · τ · (1 − τ )NSTA−1. (24)

Tsucc represents the average duration of success slot and is
expressed as

Tsucc = TRTS + TCTS + Tpre

+

⌈Eaggr (Lhdr + Lpld )
R · TSYM

⌉
· TSYM

+ 3TSIFS + TBACK + TDIFS , (25)

where TRTS , TCTS , Tpre, TSYM , TSIFS , TBACK , and TDIFS rep-
resent the durations of an RTS frame, a CTS frame, a PHY
preamble, and the header of A-MPDU, an OFDM symbol,
SIFS, a blockACK frame, and DIFS, respectively; the out-
come of ceiling operation represents the total number of
OFDM symbols required to carry the A-MPDU bits, where
Eaggr is the expected aggregation size, Lhdr is the total length
of MAC, IP, and UDP layer headers, Lpld is the UDP payload
length, and R is the PHY data transmission rate.
The slot contains a collision if multiple stations simultane-

ously transmit. Let Pcoll be the probability of such a collision
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slot. Then, Pcoll = 1 − Pidle − Psucc and its duration is
Tcoll = TRTS + TSIFS + TCTS + TDIFS .
The average system slot time is Eslot = Pidleσ +

PsuccTsucc + PcollTcoll , and the average amount of data pay-
load within an A-MPDU is Eaggr · Lpld . Since the total
throughput of the system is the amount of data payload
successfully transmitted during an average system slot time,

S =
Psucc · Eaggr · Lpld

Pidle · σ + Psucc · Tsucc + Pcoll · Tcoll
. (26)

G. OFFERED LOAD AND SERVICE TIME RELATIONSHIP
As shown in Figure 2, the probabilities of a one-step transition
between the queue sizes of n and m rely on the probabilities
qn,o∗,m, qn,k,m, and qn,r+,m. In this subsection, we explain
how to derive them. Let3 denote the total offered load in bits
per second (bps) of the system of NSTA stations transmitting
uplink traffic. Assuming that all stations have the same traffic
characteristics, such as the packet arrival rate and the payload
size of a packet, the average packet arrival rate at each station
is λ = (3/NSTA)/Lpld packets per second. Let us assume
that the packets arrive in a Poisson manner. Then, the general
expression for the probability that i packets arrive during a
time duration t is given as βi(t) = ((λt)ie−λt )/i!.

Since A is the maximum number of packets that can be
containedwithin anA-MPDU, the size of anA-MPDU served
in the states with queue size n can be expressed as ln =

min(n,A). Then, let Tn,k be the average service duration of
an A-MPDU with size ln that is successfully transmitted at
the backoff stage k , i.e., at the state (n, k, 0). Note that the
average service duration of an A-MPDU is the time interval
from its generation until a blockACK for this A-MPDU is
received. Thus,

qn,k,m =



β0(Tn,k ) + β1(Tn,k ), n ≤ A,m = 1
βm(Tn,k ), n ≤ A,m ∈ (1,Q)

1 −

Q−1∑
j=0

βj(Tn,k ), n ≤ A,m = Q

0, n > A,m < n− A
βm−n+A(Tn,k ), n > A,m ∈ [n− A,Q)

1 −

Q−1−n+A∑
j=0

βj(Tn,k ), n > A,m = Q.

(27)

Let us first explain (27) for the cases when n ≤ A. In these
cases, the aggregation size of A-MPDU ln is n, and therefore
no packet remains in the queue when the service of A-MPDU
starts. According to assumption 1, at least one packet must be
in a queue after the service finishes. Consequently, we take
the probability of one packet in a queue as the sum of Poisson
probabilities of one and no packet arrivals, as shown in the
first equation of (27). The second equation is the probability
of the cases where the queue has two or more packets after the
service finishes, but is not yet full. The third equation is the

probability of the case where the queue is full of new packets
following the completion of a service.
Now, let us discuss the remaining three cases in (27) when

n > A. In these cases, the aggregation size of the A-MPDU ln
is A and, therefore, the queue has (n− A) packets remaining
after the service of this A-MPDU starts. That is, a queue
having less than (n − A) packets after the service ends is
impossible, and thus the probability of such a case is zero,
as shown in the fourth equation. The next probability is for the
cases where zero or more packets arrive during the service,
but the queue is not yet full. The last probability is for the
case when the queue is full of packets following a service.

