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ABSTRACT Research in advanced construction and autonomous earthworks begins to explore the shaping
of aggregates for construction, military, and environmental purposes. However, while current work in
autonomous earthworks focuses on grading and pushing aggregates, there is limited research on moving
aggregates to form specific shapes on a surface. This action can aid in gathering aggregates for on-site
construction of re-configurable formations, performing architectural tasks, or piling material reservoirs for
concrete production. To support aggregate-forming, an autonomous agent is required to move non-labeled
aggregates from multiple locations to numerous proximate target points in a predefined desired shape. In
this process, the agent needs to push the aggregates, handle material spills, and update both the material
location and the outcome formation. The paper presents a planner for autonomous aggregate shaping to
support this task. The path generation is first demonstrated in a simulation environment and validated in an
in-lab experimental setup, showing over 90% success rate. The results show that employing the planner can
assist in advancing autonomous earthworks toward on-site aggregate-forming.

INDEX TERMS Advanced construction, autonomous earthworks, path planning, robotics and automation.

I. INTRODUCTION

There is a growing body of work on the use of robotic
autonomous systems (RASs) for forming aggregate-based
materials. This research is pursued in the context of
autonomous earthworks [1], environmental purposes [2],
military applications [3], landscape architecture [4], and
construction [5]. Existing research includes the development
of dedicated tools for automating earthworks [6], methods,
and protocols supporting such processes [7], [8], [9].

In this context, there is a need for planners for various
earthworks and aggregate moving tasks that rely on pushing
material as their primary action. While research on path
planning for unmanned earth-moving vehicles exists [10],
there are currently no methods for moving scattered,
unlabelled aggregates for the purpose of forming specific
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shapes on a ground surface. The term aggregates is commonly
used in construction to refer to granular materials such as
sand, gravel, or crushed stone. In this context, the term
unlabeled aggregates refers to the inability of identifying
specific particles for visual tracking purposes.

A. DEFINITION OF CHALLENGE

This work addresses the lack of planning methods that enable
an agent to move multiple unlabeled scattered objects to a
predefined target in an iterative process. During this process,
the agent is required to operate under changing, uncertain
conditions, and perform (1) ongoing mapping of the material,
(2) positioning the tool, and (3) update the agent’s path
accordingly.

B. INNOVATION AND CONTRIBUTION

The novelty of the presented approach is expressed by
allowing the forming of aggregates into desired shapes using
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pushing actions while handling spills, updating the material
location, and tracking the process progression. In this context,
the presented approach and planner meet the current gaps in
research and advance the field of autonomous earthworks by
making the following contributions:

« Enabling an autonomous agent to manipulate unlabeled
aggregates to form specific shapes on a surface using
pushing actions.

« Facilitating the forming of aggregates for the creation
of re-configurable formations on-site, carrying out
architectural tasks, or piling material reservoirs for
concrete production.

o Mitigating material spills by updating the material
location and resulting formation between iterations.

« Supporting the forming process with a simulation-based
validation of the planned path before execution.

C. STRUCTURE

The paper presents the related work and state-of-the-art
regarding autonomous shaping of aggregates and robotic
object transport. It then presents a path planner for moving
and shaping aggregates. The planner is demonstrated in a
custom simulation environment and then validated experi-
mentally using an industrial using an industrial robotic arm,
a desktop experimental setup mimicking an autonomous
earth-moving tool. The results of the simulations and
experiments are then compared and analyzed. The paper
concludes with a summary of the contribution to the field and
outlines future work.

Il. RELATED WORK

This section will review the state-of-the-art in two aspects at
the core of the research - autonomous shaping of aggregates
and robotic object transport.