Now, let us give the expression for Tn,k . In [31] and [32],
Raptis et al. proposed a new approximation to estimate the
per-stage average service time for the legacy 802.11 WLAN
with saturated traffic. Note that if the A-MPDU is success-
fully transmitted at the backoff stage k , then the total service
time of this A-MPDU includes: i) (k + 1) random backoff
periods, ii) k collisions, and iii) successful transmission at the
stage k . During the backoff period, the target station waits for
its backoff counter to expire, and the remaining (NSTA − 1)
stations compete for access. Let E−

slot be the average duration
of a slot time when the remaining stations, except the tagged
station, compete for access. Then, since the average backoff
counter at stage i is (Wi − 1)/2, the total average backoff

waiting time of the tagged station is E−

slot

k∑
i=0

(Wi − 1)/2. Let

P−

idle, P
−
succ and P

−

coll be the probabilities of idle, success, and
collision slots in the situation that the remaining (NSTA − 1)
stations except the tagged station compete formedium access,
then

E−

slot = P−

idleσ + P−
succTsucc + P−

collTcoll, (28)

where P−

idle = (1 − τ )NSTA−1, P−
succ = τ · (NSTA − 1) ·

(1 − τ )NSTA−2, and P−

coll = 1 − P−

idle − P−
succ. The duration

of a success slot for an A-MPDU with size ln is denoted by
Tsucc(ln) and can be easily calculated using (25), by replacing
Eaggr with ln as follows.

Tsucc(ln) = TRTS + TCTS + Tpre

+

⌈ ln(Lhdr + Lpld )
R · TSYM

⌉
· TSYM

+ 3TSIFS + TBACK + TDIFS . (29)

Finally, Tn,k can be expressed as

Tn,k =

k∑
i=0

Wi − 1
2

E−

slot + k · Tcoll + Tsucc(ln). (30)

The probabilities qn,0∗,m and qn,r+,m can be obtained as fol-
lows. qn,0∗,m is calculated using (27) but replacing Tn,k with
Tn,0∗ , which is the sojourn time of state (n, 0∗). Since trans-
mitting an A-MPDU in the state (n, 0∗) is always successful,
it is obvious that Tn,0∗ = Tsucc(ln). Similarly, qn,r+,m is also
calculated by (27) but replacing Tn,k with Tn,r+ , which is the
average unsuccessful service time, that is, the average time
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to drop/discard the A-MPDU due to the exhausted retry limit
and can be obtained as follows.

Tn,r+ =

r∑
i=0

Wi − 1
2

E−

slot + (r + 1) · Tcoll (31)

H. AGGREGATION SIZE
To find the expected aggregation size, Eaggr , one needs to
obtain the aggregation size distribution. The probability mass
function (PMF) of the aggregation size ln, for ln < A, equals
the sum of all steady-state probabilities of queue size n.
However, for ln = A, the PMF is calculated as the sum of
all steady-state probabilities of all queue sizes greater than or
equal to A, as given in the following systems of equations.

P(ln) =


πn,0∗ +

r∑
k=0

Wk−1∑
v=0

πn,k,v, ln < A

Q∑
n=A

(
πn,0∗ +

r∑
k=0

Wk−1∑
v=0

πn,k,v

)
, ln = A.

(32)

After some manipulations, we can rewrite the above expres-
sion for PMF as follows.

P(ln) =



(W0(W0 + 1)
2

+
W0 − 1

2
·

r∑
k=0

pk (Wk + 1)
)

·πn,0∗ , ln < A(W0(W0 + 1)
2

+
W0 − 1

2
·

r∑
k=0

pk (Wk + 1)
)

·

Q∑
n=A

πn,0∗ , ln = A.

(33)

Finally, we are in a position to derive the average aggrega-
tion size, Eaggr . It can be obtained using the PMF as follows.