A. AUTONOMOUS SHAPING OF AGGREGATES

Work in the field of automated earthworks and robotic
construction begins to address the challenge of forming
aggregates in various sizes, from sand and soil to large
stones, using robotic tools. In this context, researchers
demonstrate a method for gathering large stones into a
desired shape and autonomously forming dry stone walls
by defining the placement position for each stone using a
custom planner [11], [12]. While algorithms which pick and
place single objects from a single point to a single target
well-support construction with either small constructs or with
large, boulder scale stones, this approach is less suitable
for forming numerous unlabeled objects as aggregates.
Alternative approaches, exploring the vertical gathering
of smaller, variable-sized rocks, provide a solution for
jamming aggregates by combining pouring and fiber-based
reinforcement in a single robotic process [13]. The algorithm
locates the center points of the jammed aggregate clusters,
and these, in turn, define the robotic trajectory for the vertical
laying of the tensile reinforcement.
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In the context of earthworks, autonomous surface grading
of uneven sites with multiple sand piles is explored through
a decision process geared at reducing uncertainties [14].
However, the resulting form of the pushed sand piles at
the edge of the graded surface is irrelevant to autonomous
grading processes and presents the core of this study.
While vertical aggregate-forming remains largely reliant on
additional reinforcement systems, and horizontal forming
is centered on grading and not on the resulting formation,
there is need for methods supporting autonomous horizontal
forming of multiple aggregates for the shaping of a specific
form using an iterative path planning method.

Recent research provides a task planner for earth shaping
using an autonomous excavator, relying on a separately con-
trolled bucket capable of digging, lifting, and dumping soil
[8]. However, there is a need for planners for earth-moving
vehicles that rely on simpler, pushing actions such as
bulldozers. This need is discussed in [15], where heuristics
and learning strategies guide an agent to solve an earth
grading task. In contrast, the presented paper focuses on a
classical approach to solving the path planning problem. The
advantages of this approach are (1) faster runtime, (2) reduced
computational intensity, and (3) more interpretability and
transparency in decision-making.

B. ROBOTIC OBJECT TRANSPORT AND MANIPULATION
Rearranging scattered objects into desired forms is a long-
standing challenge in robotics. While existing approaches
towards optimizing pick-and-place advance [16], they are
more satiable to manufacturing tasks. A non-manufacturing
related example for desktop manipulation employs a linear
model for pushing small objects into a desired target region.
This research demonstrates the advantage of classical path
planning in relation to machine learning approaches [17]. In
the context of search and rescue missions (SAR) in hazardous
or inaccessible sites, research advances the possibilities for
robotic disassembling of piled objects [18].

When handling aggregates, there is a need to extend
existing capacities to support the transport of multiple objects
using pushing to multiple target locations. To address this,
research begins to apply vision-based machine-learning algo-
rithms for robotic object transport, rearrangement, or recon-
figuration of numerous items [19]. To support the challenge
posed by numerous items, research explores reinforcement
learning which allow autonomous tools to utilize repertoires
of behavioral skills for improved task and path planning
[20]. This approach was applied for autonomous earthworks
on the macro scale, the management and sequencing of
earth-moving tasks using two Markov decision process
(MDP) in scenario simulations. An alternative approach
for handling onsite materials and masonry debris using
earth-moving tools in construction contexts proposes a
nonlinear model for predictive control [21]. However, the
focus, as in much of the research on autonomous earthowrks,
is placed on the action of pushing and gathering the material,
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not on rearranging the material or debris in a desired
formation. The transport of multiple aggregates to multiple
targets which compose together a desired form remains a
challenge.

lil. METHOD

The paper addresses the lack of planners for transporting
and rearranging scattered aggregates in multiple form-driven
locations. To this end, it presents a custom path planner
for autonomous forming of aggregates. The path is first
demonstrated in a simulation environment and then validated
in an experimental setup using a URSe industrial robotic arm.

A. PLANNER FORMULATION

This stage aims to devise a combined task and path-planning
strategy for moving unlabeled aggregates from multiple
depots to a single destination (as seen in Fig. 1). The system
employs a custom earth-moving path planner for construction
site preparation tasks. The planner is developed in IronPython
(a Python implementation for. NET Framework) and includes
Emgu CV (a.Net wrapper for OpenCV image processing
library).
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FIGURE 1. An example illustrating the path planning process, from
left-to-right and top-to-bottom: (A) generating an initial grid and

(B) identifying the locations of the material aggregates, (C) generating a
convex hull to enclose both the material and the target shape, (D)
marking material cells on the convex hull as pushing-cells, and (E)
drawing lines between these cells and the closest points on the target
shape. (F-G) The algorithm ignores any intersecting cells and generates
additional convex hulls until all cells are either marked as pushing-cells
or intersecting cells. (H) The shortest path between the pushing-cells is
calculated using the traveling salesman algorithm, and (1) a path is added
from each pushing cell to the closest point on the target shape to
facilitate the pushing action.

As the future goal of this research is supporting
autonomous earth-moving vehicles such as converted
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earth-moving machinery or custom Unmanned Ground
Vehicles (UGVs), the planner was implemented so the robot
is constrained to mimic the behaviour of a ground vehicle.
This means that the robot was not allowed to leave the table
or move in the Z-axis, similar to the way a differential drive
vehicle would move.

The planner receives two inputs: (1) the material map as
an image from the RGB camera and (2) the desired material
location as a shape curve from the user. The material map
image is then converted to an occupancy grid of 70-by-50
pixels. The grid size is derived from the width of the shoveling
tool and can be altered to fit different shovel sizes, which
in turn affects the resulting path. Based on these inputs, the
planner generates an optimal path for moving the aggregates
into the predefined shape. The path is then converted into a set
of waypoints for the UR5e robotic arm motion, determining
the material-pushing actions.

The main challenge in the path planning process is
finding the points from which the URSe should start
pushing the aggregates out of all existing material locations.
The advantage of earth-moving challenges, as opposed to
other coverage problems (such as inspection or pollution
detection), is that the robotic arm pushes all material on its
way to the target as long as it is within its loading capacity
and considering there is no spill. Therefore, once all of the
pushing points are determined, the next step is organizing
them in the shortest possible way to minimize idle motion
between the points.

B. IMPLEMENTATION

The algorithm, shown here in Algorithm 1, works in a 2D
Cartesian grid, denoted by M, representing an aggregates
occupancy map. The map M = {(i,j) | X; = 1} consists
of binary cells X;; indicating that cell 7, j is occupied.

The algorithm uses two maps: M; for the iterative
aggregate mapping and M7 for the algorithm target map.
Then to transform M; to M, the algorithm starts an iterative
process in which it estimates the convex hull C,, that encloses
all the aggregates in M;. Followingly, the algorithm takes the
external aggregates found on the boundary of the convex hull
M; N 3Cy, and defines a primitive pushing action between

Algorithm 1 Minimal Pushing
Input: M7, M;
while MA\M7r # ¢ do
Cm < a sequence of edges that define the convex
hull.
for Xij € M;NaC, do
Pi < X; j, 0 M7 compute the primitive
L pushing action between X; ; to d My
M,‘ < Xi,jiin,j =1
P minimal travel distance VP;
execute(P)
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these aggregates to the edge of the target map, X;; to dMr.
The primitive pushing action is performed with a consistent
forward-backward motion in a fixed direction, moving the
aggregates from X;; to 0Mr and then returning the shovel to
its original position. Lastly, the algorithm optimizes the path
planning and connects all the primitive pushing actions by
minimizing the traveling path length and executing the set of
actions P.

C. SETUP AND TOOLS

The forming of the aggregates was tested in an in-lab setup
comprised of a URSe 6DoF Universal Robots industrial arm
with a 5 kg payload and a reach of 850 mm, a 90-by-120 cm
X-Y positioning table, an RGB camera mounted on a 1.8M
tall tripod, and a selection of aggregates sized approximately
1.5- 2 cm. (see Fig. 2)

FIGURE 2. The experimental setup, including the UR5e robot, table, and
aggregates.

The tools used for the simulation and experiments include
(1) Rhinoceros 3D modelling environment for visualization
of the path, simulations, and generating the target shapes;
(2) Grasshopper visual programming plugin for controlling
the robot motion in simulation and sending motion com-
mands to the robot in the experiments; and (3) the Flexhopper
Grasshopper plugin to simulate the aggregate motion based
on the Nvidia FleX GPU-based physics engine.