Eaggr =

Q∑
n=1

ln · P(ln). (34)

Up to this point, we knew the values of τ and p only, for the
givenNSTA. Now, we can build a system of the following (Q+

1) linear equations to obtain the values of πn,0∗ and Eaggr as
follows.

• (Q − 1) independent linear equations of πn,0∗ for n ∈

[1,Q), from (18)
• the equation for the case of n = Q as πQ,0∗ =

τ (1−p)
1−p+(W0−1)(1−pr+1)

−

Q−1∑
n=1

πn,0∗ , from (21)

• the last equation for Eaggr using (34).
Then, the system of equations can be solved numerically to
find πn,0∗ and Eaggr for given NSTA, A, Q, 3, R, etc.

I. THROUGHPUT DERIVATION FOR EXISTING MODELING
APPROACHES
As explained in Subsections II-D and II-E, most of the
existing works model the condition of fully saturated traffic.

TABLE 1. System parameters.

Those works can be divided into two categories. The works
in the first category assume that all stations always have
the necessary number of packets in their buffers to compose
and send A-MPDU of maximum aggregation size [4], [5],
[6], [7]. The models in the second category assume that the
stations always have enough packets to compose and send
the A-MPDU of the aggregation size that the considered
ARQ scheme currently allows [8], [9], [10], [11], [12], [13].
However, this work focuses on the ideal channel condition
only, and if such a condition is applied to the models in
the second category, the impact of ARQ schemes on the
aggregation size disappears and thus stations always trans-
mit A-MPDUs of maximum aggregation size. Therefore,
existing models in both categories can be considered as a
single modeling approach where stations always transmit
A-MPDUs of maximum aggregation size, A. The stations in
the existing modeling approach always contend for channel
access, therefore, the transmission and collision probabilities
are the same as in the proposed model and thus can be easily
obtained using (22) and (23), respectively. Furthermore, the
probabilities and durations of success, collision, and idle slots
are also calculated exactly the same way as in the proposed
model discussed in III-F but except for the duration of the
success slot. To obtain the duration of the success slot, we still
use (25) but replace Eaggr with A. Finally, we can obtain the
throughput of the existing modeling approach using (26).

IV. PERFORMANCE EVALUATIONS
To demonstrate the performance accuracy of the proposed
model, we developed a Python-based 802.11n/ac simulator
with the capability of A-MPDU aggregation and support
for Poisson traffic generation at each station [33]. Assump-
tions 1 and 2 are not applied to the simulator stations,
i.e., the stations do not generate a dummy packet when the
queue is empty and the size of in-service A-MPDU can
increase if some new packets arrive during its service. In other
words, the stations in the simulator mimic the real 802.11n/ac
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FIGURE 3. CDF of aggregation size comparison for different total offered traffic load (3), number of stations (NSTA), and queue size limits (Q).

stations where these assumptions are not applied. Our inten-
tion in not including the Assumptions 1 and 2 was to check
how similar is the performance of our proposed model to
the performance of actual operations of WLAN. All other
assumptions and system parameters in the simulator are the
same as in the proposed model. More details of the simulator
implementation can be found in our GitHub repository [33].
All system parameters and their values are summarized in
Table 1.
A series of simulations are run for NSTA (10, 15, and

20) stations with different total offered loads of 3 (10,
20, . . . , 600 Mbps) and queue size limits of Q (100 and 150),
which compete to transmit uplink traffic for 30 seconds. For
each {NSTA, 3,Q} configuration, the simulation is run with
five different seed values, and the average performance is
recorded. The values of the other main parameters are con-
stant: A = 64 packets, R = 150 Mbps, and Lpld = 6400 bits.
Corresponding simulation script is included in our GitHub
repository [33]

A. AGGREGATION SIZE PERFORMANCE
Figure 3 illustrates the cumulative distribution function
(CDF) of aggregation size for different Q, NSTA, and 3

settings, where solid lines represent the theoretical CDF pro-
duced by the proposed model and the dotted lines represent
the empirical CDF measured in the simulator. We could also
include the CDF for the existing modeling approach, but it
would include only value 1 at 64, since all A-MPDUs have
the aggregation size of A.

At loads such as 3 ≤ 100 Mbps, the proposed model
and the simulator have a similar aggregation size distribution.

However, there is a significant difference at an aggregation
size of 1. At very small loads, the simulator stations do
not always have packets to send; thus, they do not continu-
ously compete for channel access. Moreover, newly arriving
packets can be appended to in-service A-MPDU that is cur-
rently being served. In contrast, in the proposed model, due
to Assumption 1, the station always has a packet to send,
and thus they always compete for channel access. Moreover,
because of Assumption 2, the in-service A-MPDU cannot
include newly arriving packets. These two assumptions result
in more A-MPDU transmissions with the aggregation size
of 1. Thus, at 3 = 30 Mbps, about 70-75% of A-MPDUs
have an aggregation size of 1 in the proposed model, while
the corresponding proportion in the simulator is merely about
60-65%.

As 3 increases, the probability of not having a packet to
send is understandably decreases, and the need for additional
packets to satisfy Assumption 1 in the proposed model also
decreases. However, due to the Assumption 2 in the proposed
model, the number of A-MPDUs with a single packet can
still be higher than in the simulator. That is the case for
3 = 100 Mbps in Figure 3a. For NSTA=10, the CDFs of the
proposed model and simulator are very similar at an aggre-
gation size of 1. That is because the offered load per station
is high and the effect of assumptions 1 and 2 is minimal.
For NSTA=15 and 20, however, about 21% and 26% of the
A-MPDUs in the proposed model include a single packet,
respectively. On the other hand, in the simulator, the CDF
at aggregation size 1 is approximately 16% and 18% for
NSTA=15 and 20, respectively. A very similar situation can
be observed for Q = 150 packets in Figure 3b.
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FIGURE 4. Average aggregation size performance comparison for different total offered traffic load (3), number of stations (NSTA), and queue size
limits (Q).

At high offered loads such as 3 = 300 Mbps, simulator
stations transmit A-MPDUswith larger sizes; especially most
A-MPDUs have aggregation size of A. The main reason is
that Assumption 2 is not applied to the simulator, and thus in-
service A-MPDU can include new packets that arrive before
its successful transmission starts. The aggregation size of in-
service A-MPDU can grow from 1 to A before its successful
transmission. This means that the simulator stations generally
havemore space for packets compared to the proposedmodel.
In other words, the effective system size of a station, which is
defined as the maximum allowable number of packets within
an in-service A-MPDU and the queue, can be as high asQ+A.

At very high loads, such as 3 = 600 Mbps, the effective
system size of stations in both the proposed model and the
simulator becomes very similar and close toQ+A. Therefore,
most of the time, A-MPDUs include A packets in both the
simulator and the proposed model. Moreover, with the larger
Q, the proposed model and the simulator have much more
similar effective system size and thus more similar perfor-
mance.

Next, let us compare the average aggregation size. Figure 4
illustrates the average aggregation size produced by the pro-
posed model and the simulator for different Q, NSTA, and 3

settings. It also includes the average aggregation size used in
the existing modeling approach [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], represented by dashed yellow lines. Since all
stations transmit A-MPDUs of maximum aggregation size in
the existing modeling approach, the average aggregation size
is fixed at 64.

At low traffic loads such as 3 ≤ 100 Mbps, the average
aggregation sizes of the proposed model and the simulator
are very similar. At very small loads, for most of the time, the
stations have no packets in their queues after the service of
the previous A-MPDU. In the proposed model, if the queue is
empty, an additional (dummy) packet is generated to keep the
station continuously competing for medium access. However,
in the simulator, the stations compete only when there is a
real packet in the queue. In general, at low traffic loads, the
stations transmit A-MPDUs of a single or just a few packets in
both the simulator and the proposedmodel, and consequently,
they produce very similar average aggregation sizes. The
main difference is that, during a certain time interval, the
stations in the proposed model transmit more A-MPDUs than
in the simulator.