D. SIMULATION

The task of the planner was to transport aggregates from
multiple locations into a predefined region, represented by
the desired shape. To test the path planning, a 3D model of
the table and robot was created in Rhinoceros 3D (see Fig. 3).
An array of between 60-70 aggregates was generated and
randomly spread on the table. The moving of the aggregates
was then simulated using Flexhopper. The simulation tested
three types of curves as targets: (1) a circle, (2) a square,
and (3) an amorphous shape containing convex and concave
segments (similar in shape to a kidney bean). Each shape
sized approximately 78 cm? in area. The simulations are
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FIGURE 3. The simulation setup in Rhinoceros 3D, including the UR5e
robot, positioning table model, and simulated aggregates.

performed five times for each shape. These shapes allow to
examine the use of the planner for supporting the formation of
various shapes in the context of earthworks and construction.

A grid of 50-by-70 was generated on the table and the
location of the aggregates was determined by performing an
inclusion test with the each of the grid cells. The simulated
aggregates locations were input into the planner which
generated a path. Following a simulation of the robot motion,
the location of each aggregate was recorded and examined
their inclusion in the target shape. This process was repeated
until all aggregates were inside the target shape. (see Fig. 4)

FIGURE 4. Visualization of the behavior of the aggregate shaping
simulation. The UR5e robotic arm is hidden to enable a view of the table,
and the shovel is marked in orange.

E. EXPERIMENT

The experiment aimed to validate the planner by reproducing
the simulation results using the same shapes with aggregates.
Here, the location of the material was obtained using an
RGB camera and image processing (see Fig. 5). In each
experiment, an initial image of the table was captured and
the location of the material was derived. The experiments
are performed three times for each shape. Each experiment is
performed in two iterations, and the performance is measured
by various parameters such as the total amount of material,
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the percent of material inside the target shape, and the length
of the path used.
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FIGURE 5. Visualization of the progression of the aggregate shaping
experiment. Raw image (top) and processed image (bottom).

IV. RESULTS AND ANALYSIS
A. SIMULATION RESULTS
The results of the simulation show a possibility to achieve
successful shaping of the three tested shapes (defined here
as over 90% of the material inside the target shapes) after a
single iteration in most cases, aside for a single case which
required a second iteration (square shape, 84% success after
first iteration and 94.4% following the second iteration).
The simulation initial conditions include 60-72 randomly
placed aggregates, with the initial percentage of material
already inside the target shape varying slightly between the
different shapes (10-20%). The results of the simulations are
provided in Table 1.

TABLE 1. Simulation results.

not easily possible to simulate - namely material stacking
and spill. After two iterations, over 90% of the material was
moved into the target shapes, regardless of the shape’s form.
The initial percentage of material already inside the target
shape varies slightly between the different shapes, but the end
results are similar.

The experiments results are presented and classified by
the target shape in Table 2. The success rate increased
over the two iterations, with the highest success rate being
around 97%. The path length also decreased over iterations,
indicating an improvement in performance.

TABLE 2. Experiment results.

Target Shape || Initial Conditions 1 Iteration 2 Iterations
Circle 16.8 —22.6% 82.1-84.8% | 93.8—-94.8%
Square 11.2 -15.8% 752-789% | 92.0-93.5%

Amorphous 9.7-14.3% 75.6-79.8% | 89.1 -91.0%

Target Shape || Initial Conditions | Final Conditions
Circle 11.3-16.9% 98.5 - 100.0%
Square 11.6 - 19.4% 94.4-97.1%

Amorphous 9.9 -14.9% 97.3 - 100.0%

B. EXPERIMENT RESULTS

The results of the experiment show a possibility to achieve
successful shaping of the three tested shapes with increasing
success after two iterations, in contrast to the simulations,
which required a second iteration only in one instance. This
difference might be due to the material behaviour which is
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In Fig. 6, it is possible to see the evolution of the material
from randomly scattered to positioned within the target shape
by observing the material occupancy images used by the
algorithm to determine the position of the aggregates.