At higher offered loads, such as3 > 100Mbps, the stations
transmit A-MPDU of larger sizes in the simulator than in
the proposed model. The main reason is that assumption
2 is not applied to the simulator. As it is discussed in the
previous paragraphs, in the proposed model, due to assump-
tion 2 the size of the A-MPDU is fixed at the beginning of
the service and newly arriving packets cannot be included
in this A-MPDU. However, in the simulator, the in-service
A-MPDU can include new packets that arrive before its trans-
mission, which means the simulator stations have more space
for newly arriving packets compared to the proposed model.
It results in bigger effective system size of stations in the
simulator, which leads to bigger aggregation sizes compared
to the proposed model.
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FIGURE 5. Average network throughput performance for different total offered traffic load (3), number of stations (NSTA), and queue size limits (Q).

At very high traffic loads, the average aggregation size
performance of both the simulator and the proposed model
becomes very similar. The reason is that due to a very high
packet arrival rate, the effective system sizes of the proposed
model and the simulator become very similar and thus most
A-MPDUs have sizeA.When the queue size limit is increased
from Q = 100 to 150 packets, the effective system size also
increases. Consequently, we can see from Figure 4b that for
a biggerQ, the average aggregation size increases faster as 3

continues increasing.

B. THROUGHPUT PERFORMANCE
Figure 5 depicts the average network throughput performance
produced by the proposed model and the simulator for dif-
ferent Q, NSTA, and 3. It also includes the average network
throughput of the existing modeling approach that is derived
according to the explanation in Subsection III-I.
At lower offered loads, the proposed model shows higher

throughput than the simulator. As discussed in the previ-
ous subsection, for low loads, the average aggregation size
is similar in the model and the simulator, but the number
of A-MPDU transmissions is much higher in the proposed
model due to additional packets generated by Assumption
1. Because of such additional packets, the proposed model
produces higher throughput than the simulator.

As the offered load continues to increase, the simula-
tor starts producing a higher throughput than the proposed
model. The first reason is that the amount of additional
packets generated by Assumption 1 starts to decrease in the
proposed model because the probability that the station has

no packet becomes smaller. The another reason is that in-
service A-MPDUs in the simulator can include new packets
and thus increase its aggregation size from 1 to A. Conse-
quently, the effective system size of the simulator stations
gets bigger. In the proposed model, Assumption 2 fixes the
aggregation size of the A-MPDU when the service starts,
so newly arriving packets are not appended to this A-MPDU
but placed in the queue, leading to a smaller effective system
size, a smaller average aggregation size, and consequently
smaller throughput.

When the load further increases, due to a very high packet
arrival rates, the effect of assumptions 1 and 2 diminishes,
leading to very similar effective system sizes in simulator
and the proposed model. As a result, the average aggre-
gation sizes become very similar and consequently leading
to similar throughput performance. At some value of the
offered load, the throughput of the simulator and the proposed
model become very similar to the throughput of the existing
modeling approach, which means fully saturated condition
is reached. Similarly to the case of average aggregation size
performance, for larger Q, the throughput increases faster as
the offered load continues increasing, eventually reaching the
throughput of the existing modeling approach.

V. CONCLUSION
The conventional performancemodels of aggregation-enabled
IEEE 802.11n/ac WLANs assume fully saturated traffic,
so stations always contend to transmit A-MPDUs of maxi-
mum or other fixed aggregation size. However, in reality, the
stations transmit A-MPDUs, of different aggregation sizes
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depending on several factors such as offered load, number of
stations, random backoff process, etc. In this work, we have
proposed a new 3D Markov chain to model the performance
of aggregation-enabled WLANs with variable aggregation
size.

The performance accuracy of the proposed model has been
evaluated for different offered loads, numbers of nodes, and
queue size limits compared to the simulator and the existing
modeling approach. At low and very high offered loads,
the average aggregation size of A-MPDU in the model is
very similar to that in the simulator. In contrast, the accu-
racy of throughput performance gets better as the offered
load increases. Moreover, evaluations have shown that the
larger queue size limit leads to higher accuracy in the aggre-
gation size and throughput performance. As a result, the
proposed model improves the overall accuracy in predicting
the performance of aggregation-enabled WLANs where the
aggregation size varies depending on dynamic factors such
as offered traffic load, random backoff time, etc.

In our future work, we plan to extend the proposed model
further so that it can accurately predict the performance of
aggregation-enabled WLANs with fully unsaturated traffic
sources.
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