FIGURE 6. Material occupancy images for the initial position (left), after
first iteration (middle), and after second iteration (right), with a circular
(top), square (middle), and amorphous (bottom) target.

C. ANALYSIS

In general, after two iterations, most of the material was
moved inside the target shape for all three experiments,
with the circle experiment having the highest percentage of
material inside the target shape. A comparison between the
experimental and simulated results presented in Fig. 7 show
a close match between the two, with the simulated results
generally displaying slightly more material inside the target
shape than the experimental results. The differences can
be attributed to real-world random effects that simulations
do not fully capture. There are also material properties
like aggregates stacking and spilling that are difficult to
simulate. Additionally, there may be minor variations in
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FIGURE 7. A comparison of the simulations (orange) and experiments
(blue).

the experimental conditions between runs that introduce
randomness.

The results of the experiments show that the effectiveness
of the planner is influenced by the target shape. The circle
seem to be the most successful shape for this method, with
93.8-94.8% of the material being moved inside the target after
two iterations. The amorphous shape is the least successfully,
with 89.1-91.0% of the material being moved inside after two
iterations. While the circular shape may be expected to yield
optimal results, variations in tool design or initial material
position can impact the outcome. As such, configuration
changes require additional experiments.

The performance varied between the different shapes, and
further analysis may be necessary to understand the causes
of this variation and how it affects the results. For instance,
the success rate of forming a circle were better than forming
a square, and the success of forming the amorphous shape
were lower than the square shape. The higher effectiveness
of circles can be attributed to the lack of corners or their
symmetrical attributes. On the other hand, the square and
amorphous shapes have irregular edges and contours that
make it more difficult for the planner to move the material
inside the target shape. The amorphous shape presents an
increase complexity, due to its convex and concave segments.

The improved effectiveness of the method after two
iterations can be attributed to the opportunity for material to
be redistributed more evenly. The increased success after two
iterations suggests that multiple iterations of the method can
lead to higher levels of aggregation inside the target shape - as
long as the shape is not ‘saturated’, meaning that the material
pile is to large for the shape to contain.

D. LIMITATIONS

While the forming task is defined here as transporting
aggregates from multiple locations into a predefined region,
the current system may not cover all areas within a specific
shape with material. To increase the success of the method,
future work will investigate ways to optimize the material’s
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movement into the target shape. For example, adjusting the
velocity and direction of the material flow or exploring
different methods of distributing the material inside the target
shape. Additionally, incorporating techniques such as using
magnetic fields or varying the density of the material may
also lead to increased success.

V. CONCLUSION AND FUTURE WORK

The paper presented a planner for autonomous forming of
aggregates into a desired form on a surface. The results
of the simulations and the experiments validating them
demonstrate over 90% success rate in aggregate-forming
by effectively handling material spillage and real-world
uncertainties. While the experiments were preformed using
a desktop manipulation setup, the ultimate goal is to support
autonomous shaping of aggregates on-site (Fig. 8- 9).

The planner is aimed at assisting the production of motion
instructions for a ROS-controlled vehicle by complementing
two previous publications on controlling a UGV and
localizing it using an unmanned aerial vehicle (UAV) [6], [7].

FIGURE 8. Path planning for a desktop manipulation setup.

N

FIGURE 9. Transfer of the desktop path planning to a Clearpath Jackal
UGV setup with a front shovel for on-site aggregate shaping.
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As the planner generates a path for the aggregate-forming
task, future work will focus on integrating this capability for
large-scale experiments involving outdoor construction site
preparation tasks.

Future work will perform these experiments using UGVs
to replace the robotic arm and a UAV to replace the static
camera. In this scenario, an added complexity will be the
localization of the UGVs throughout the task in relation
to the changing material formation. These capabilities can
further expand the possibilities of robotic handling of
aggregates toward autonomous earthworks, military and
mining applications, as well as for a range of landscape
architecture and construction tasks.
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